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RECOMMENDATION  ITU-R  TF.538-4 

Measures for random instabilities in frequency and time (phase) 

 

(1978-1990-1992-1994-2017) 

Scope 

Frequency and phase instabilities may be characterized by random processes that can be represented 

statistically in either the Fourier frequency domain or in the time domain. This Recommendation presents 

various methods and techniques for characterization of these frequency and phase instabilities. 

Keywords 

Random instabilities, Allan variance, time metrology, statistical measures, phase, frequency 

The ITU Radiocommunication Assembly, 

considering 

a) that there is a need for an adequate language with which to communicate the instability 

characteristics of standard frequency and time sources and measurement systems; 

b) that the classical variance does not converge for some of the kinds of random time and 

frequency instabilities; 

c) that major laboratories, observatories, industries and general users have already adopted 

some of the Recommendations of the Technical Committee on Frequency and Time of the IEEE 

Society on Instrumentation and Measurement and the existence of the IEEE Standard No. 1139-2008 

on “IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time 

Metrology – Random instabilities”; 

d) that frequency and time instability measures should be based on sound theoretical principles, 

conveniently usable, and directly interpretable; 

e) that it is desirable to have frequency and time instability measures obtainable with simple 

instrumentation, 

recommends 

1 that the random instabilities of standard frequency and time signals should be characterized 

by the statistical measures Sy( f ), S( f ) or Sx( f ) in the frequency-domain, and y(), Mod. y(), x(), 

y(t,τ), and TheoBR in the time-domain as defined below: 

1.1 the measure of the normalized frequency instabilities y(t) in the frequency domain is Sy( f ); 

i.e. the one-sided spectral density (0  f  ) of the normalized frequency instabilities 

y(t)  ((t) – 0)/0, where (t) is the instantaneous carrier frequency, and 0 is the nominal frequency; 

1.2 the measure of the phase instabilities (t) in the frequency domain is S( f ); i.e. the one-sided 

spectral density (0  f  ) of the phase instabilities (t) at a Fourier frequency f ; 

1.3 the measure of the phase instabilities expressed in time units (phase-time) x(t) in the 

frequency domain is Sx( f ); i.e. the one-sided spectral density (0  f  ) of phase-time instabilities 

x(t), where x(t)  (t) / 2 0; x(t) being related to y(t) by y(t)  dx(t) / dt; 

1.4 the relationships of the above spectral densities are given below: 



2 Rec.  ITU-R  TF.538-4 

  Sy( f )    
f 

2


2

0

  S( f )    42 f 
2 Sx( f ) (1) 

 The dimensions of Sy( f ), S( f ) and Sx( f ) are respectively Hz–1, Rad2 Hz–1 and s2 Hz–1; 

1.5 the measure of the normalized frequency instabilities y(t) in the time domain is the 

two-sample standard deviation, y(), and the modified two-sample standard deviation, Mod. y() 

and TheoBR variance as defined in Annex 1; 

1.6 the measure of time instabilities in the time-domain is x() as defined in Annex 1; 

1.7 the measure of the variations of the normalized frequency instabilities y(t) in the time domain 

is the two-sample standard deviation, σy(t,τ) as defined in Annex 1; 

2 that, when stating statistical measures of frequency and time instability, non-random 

phenomena should be recognized, e.g.: 

2.1 any observed time dependency of the statistical measures should be stated; 

2.2 the method of measuring systematic behaviour should be specified (e.g. an estimate of the 

linear frequency drift was obtained from the coefficients of a linear least squares regression to M 

frequency measurements, each with a specified averaging or sample time  and bandwidth fh); 

2.3 the environmental sensitivities should be stated (e.g. the dependence of frequency and/or 

phase on temperature, magnetic field, barometric pressure, etc.); 

3 that, when stating a measure of frequency and time instability, all relevant measurement 

parameters should also be specified: 

3.1 the method of measurements; 

3.2 the characteristics of the reference signal; 

