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Characterization of sources and time scales formation

RECOMMENDATION  ITU-R  TF.538-3

MEASURES  FOR  RANDOM  INSTABILITIES  IN  FREQUENCY  AND  TIME (PHASE)

(Question ITU-R 104/7)

(1978-1990-1992-1994)
Rec. ITU-R TF.538-3

The ITU Radiocommunication Assembly,

considering

a) that there is a need for an adequate language with which to communicate the instability characteristics of
standard frequency and time sources and measurement systems;

b) that the classical variance does not converge for some of the kinds of random time and frequency instabilities;

c) that major laboratories, observatories, industries and general users have already adopted some of the
Recommendations of the Sub-Committee on Frequency Stability of the Technical Committee on Frequency and Time of
the IEEE Society on Instrumentation and Measurement and the existence of the IEEE Standard No. 1139-1988 on “IEEE
Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology”;

d) that frequency and time instability measures should be based on sound theoretical principles, conveniently
usable, and directly interpretable;

e) that it is desirable to have frequency and time instability measures obtainable with simple instrumentation;

f) that there is no accepted and appropriate measure for time-domain time instability in clocks and in
measurement, comparison, and dissemination systems;

g) that a time instability measure for random variations has been found which satisfies the inadequacy both for
the telecommunications industry as well as for time and frequency measurement, comparison and dissemination systems
and for clocks,

recommends

1. that the random instabilities of standard frequency and time signals should be characterized by the statistical
measures Sy( f ), Sϕ( f ) or Sx( f ) in the frequency-domain, and σy(τ), Mod. σy(τ) and σx(τ) in the time-domain as defined
below:

1.1 the measure of the normalized frequency instabilities y(t) in the frequency domain is Sy( f ); i.e. the one-sided
spectral density (0 < f < ∞) of the normalized frequency instabilities y(t) = (ν(t) – ν0)/ν0, where ν(t) is the instantaneous
carrier frequency, and ν0 is the nominal frequency;

1.2 the measure of the phase instabilities ϕ(t) in the frequency domain is Sϕ( f ); i.e. the one-sided spectral density
(0 < f < ∞) of the phase instabilities ϕ(t) at a Fourier frequency f ;

1.3 the measure of the phase instabilities expressed in time units (phase-time) x(t) in the frequency domain is
Sx( f ); i.e. the one-sided spectral density (0 < f < ∞) of phase-time instabilities x(t), where x(t) = ϕ(t) / 2π ν0; x(t) being
related to y(t) by y(t)  =  dx(t) / dt;

1.4 the relationships of the above spectral densities are given below:

Sy( f )  =  
f 2

ν2
0

  Sϕ( f )  =  4π2 f 2 Sx( f ) (1)

The dimensions of Sy( f ), Sϕ( f ) and Sx( f ) are respectively Hz–1, Rad2 Hz–1 and s2 Hz–1;

1.5 the measure of the normalized frequency instabilities y(t) in the time domain is the two-sample standard
deviation, σy(τ), and the modified two-sample standard deviation, Mod. σy(τ) as defined in Annex 1;

1.6 the measure of time instabilities in the time-domain is σx(τ) as defined in Annex 1;
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2. that, when stating statistical measures of frequency and time instability, non-random phenomena should be
recognized, e.g.:

2.1 any observed time dependency of the statistical measures should be stated;

2.2 the method of measuring systematic behaviour should be specified (e.g. an estimate of the linear frequency
drift was obtained from the coefficients of a linear least squares regression to M frequency measurements, each with a
specified averaging or sample time τ and bandwidth fh);

2.3 the environmental sensitivities should be stated (e.g. the dependence of frequency and/or phase on
temperature, magnetic field, barometric pressure, etc.);

3. that, when stating a measure of frequency and time instability, all relevant measurement parameters should
also be specified:

3.1 the method of measurements;

3.2 the characteristics of the reference signal;

3.3 the nominal signal frequency v0;

3.4 the measurement system bandwidth fh and the corresponding low pass filter response;

3.5 the total measurement time or number of measurements M;

3.6 the calculation techniques (e.g. details of lag-windows when estimating power spectral densities from time
domain data, or the assumption of the effect of dead-time in estimating the two-sample standard deviation σy(τ));

3.7 the confidence of the estimate;

4. that a graphic illustration or an analytic expression of the measures of the frequency and time instabilities
should be provided and should include confidence intervals (i.e. Sy( f ), Sϕ( f ) and Sx( f ) as a function of f and/or σy(τ),
Mod. σy(τ) and σx(τ) as a function of τ).

