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RECOMMENDATION  ITU-R  TF.2118-0 

Relativistic time transfer 

(2018) 

Scope 

This Recommendation establishes common conventional algorithms and procedures to be used in comparing 

clocks on the surface of the Earth and on platforms far from the Earth but within the solar system. These 

expressions are explicitly determined in the general relativity theory that is presently accepted to form the 

basis of space-time reference systems. It is envisioned that these algorithms and procedures would be used 

for comparisons of clocks on Earth satellites, interplanetary spacecraft, and on the surfaces of solar system 

bodies. 

Keywords  

Relativity, time transfer, signal propagation, clock, coordinate system 

Related Recommendations and Reports 

Recommendations ITU-R TF.1011-1, ITU-R TF.767-2, ITU-R TF.374-5 

The ITU Radiocommunication Assembly, 

considering 

a) that it is desirable to maintain coordination of standard time and frequency on platforms 

operating in the vicinity of the Earth and in the solar system; 

b) that accurate means of transferring time and frequency are required to meet the future needs 

of communication, navigation, and science in the vicinity of the Earth and in the solar system; 

c) that clocks are subject to path dependent time and frequency variations due to their motion 

and to the gravitational potential in which they operate; 

d) that the conceptual foundation for the transfer of time and frequency should be clearly 

outlined; 

e) that procedures for the transfer of time and frequency in the vicinity of the Earth and across 

celestial bodies and spacecraft in the solar system require the use of mathematical algorithms that 

account for relativistic effects, 

f) that requirements for precision and accuracy for the transfer of time and frequency in the 

vicinity of the Earth and in the solar system depend on the specific application, 

recommends 

that the mathematical algorithms that account for relativistic effects in the transfer of time and 

frequency as provided in Annex I be used as appropriate. 
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1 Objective 

The objective of Annex I is to outline the basic concepts and procedures to be applied to address the 

effects of relativity in timekeeping, navigation, science, and communication systems. It is intended 

that this may serve as a convenient reference for specific applications, including the comparison of 

times registered by clocks on spacecraft in orbit around the Earth, in interplanetary space, and on 

planetary surfaces with the times recorded by clocks on Earth. It is based on the IERS Conventions 

(2010), the ITU-R Handbook on Satellite Time and Frequency Transfer and Dissemination (2010), 

Nelson, Metrologia (2011), and Petit and Wolf, Metrologia (2005). Users may consult those 

publications and references cited therein for further details. 

2 Relativistic Framework 

A reference system is a mathematical construction used to specify space-time events described by 

four coordinates x = (x0, xi) = (x0, x1, x2, x3). The Greek indices take the values 0, 1, 2, 3 and the 

Latin ones take the values 1, 2, 3, and a repeated index implies summation on that index. The index 

0 refers to the time variable and the indices 1, 2, 3 refer to the three spatial coordinates. A reference 

frame is a realization of the reference system usually in the form of a catalogue of positions and 

motions of objects or an ephemeris. 

A reference system is fixed by its metric tensor, g(t, xi) allowing one to compute the space-time 

distance between two events x and x+dx: 

   2 2 2

00 0, c 2 c .i i i j

i ijds g t x dx dx g dt g dtdx g dx dx 

     (1) 

where c is the speed of light. 

Resolutions of international scientific organizations define the reference system specifically. The 

most important are: 

1) IAU Resolution A4 (1991) defines the Barycentric Celestial Reference System (BCRS) and 

the Geocentric Celestial Reference System (GCRS) and their time coordinates. IAU 

Resolution B1 (2000) further refines the BCRS definition. 

2) IUGG Resolution 2 (2007) defines the Geocentric Terrestrial Reference System (GTRS), 

along with the International Terrestrial Reference System (ITRS). 

Briefly, the BCRS is a system of space-time coordinates for the solar system centred at the solar 

system barycentre and specified with the metric tensor given by the IAU 2000 Resolution B1.3. 

(See https://www.iau.org/administration/resolutions/general_assemblies/.) The GCRS is an 

Earth-centred, inertial (ECI) system of geocentric space-time coordinates centred at the geocenter 

with metric tensor also specified by the IAU 2000 Resolution B1.3. It is defined such that the 

transformation between BCRS and GCRS spatial coordinates contains no rotation component, so 

that GCRS is kinematically non-rotating with respect to BCRS. The Geocentric Terrestrial 

Reference System (GTRS) is an Earth-Centred Earth-Fixed (ECEF) coordinate system. 