3.3 the nominal signal frequency v0; 

3.4 the measurement system bandwidth fh and the corresponding low pass filter response; 

3.5 the total measurement time or number of measurements M; 

3.6 the calculation techniques (e.g. details of lag-windows when estimating power spectral 

densities from time domain data, or the assumption of the effect of dead-time in estimating the 

two-sample standard deviation y()); 

3.7 the confidence of the estimate; 

4 that a graphic illustration or an analytic expression of the measures of the frequency and time 

instabilities should be provided and should include confidence intervals when appropriate (i.e. Sy( f ), 

S( f ) and Sx( f ) as a function of f; y(), Mod. y() and x() as a function of ; and/or σy(t,τ) as a 

function of t and ). 
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Annex 1  

 

Characterization of frequency and phase noise 

1 Definition of terms 

Frequency and phase instabilities may be characterized by random processes that can be represented 

statistically in either the Fourier frequency domain or in the time domain. The instantaneous, 

normalized frequency departure y(t) from the nominal frequency v0 is related to the 

instantaneous-phase fluctuation (t) about the nominal phase 2 0 t by: 

  y(t)    
1

2 0
  
dt

dt
    

.
t)

2 0
 (2) 

𝑥(𝑡) =
φ(𝑡)

2πv0
 

where x(t) is the phase variation expressed in units of time. 

2 Fourier frequency domain 

In the Fourier frequency domain, frequency instability may be defined by several one-sided (the 

Fourier frequency ranges from 0 to ) spectral densities such as: 

Sy( f ) of y(t), S( f ) of (t), S .
( f ) of 

.
(t), Sx( f ) of x(t), etc. 

These spectral densities are related by the equations: 

  Sy( f )    
f 2


2

0

  S( f ) (3) 

  S .
( f )    (2 f )2 S( f ) (4) 

  Sx( f )    
1

(2 0)2  S( f ) (5) 

Power-law spectral densities are often employed as reasonable models of the random fluctuations in 

precision oscillators. In practice, it has been recognized that for many oscillators these random 

fluctuations are the sum of five independent noise processes and, with few limitations, the following 

equation is representative: 

  Sy( f )    



 
  –2

2

  h f 
 for  0  f  fh

   0 for        f  fh

 (6) 

where h’s are constants, 's are integers, and fh is the high frequency cut-off of a low pass filter. 

Equations (3), (4) and (5) are correct and consistent for stationary noises including phase noise. High 

frequency divergence is eliminated by the restrictions on f in equation (6). The identification and 

characterization of the five noise processes are given in Table 1, and shown in Fig. 1. In practice, 

only two or three noise processes are usually sufficient to describe the random frequency fluctuations 

in a specific oscillator; the others may be neglected. 
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3 Time domain 

Random frequency instability in the time domain may be defined by several sample variances. The 

square-root of a sample variance is termed a deviation, and is the statistic usually reported. 

A Allan deviation y() 

A measure of random frequency instability is the two-sample standard deviation which is the square 

root of the two-sample zero dead-time variance 
2

y() defined as: 

  
2

y()    1/2  ( yk + 1  –  yk )
2

  (7) 

where: 

  yk    
1


  





tk

tk +  

    y(t) dt    
xk + 1  –  xk


    and    tk  1    tk          (adjacent samples) 

  denotes an infinite time average. The measure written in equation (7) is often called the Allan 

variance (AVAR). The xk and xk  1 are time residual measurements made at tk and tk + 1    tk  , k    

1, 2, ..., and 1/ is the fixed sampling rate which gives zero dead time between frequency 

measurements. By “residual” it is understood that the known systematic effects have been removed.  

If the initial sampling rate is specified as 1/0, then in general one may obtain a more efficient estimate 

of y() using what is called an “overlapping estimate”. This estimate is obtained by computing 

equation (8). 