ANNEX  1*

Characterization of frequency and phase noise

1. Definition of terms

Frequency and phase instabilities may be characterized by random processes that can be represented
statistically in either the Fourier frequency domain or in the time domain. The instantaneous, normalized frequency
departure y(t) from the nominal frequency v0 is related to the instantaneous-phase fluctuation ϕ(t) about the nominal
phase 2π ν0 t by:

y(t)  =  
1

2π ν0
  

dϕ(t)
dt   =  

.ϕ(t)
2π ν0

(2)

x(t)  =  
ϕ(t)

2π ν0

where x(t) is the phase variation expressed in units of time.

_______________
* Note from the Director, Radiocommunication Bureau – Information on the derivation of the formulae and the historical

development of this Annex is contained in Report ITU-R TF.580 (ex-CCIR Report 580, Düsseldorf, 1990).
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2. Fourier frequency domain

In the Fourier frequency domain, frequency stability may be defined by several one-sided (the Fourier
frequency ranges from 0 to ∞) spectral densities such as:

Sy( f ) of y(t), Sϕ( f ) of ϕ(t), S .
ϕ( f ) of 

.ϕ(t), Sx( f ) of x(t), etc.

These spectral densities are related by the equations:

Sy( f )  =  
f 2

ν2
0

  Sϕ( f ) (3)

S .
ϕ( f )  =  (2π f )2 Sϕ( f ) (4)

Sx( f )  =  
1

(2π ν0)2  Sϕ( f ) (5)

Power-law spectral densities are often employed as reasonable models of the random fluctuations in precision
oscillators. In practice, it has been recognized that for many oscillators these random fluctuations are the sum of five
independent noise processes and, with few limitations, the following equation is representative:

Sy( f )  =  



 ∑

α = –2

+2

  hα f α for  0 < f < fh

   0 for        f > fh

(6)

where hα’s are constants, α's are integers, and fh is the high frequency cut-off of a low pass filter. Equations (3), (4) and
(5) are correct and consistent for stationary noises including phase noise. High frequency divergence is eliminated by the
restrictions on f in equation (6). The identification and characterization of the five noise processes are given in Table 1,
and shown in Fig. 1. In practice, only two or three noise processes are usually sufficient to describe the random
frequency fluctuations in a specific oscillator; the others may be neglected.

3. Time domain

Random frequency instability in the time domain may be defined by several sample variances. The
recommended measure is the two-sample standard deviation which is the square root of the two-sample zero dead-time

variance σ2
y(τ) defined as:

σ2
y(τ)  =  1/2  <( yk + 1  –  yk )2

 > (7)

where:

yk  =  
1
τ  

⌡
⌠

tk

tk +  τ

    y(t) dt  =  
xk + 1  –  xk

τ     and    tk + 1  =  tk  +  τ      (adjacent samples)

< > denotes an infinite time average. The measure written in equation (7) is often called the Allan variance. The xk and xk

+ 1 are time residual measurements made at tk and tk + 1  =  tk + τ, k  =  1, 2, ..., and 1/τ is the fixed sampling rate which
gives zero dead time between frequency measurements. By “residual” it is understood that the known systematic effects
have been removed.
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If the initial sampling rate is specified as 1/τ0, then in general one may obtain a more efficient estimate of σy(τ)
using what is called an “overlapping estimate”. This estimate is obtained by computing equation (8).

σ2
y(τ)  =  

1
2(N  –  2n) τ2    ∑

i = 1

N – 2n

   (xi + 2n  –  2xi + n  +  xi)2 (8)

where N is the number of original time departure measurements spaced by τ0 (N = M + 1, where M is the number of
original frequency measurements of sample time, τ0) and τ  =  n τ0.