  
2

y()    
1

2(N  –  2n) 2
    

i  1

N – 2n

   (xi  2n  –  2xi  n   xi)2 (8) 

where N is the number of original time departure measurements spaced by 0 (N  M  1, where M is 

the number of original frequency measurements of sample time, 0) and     n 0. 

If dead time exists between the frequency departure measurements and this is ignored in computing 

equation (7), it has been shown that the resulting stability values (which are no longer the Allan 

variances), will be biased (except for the white frequency noise) as the frequency measurements are 

regrouped to estimate the stability for n 0 (n > 1). This bias has been studied and some tables for its 

correction published. 

If there is no dead time, then the original yi’s can be combined to create a set of yk’s: 

  yk    
1

n
    

i = k

k + n – 1

       yi 
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TABLE 1 

The functional characteristics of five independent noise processes 

for frequency instability of oscillators 

Description of noise process 

Slope characteristics of log-log plot 

Frequency domain Time domain 

Sy( f ) S( f ) or Sx( f ) 
2

y() Mod. 
2

y() 
2

x() 

    – 2    

Random walk frequency –2 –4 1 1 3 

Flicker frequency –1 –3 0 0 2 

White frequency 0 –2 –1 –1 1 

Flicker phase 1 –1 –2 –2 0 

White phase 2 0 –2 –3 –1 

Sy( f )    h  f    =  –   –  1, –2        2 


y()    


 

S( f )    v
2

0  h  f  – 2    v
2

0  h  f       –  2;          Mod. 


y()    


 

Sx( f )    
1

42
  h  f  – 2     

1

4
  h  f      –   –  1 



x()     
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An “overlapping estimate” of y() can then be obtained: 

  y()    1

2(M  –  2n  +  1)
   

k  1

M – 2n + 1

       (yk  n  –  yk )
2



 (9) 

Thus, one can ascertain the dependence of y() as a function of  from a single data set in a very 

simple way. 

A plot of y() versus  for a frequency standard typically shows a behaviour consisting of elements 

as shown in Fig. 1. The first part, with y()  –1/2
 (white frequency noise) and/or y()  –1 (white 

or flicker phase noise) reflects the fundamental noise properties of the standard. In the case where 

y()  –1, it is not practical to decide whether the oscillator is perturbed by white phase noise or by 

flicker phase noise.  

f – 4

f – 3

f – 2

f – 1

f 0

S


( 
f 

)

 0

 – 1

 – 1/2  1/2

 – 1


y

(
)

D01

Fourier frequency

Sampling time

FIGURE 1

Slope characteristics of the five independent noise processes

(log-log scale)
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Alternative techniques are suggested below. This is a limitation of the usefulness of y() when one 

wishes to study the nature of the existing noise sources in the oscillator. A frequency-domain analysis 

is typically more adequate for Fourier frequencies greater than about 1 Hz. This –1 and/or –1/2 law 

continues with increasing averaging time until the so-called flicker “floor” is reached, where y() is 

independent of the averaging time . This behaviour is found in almost all frequency standards; it 

depends on the particular frequency standard and is not fully understood in its physical basis. 

Examples of probable causes for the flicker “floor” are power supply voltage fluctuations, magnetic 

field fluctuations, changes in components of the standard, and microwave power changes. Finally the 

curve shows a deterioration of the stability with increasing averaging time. This occurs typically at 

times ranging from hours to days, depending on the particular kind of standard. 

B Modified Allan deviation Mod. y() 

A “modified Allan variance (MVAR)”, Mod. 
2

y(), has been developed which has the property of 

yielding different dependences on  for white phase noise and flicker phase noise. The dependences 

for “modified Allan deviation (MDEV)” Mod. y() are –3/2 and –1 respectively. Mod. y( is 

estimated by taking the square-root of the following equation: 

  Mod. 
2

y()    
1

2 2 n2 (N  –  3n   1)
  

j = 1

N – 3n + 1

 xi     









 

 
 

i  j

n + j – 1

   (xi  2n  –  2xi  n xi)

2

 (10) 

where: 

 N : original number of time variation measurements spaced by 0 

    n 0 the sample time of choice. 

Properties and confidence of the estimate are discussed in the technical literature. Maximum 

likelihood methods of estimating y() for the specific models of white frequency noise and random 

walk frequency noise have been developed. These two models have been shown to be useful for 

sample times longer than a few seconds for caesium beam standards. 

C Time deviation x() 

The time instability in the time-domain for the five independent noise processes shown in Fig. 1 may 

be measured using the second-difference of adjacent time averages. This measure is also related to 

Mod. 
2

y(). 

  
2

x()    ( Mod 


y)) / 3 (11) 

  
2

x()    (1/6) < [ xk  2n  –  2 xk + n   xk ]
2
 > (12) 

where (dx/dt)    y and     n 0. Therefore, x()  is the time deviation (TDEV). The brackets “ ” 

denote an infinite time average, and the bar “–” over the x denotes an average over an interval . The 

three averages used in the second difference equation above are adjacent. Therefore, for a given value 

of k in the second difference above, these averages occupy a space of 3. 

The spectral density and time variance relationships are as follows: 

  Sx( f )    f 
 

  
2

x()     (13) 

      –   –  1 
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Since the usual types of measurement noise are centred around   0, TVAR gives a near-zero 

dependence on  (a desirable trait for a good measure). Other useful characteristics of this 

measure are: 

– it is equal to the classical standard deviation of the time difference measurements for   0, 

for white phase modulation (WPM); 

– it equals the standard deviation of the mean of the time difference measurements for   N 0 

(the data length), for WPM; 

– it is convergent and well behaved for the random processes commonly encountered in time 

and frequency metrology; 

– the  dependence indicates the power-law spectral-density model appropriate for the data; 

– the amplitude of x() at a particular value of , along with assumption of one of the five 

power-law spectral-density models (  –4, –3, –2, –1, 0), provides enough information to 

estimate the corresponding level in the frequency domain for any of the standard spectral-

density measures. 

The problem of estimating the stability of individual clocks from comparison measurements has been 

studied proposing a general and consistent model to deal with signal difference measurements, 

without any a priori assumption of lack of correlation between clocks. 

D Dynamic Allan deviation y(t,τ) 

The dynamic Allan deviation (DADEV) is a measure of the variations of the random frequency 

instability in the time domain, and it is the square root of the dynamic Allan variance (DAVAR), 

defined as: 
 

  σ𝑦
2 (𝑡, τ) =

1

2(𝑇𝑤−2τ)
∫ E [(𝑦̅(𝑡′ + τ) − 𝑦̅(𝑡′))

2
] 𝑑𝑡′

𝑡+
𝑇𝑤

2
−τ

𝑡−
𝑇𝑤

2
+τ

 (14) 

where E denotes the expected value obtained as an ensemble average over an infinite number of 

experimental realizations, and Tw is the length of the analysis window. An estimate of the DAVAR 

can be obtained by: 
 

  σ𝑦
2 (𝑛, 𝑘) =

1

2𝑘2τ0
2(𝑁𝑤−2𝑘)

∑ (𝑥𝑚+2𝑘 − 2𝑥𝑚+𝑘 + 𝑥𝑚)2
𝑚=𝑛+

𝑁𝑤
2

−2𝑘−1

𝑚=𝑛−
𝑁𝑤

2

 (15) 

 

where 𝑡 = 𝑛τ0, 𝜏 = 𝑘τ0, 𝑇𝑤 = 𝑁𝑤τ0, and 𝑁𝑤 is assumed to be even. 

Experimental evidence shows that the instability of clocks and oscillators, whose standard measure 

is the Allan variance, can change with time due to several factors, such as temperature, humidity, 

vibrations, gravitational effects, and radiations. The dynamic Allan variance (DAVAR) measures 

such variations with time of the clock instability. 