If dead time exists between the frequency departure measurements and this is ignored in computing
equation (7), it has been shown that the resulting stability values (which are no longer the Allan variances), will be
biased (except for the white frequency noise) as the frequency measurements are regrouped to estimate the stability
for n τ0 (n > 1). This bias has been studied and some tables for its correction published.

If there is no dead time, then the original yi’s can be combined to create a set of yk’s:

yk  =  
1
n    ∑

i = k

k + n – 1

       yi

TABLE  1

The functional characteristics of five independent noise processes
for frequency instability of oscillators

Slope characteristics of log-log plot

Description of noise process
Frequency domain Time domain

Sy( f ) Sϕ( f ) or Sx( f ) σ2
y(τ) Mod. σ2

y(τ) σ2
x(τ)

α β ≡ α – 2 µ µ′ η

Random walk frequency –2 – 4 1 1 3

Flicker frequency –1 –3 0 0 2

White frequency 0 –2 –1 –1 1

Flicker phase 1 –1 –2 –2 0

White phase 2 0 –2 –3 –1

Sy( f )  =  hα  f α α  =  – µ  –  1, –2  ≤  µ  <  2 σ2
y(τ) ∼  τ 

µ

Sϕ( f )  =  v
2
0  hα  f α – 2  =  v

2
0  hα  f β β  ≡  α  –  2; η  ≡  µ′  +  2 Mod. σ2

y(τ) ∼  τ 
µ′

Sx( f )  =  
1

4π2  hα  f α – 2   =  
1

4π2  hα  f β α  =  – µ′  –  1 σ2
x(τ) ∼  τ η
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Slope characteristics of the five independent noise processes
(log-log scale)
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An “overlapping estimate” of σy(τ) can then be obtained:

σy(τ)  =  1
2(M  –  2n  +  1)   ∑

k = 1

M – 2n + 1

       (yk + n  –  yk )2
1/2

(9)

Thus, one can ascertain the dependence of σy(τ) as a function of τ from a single data set in a very simple way.

A plot of σy(τ) versus τ for a frequency standard typically shows a behaviour consisting of elements as shown
in Fig. 1. The first part, with σy(τ) ∼ τ–1/2 (white frequency noise) and/or σy(τ) ∼ τ–1 (white or flicker phase noise)
reflects the fundamental noise properties of the standard. In the case where σy(τ) ∼ τ–1, it is not practical to decide
whether the oscillator is perturbed by white phase noise or by flicker phase noise. Alternative techniques are suggested
below. This is a limitation of the usefulness of σy(τ) when one wishes to study the nature of the existing noise sources in
the oscillator. A frequency-domain analysis is typically more adequate for Fourier frequencies greater than about 1 Hz.
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This τ–1 and/or τ–1/2 law continues with increasing averaging time until the so-called flicker “floor” is reached, where
σy(τ) is independent of the averaging time τ. This behaviour is found in almost all frequency standards; it depends on the
particular frequency standard and is not fully understood in its physical basis. Examples of probable causes for the
flicker “floor” are power supply voltage fluctuations, magnetic field fluctuations, changes in components of the standard,
and microwave power changes. Finally the curve shows a deterioration of the stability with increasing averaging time.
This occurs typically at times ranging from hours to days, depending on the particular kind of standard.

A “modified Allan variance”, Mod. σ2
y(τ), has been developed which has the property of yielding different

dependences on τ for white phase noise and flicker phase noise. The dependences for Mod. σy(τ) are τ–3/2 and τ–1

respectively. Mod. σy(τ) is estimated using the following equation:

Mod. σ2
y(τ)  =  

1
2 τ2 n2 (N  –  3n  +  1)

  ∑
j = 1

N – 3n + 1

 xi     








 

  ∑
i = j

n + j – 1

   (xi + 2n  –  2xi + n  +  xi)

2

(10)

where:

N : original number of time variation measurements spaced by τ0

τ  =  n τ0 the sample time of choice.

Properties and confidence of the estimate are discussed in the technical literature. Maximum likelihood
methods of estimating σy(τ) for the specific models of white frequency noise and random walk frequency noise have
been developed. These two models have been shown to be useful for sample times longer than a few seconds for
caesium beam standards.