Figure 2 shows the average frequency deviation 𝑦̅(𝑡) of a white frequency noise whose variance 

increases suddenly. The DAVAR, whose square root σ𝑦(𝑡, τ) is shown in the mesh plot, reveals the 

change of variance in the noise, whereas the Allan variance, whose square root σ𝑦(τ) is shown in the 

side plot, averages out the change of variance. 
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FIGURE 2 

DAVAR of a change of variance (mesh plot) 

 

E A long-term estimator TheoBR 

A long-term estimator for the Allan variance (AVAR) is the Theory variance #1, known as Theo1, 

and with bias removed, known as TheoBR variance, which is Theo1 with a slight bias removed 

relative to sample AVAR. Theo1 averages every permissible squared second-difference of time errors 

xi in a given data run Nx and reports frequency stability 50% longer than the longest possible τ of 

AVAR. Thus, Theo1 and TheoBR represent a new species of descriptive statistics with substantially 

higher equivalent degrees of freedom than the overlapping version of sample AVAR. 

Theo1 Definition 
 

𝑇ℎ𝑒𝑜1(𝑚, τ0, 𝑁𝑥)     ≔
1

0.75(𝑁𝑥−𝑚)(𝑚τ0)2 × ∑ ∑
1

(
𝑚

2
−δ)

[(𝑥𝑖 − 𝑥𝑖−δ+
𝑚

2
) + (𝑥𝑖+𝑚 − 𝑥𝑖+δ+

𝑚

2
)]

2

   
𝑚

2
−1

δ=0
𝑁𝑥−𝑚
𝑖=1  (16) 

𝑓𝑜𝑟 𝑚 𝑒𝑣𝑒𝑛, 10 ≤ 𝑚 ≤ 𝑁𝑥, τ = 0.75𝑚τ0 
 

Theo1 deviation, known as Theo1-dev, is unbiased relative to the Allan deviation for White-FM 

noise. Theo1-dev is biased slightly for other noise types. This bias can be automatically removed 

using an algorithm that computes the average bias between Theo1 and Allan variance in an 

overlapping τ region of the two and uses it to correct Theo1. Thus, we have: 
 

  𝑇ℎ𝑒𝑜𝐵𝑅 =
E[∗𝐴𝑉𝐴𝑅]

E[∗𝑇ℎ𝑒𝑜1]
× 𝑇ℎ𝑒𝑜1 (17) 

where *AVAR and *Theo1 are computed for a range of 𝑚τ0 where sample AVAR and Theo1 overlap 

and are chosen so as to represent the bias at large τ for AVAR rather than at small τ. The bias 

correction is a constant, not dependent on τ. 

TheoBR Definition 
 

  𝑇ℎ𝑒𝑜𝐵𝑅(𝑚, τ0, 𝑁𝑥)  ∶= [
1

𝑛+1
∑

𝐴𝑉𝐴𝑅(𝑚=9+3𝑖,τ0,𝑁𝑥)

𝑇ℎ𝑒𝑜1(𝑚=12+4𝑖,τ0,𝑁𝑥)

𝑛
𝑖=1 ] × 𝑇ℎ𝑒𝑜1(𝑚, τ0, 𝑁𝑥) (18) 

  𝑤ℎ𝑒𝑟𝑒 𝑛 = ⌊
0.5𝑁𝑥

3
− 3⌋ 



10 Rec.  ITU-R  TF.538-4 

 

TheoH Definition 

Hybrid Theory variance, known as TheoH variance, is a hybrid statistic (hence, the “H”) that 

combines values of the overlapping version of AVAR in the short-term and TheoBR variance to 

estimate the long-term frequency stability out to ¾ of the data run length Nx, which as mentioned is 

50% longer than the data length usable by AVAR. 
 

𝑇ℎ𝑒𝑜𝐻(𝑚, τ0, 𝑁𝑥) ∶= {
𝐴𝑉𝐴𝑅(𝑚, τ0, 𝑁𝑥),                                        𝑓𝑜𝑟 1 ≤ 𝑚 ≤

𝑘

τ0

𝑇ℎ𝑒𝑜𝐵𝑅(𝑚, τ0, 𝑁𝑥),            𝑓𝑜𝑟
𝑘

0.75τ0
≤ 𝑚 ≤ 𝑁𝑥 − 1, 𝑚 𝑒𝑣𝑒𝑛

 (19) 

where 𝑘 is τ ≤ 0.2𝑇, and 𝐴𝑉𝐴𝑅(𝑚, τ0, 𝑁𝑥) has sufficient confidence. 

The usual upper τ-limit of AVAR is 20% of the data run time T. Since TheoBR is more 

computationally intense than AVAR, only large values of m are included in the above definition, not 

all values of m. Usually it is not necessary to calculate all values of m; octave or decade spans of m 

are sufficient to characterize random noise. To delineate AVAR from TheoBR values, an intentional 

small gap for 
0.2𝑇

𝜏0
< 𝑚 <

0.8𝑇

3𝜏0
 is inserted but can be filled if one wants to compute more or all m 

values. 

The square-root of TheoH variance is TheoH deviation, also known as TheoH-dev. 

4 Conversion between frequency and time domains 

In general, if the spectral density of the normalized frequency fluctuations Sy( f ) is known, the 

two-sample variance can be computed as follows: 

  
2

y()    2 




0

fh

 Sy( f )  
sin4 ( f )

( f )2   df (20) 

  Mod. 
2

y()    2 




0

fh

 Sy( f )  
sin6 ( f )

(n  f )2 sin2 ( f 0)
  df (21) 

and: 

  
2

x()    
8

3
 




0

fh

 Sx( f )  
sin6 ( f )

n2 sin2 ( f 0)
  df (22) 

Specifically, for the power law model given by equation (6), the time-domain measure also follows 

the power law as derived from equations (6) and (11). 


2

y()    h–2  
(2)2

6
     h–1 2 loge 2    h0  

1

2
    h1  

1.038  3 loge (2 fh 

(2)2 2     h2  
3fh

(2)2 2 (23) 

The values of h are characteristics of oscillator frequency noise. One may note for integer values (as 

often seems to be the case) that 

      –   –  1          for  – 3        1 

      – 2          for       1 
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where: 

  
2

y()     

These conversions have been verified experimentally and by computation. Table 2 gives the 

coefficients of the translation among the frequency instability measures from time domain to 

frequency domain and from frequency domain to time domain. 

TABLE 2 

Translation of frequency instability measures from spectral densities in frequency 

domain to variance in time domain and vice versa (for 2 fh  >> 1) 

Description of noise processes 


y  ()  Sy ( f )  S ( f )  Sx ( f )  

Random walk frequency A[ f 
2 Sy( f )] 1 

1

A
 [ 

–1 


y()] f 
–2 

v
2

0

A
 [ 

–1 
2

y()] f 
–4 

3.636

A
 [ 

–3 
2

x()] f 
–4 

Flicker frequency B[ f Sy( f )] 0 
1

B
 [2 



y()] f 
–1 

v
2

0

B
 [0 

2

y()] f 
–3 

0.741

AB
 [ 

–2 
2

x()] f –3 

White frequency C[ f 
0 Sy( f )]  

–1 
1

C
 [2 



y()] f 0 
v

2

0

C
 [1 

2

y()] f 
–2 

1

AC
 [ –1 

2

x()] f –2 

Flicker phase D[ f 
–1 Sy( f )]  

–2 
1

D
 [2 



y()] f 
1 

v
2

0

D
 [2 

2

y()] f 
–1 0.89 [0 

2

x()] f 
–1 

White phase E[ f 
–2 Sy( f )]  

–2 
1

E
 [2 



y()] f 
2 

v
2

0

E
 [2 

2

y(] f 
0 

1

0 fh

 [ 
2

x()] f 
0 

A    
4


 D   

1.038  3 loge (2 fh 

42  

B    2 loge 2 E    
3 fh
42 

C    1/2  

 

The slope characteristics of the five independent noise processes are plotted in the frequency and time 

domains in Fig. 1 (log-log scale). 