The time instability in the time-domain for the above five power-law spectra may be measured using the

second-difference of adjacent time averages. This measure is also related to Mod. σ2
y(τ).

σ2
x(τ)  =  (τ2 Mod. σ

2
y(τ)) / 3 (11)

σ2
x(τ)  =  (1/6) < [ xk + 2n  –  2 xk + n  +  xk ]

2 > (12)

where (dx/dt)  =  y and τ  =  n τ0. Therefore, x is the time deviation; the brackets “< >” denote an infinite time average.
The bar “–” over the x denotes an average over an interval τ. Hence, x is an optimum estimate of the time deviation over
the interval τ if the deviations have a white spectrum. The three averages used in the second difference equation above
are adjacent. Therefore, for a given value of k in the second difference above, these averages occupy a space of 3τ.

The spectral density and time-domain relationships are as follows:

Sx( f )    f β

σ2
x(τ)  ∼  τη (13)

β  =  – η  –  1

Since the usual types of measurement noise are centred around η = 0, this gives a near-zero dependence on τ (a
desirable trait for a good measure). Other useful characteristics of this measure are:

– it is equal to the classical standard deviation of the time difference measurements for τ = τ0, for white-
noise PM;

– it equals the standard deviation of the mean of the time difference measurements for τ = N τ0 (the data
length), for white-noise PM;
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– it is convergent and well behaved for the random processes commonly encountered in time and frequency
metrology;

– the τ dependence indicates the power-law spectral-density model appropriate for the data;

– the amplitude of σx(τ) at a particular value of τ, along with assumption of one of the five power-law
spectral-density models (β = –4, –3, –2, –1, 0), provides enough information to estimate the
corresponding level in the frequency domain for any of the recommended IEEE-standard spectral-density
measures.

The problem of estimating the stability of individual clocks from comparison measurements has been studied
proposing a general and consistent model to deal with signal difference measurements, without any a priori assumption
of lack of correlation between clocks.

4. Conversion between frequency and time domains

In general, if the spectral density of the normalized frequency fluctuations Sy( f ) is known, the two-sample
variance can be computed as follows:

σ2
y(τ)  =  2 

⌡
⌠

0

fh

 Sy( f )  
sin4 (π f τ)

(π f τ)2   df (14)

Mod. σ2
y(τ)  =  2 

⌡
⌠

0

fh

 Sy( f )  
sin6 (π f τ)

(n π f τ)2 sin2 (π f τ0)
  df (15)

and:

σ2
x(τ)  =  

8
3 

⌡
⌠

0

fh

 Sx( f )  
sin6 (π f τ)

n2 sin2 (π f τ0)
  df (16)

Specifically, for the power law model given by equation (6), the time-domain measure also follows the power
law as derived from equations (6) and (11).

σ2
y(τ)  =  h–2  

(2π)2

6  τ  +  h–1 2 loge 2  +  h0  
1
2τ  +  h1  

1.038 + 3 loge (2π fh τ)
(2π)2 τ2   +  h2  

3fh
(2π)2 τ2 (17)

The values of hα are characteristics of oscillator frequency noise. One may note for integer values (as often
seems to be the case) that

µ  =  – α  –  1 for – 3  ≤  α  ≤  1

µ  ∼  – 2 for – 3  ≤  α  ≥  1

where:

σ2
y(τ)  ∼  τµ

These conversions have been verified experimentally and by computation. Table 2 gives the coefficients of the
translation among the frequency stability measures from time domain to frequency domain and from frequency domain
to time domain.
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TABLE  2

Translation of frequency stability measures from spectral densities in frequency
domain to variance in time domain and vice versa (for 2π fh τ >> 1)