5 Confidence limits of time domain measurements 

To estimate the confidence interval or error bar for a Gaussian type of noise of a particular value y() 

obtained from a finite number of samples, the following expression may be used (with 

non-overlapping estimates): 

  Confidence Interval I      y()    M–1/2        for   M  10 (24) 

where: 

 M : total number of data points used in the estimate 

  : as defined in the previous section 

 2  1  0.99 

 0   0.87 

 –1   0.77 
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 –2   0.75.  

As an example of the Gaussian model with M  100,   –1 (flicker frequency noise) and 

y(  1 s)  10–12, one may write: 

  I      y()    M–1/2    y(    (100)–1/2      y()  (0.077) (25) 

which gives: 

  y(    1 s)    (1  0.08)  10–12 (26) 

A modified estimation procedure including dead time between pairs of measurements has also been 

developed, showing the influence of auto-correlation of frequency fluctuations. 

The above confidence intervals apply to “non-overlapping estimates”. In the case of “overlapping 

estimates” the confidence interval is smaller and can be calculated. 

The bias resulting from the application of two-sample variance to time intervals obtained by linking 

several successive measures with dead time has been determined as a function of noise type. This 

bias may be significant. 

The effect of the nature of the analogue filtering which limits the noise power of the signal in question 

about its nominal frequency has been determined, particularly for the use of a low pass filter instead 

of a band-pass filter centred on the nominal frequency. 

The degrees of freedom (d.f.) for overlapping estimates have been calculated. They are theoretically 

derived and plotted for power-law spectra for estimation of the confidence interval of the two-sample 

standard deviation. The confidence interval for the two-sample standard deviation y() is: 

  

(d.f.) ̂
2

y()


P1

  <  y()  <  

(d.f.) ̂
2

y()


P2

 (27) 

where: 

 
P1

 and 
P2

 : percentile values for the chi-square distribution; 

 the hat “^” : estimate or the measured two-sample variance from finite set.  

For     2 the improvement of the d.f. is nearly n times better than with respect to the non-

overlapping estimate case. Significant improvement is also gained for     1. For     0 the ratio 

of the degrees of freedom is 2; for     –1 it is 1.3; and for     –2 it is 1.04. 

6 Potentially misleading applications of statistical measures  

The several statistical measures specified here are each created for specific purposes, and they may 

not be useful for others. 

The Allan deviation, modified Allan deviation, and time deviation are based upon second differences 

of x(t) and are therefore insensitive to a first-order polynomial. However, removal of a polynomial of 

second or higher order can reduce the values at large . 

Therefore, if such a polynomial must be removed before computing the statistics, it is strongly 

recommended to use statistical measures insensitive to the curve removal, such as those based upon 

higher order differences of x(t). The class of statistical measures that use second or higher-order 

differences are insensitive to a linear variation in the data. 
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Both the frequency-domain and the time-domain measures may give incorrect results in the presence 

of irregularly spaced data. In general, gaps in the data constitute missing information. Some methods 

for dealing with these data use interpolation, others assume missing data are zero, and all can cause 

distorting effects. The ways in which software handles irregularly spaced data should be understood. 

7 Conclusion 

The statistical methods for describing frequency and phase instability and the corresponding power 

law spectral density model described are generally sufficient for describing oscillator instability.. The 

current version introduces additional methods to deal with time varying instabilities in the time 

domain, and extends the computation of time domain instability to a larger fraction of the data length. 

Non-random (deterministic or systematic) variations are not covered by the methods described. These 

could be either periodic or monotonic. Periodic variations are to be analysed by means of known 

methods of harmonic analysis. Monotonic variations are described by linear or higher order drift 

terms. 
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