Description of noise processes σ2
y (τ) = Sy ( f ) = Sϕ ( f ) = Sx ( f ) =

Random walk frequency A[ f 2 Sy( f )] τ1 1
A [τ –1 σ2

y(τ)] f –2 v
2
0

A  [τ –1 σ2
y(τ)] f –4

3.636
A  [τ –3 σ2

x(τ)] f –4

Flicker frequency B[ f Sy( f )] τ0 1
B [τ2 σ2

y(τ)] f –1 v
2
0

B  [τ0 σ2
y(τ)] f –3

0.741
AB  [τ –2 σ2

x(τ)] f –3

White frequency C[ f 0 Sy( f )] τ –1 1
C [τ2 σ2

y(τ)] f 0 v
2
0

C [τ1 σ2
y(τ)] f –2

1
AC [τ –1 σ2

x(τ)] f –2

Flicker phase D[ f –1 Sy( f )] τ –2 1
D [τ2 σ2

y(τ)] f 1 v
2
0

D [τ2 σ2
y(τ)] f –1 0.89 [τ0 σ2

x(τ)] f –1

White phase E[ f –2 Sy( f )] τ –2 1
E [τ2 σ2

y(τ)] f 2 v
2
0

E  [τ2 σ2
y(τ)] f 0

1
τ0 fh

 [τ σ2
x(τ)] f 0

A  =  
4π2

6 D  =  
1.038 + 3 loge (2π fh τ)

4π2

B  =  2 loge 2 E  =  
3 fh
4π2

C  =  1/2

The slope characteristics of the five independent noise processes are plotted in the frequency and time domains
in Fig. 1 (log-log scale).

5. Confidence limits of time domain measurements

To estimate the confidence interval or error bar for a Gaussian type of noise of a particular value σy(τ)
obtained from a finite number of samples, the following expression may be used (with non-overlapping estimates):

Confidence Interval Iα   ∼   σy(τ) ⋅ κα ⋅ M–1/2        for   M > 10 (18)

where:

M : total number of data points used in the estimate

α : as defined in the previous section

κ2 = κ1 = 0.99

κ0 = 0.87

κ–1 = 0.77

κ–2 = 0.75.
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As an example of the Gaussian model with M = 100, α = –1 (flicker frequency noise) and
σy(τ = 1 s) = 10–12, one may write:

Iα   ∼   σy(τ) ⋅ κα ⋅ M–1/2  =  σy(τ) ⋅ (0.77) ⋅ (100)–1/2   =   σy(τ) ⋅ (0.077) (19)

which gives:

σy(τ  =  1 s)  =  (1 ± 0.08) × 10–12 (20)

A modified estimation procedure including dead time between pairs of measurements has also been developed,
showing the influence of auto-correlation of frequency fluctuations.

The above confidence intervals apply to “non-overlapping estimates”. In the case of “overlapping estimates”
the confidence interval is smaller and can be calculated.

The bias resulting from the application of two-sample variance to time intervals obtained by linking several
successive measures with dead time has been determined as a function of noise type. This bias may be significant.

The effect of the nature of the analogue filtering which limits the noise power of the signal in question about
its nominal frequency has been determined, particularly for the use of a low pass filter instead of a band-pass filter
centred on the nominal frequency.

The degrees of freedom (d.f.) for overlapping estimates have been calculated. They are theoretically derived
and plotted for power-law spectra for estimation of the confidence interval of the two-sample standard deviation. The
confidence interval for the two-sample standard deviation σy(τ) is:

(d.f.) σ̂2
y(τ)

χ
P1

  <  σy(τ)  <  

(d.f.) σ̂2
y(τ)

χ
P2

(21)

where:

χ
P1

 and χ
P2

 : percentile values for the chi-square distribution

the hat “^” : estimate or the measured two-sample variance from finite set.

For α  =  +2 the improvement of the d.f. is nearly n times better than with respect to the non-overlapping
estimate case. Significant improvement is also gained for α  =  +1. For α  =  0 the ratio of the degrees of freedom is 2;
for α  =  –1 it is 1.3; and for α  =  –2 it is 1.04.

6. Conclusion

The statistical methods for describing frequency and phase instability and the corresponding power law
spectral density model described are sufficient for describing oscillator instability on the short term. Equations (14-16)
show that the spectral density can be unambiguously transformed into the time domain measure. The converse is not true
in all cases but is true for the power law spectra often used to model precision oscillators.

Non-random variations are not covered by the model described. These can be either periodic or monotonic.
Periodic variations are to be analysed by means of known methods of harmonic analysis. Monotonic variations are
described by linear or higher order drift terms.

_________________
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