In the framework of general relativity, proper time () refers to the actual reading of a clock or the 

local time in the clock’s own frame of reference. Coordinate time (t) refers to the independent 

variable in the equations of motion of material bodies and in the equations of propagation of 

electromagnetic waves. It is a mathematical coordinate in the four-dimensional space-time of 

the coordinate system. For a given event, the coordinate time has the same value everywhere. 

Coordinate times are not measured; rather, they are computed from the proper times of clocks. The 

relation between coordinate time and proper time depends on the clock’s position and state of 

motion in its gravitational environment and is derived by integration of the space-time interval. In 

the comparison of the proper times of two clocks, the coordinate time is ultimately eliminated. Thus 

https://www.iau.org/administration/resolutions/general_assemblies/
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the relativistic transfer of time between clocks is independent of the coordinate system. The 

coordinate system may be chosen arbitrarily on the basis of convenience. 

For a transported clock, the space-time interval is: 

  2 2 2 2 2

00 0c 2 c cj i j

j i jds g dt g dt dx g dx dx d       (2) 

Thus dt = d for a clock at rest in an inertial frame of reference, for which dxi = 0 and  g00 = 1,  

g0 j = 0, and gi j = i j. The elapsed coordinate time corresponding to the measured proper time 

during the transport of a clock between points A and B is: 

  
0 0 0

2

00 0000

1 1 1
1 .

c c

B Bi j j
i j j

i j

AA

g g gdx dx dx
t g d d

g d d g dg

 
        

      

 
  

 (3) 

For an electromagnetic signal, the space-time interval is: 

  
2 2 2

00 0c 2 c 0j i j

j i jds g dt g dt dx g dx dx   
 (4) 

The speed of light is c in every inertial frame of reference. The elapsed coordinate time of 

propagation between points A and B is 

  

0 0 0

00 0000

1 1 1

c c

B B

i j ji j j

i j

AA

g g g
t g dx dx dx

g gg

 
     

   

 
    (5) 

3 Time-scales 

Coordinate Time-scales 

Geocentric Coordinate Time (TCG) is the coordinate time in a coordinate system with origin at the 

Earth’s centre. 

Terrestrial Time (TT) is a coordinate time in the ECI coordinate system that is rescaled from TCG 

so that it has approximately the same rate as the proper time of a clock at rest on the geoid. The 

relationship between TCG and TT is defined such that dTT/dTCG  1 – LG, where LG is a defined 

constant  6.969 290 134  1010  60.2 s/d. Consequently: 

  TT = (1 – LG) TCG (6) 

or 

  TCG TT TCG TT
1

  


G
G

G

L
L

L
 (7) 

Barycentric Coordinate Time (TCB) is the coordinate time in a coordinate system with origin at the 

solar system barycentre. The difference between TCB and TCG is of the form: 

  
     2

1
TCB TCG TCB

c
C EL P t t t    v R

 (8) 

where Lc= 1-dTCG/dTCB, dTCG/dTCB being an average offset in rate, P(t) represents a series 

of periodic terms, vE(t) is the barycentric velocity of the Earth's centre of mass, and R(t) is the time 

dependent position vector with respect to the geocenter. 

The net transformation from TCB to TT has an average offset in rate: 

  dTT/dTCB = (dTT/dTCG)dTCG/dTCB = (1 – LG)(1 – LC)  1 – LB (9) 
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where LG  6.969 290 134  1010  60.2 s/d, LC = 1.480 826 867 41  108  1.28 ms/d, and 

LB = 1.550 519 767 72  108  1.34 ms/d. The difference between TCB and TT is: 

  
     2

1
TCB TT TCB (1 )

c
B G EL L P t t t

 
      

 
v R

 (10) 

The epoch of TT, TCG, and TCB is January 1, 1977 0 h 32.184 s TAI (JD 2 443 144.5003725). 

Barycentric Dynamical Time (TDB) is a time-scale rescaled from TCB, defined by the expression 

TDB  (1 – LB) TCB + TDB0, where LB  1.550 519 768  108 and TDB0  −65.5 s are defining 

constants. TDB has the same rate as TT. 

Atomic Time-scales 

International Atomic Time (TAI) is the fundamental scale of time based on atomic clocks which is 

calculated at the Bureau International des Poids et Mesures (BIPM) from a weighted average of the 

readings of atomic clocks in timing laboratories distributed around the world. The process 

comprises two steps: (1) a free atomic time-scale, Echelle Atomique Libre (EAL), is calculated 

using the clock comparison data; (2) frequency corrections are applied to EAL based on the 

readings of primary frequency standards operated in a few laboratories, reduced by relativistic 

corrections to the conventionally defined geoid. TAI is a continuous reference time-scale that is not 

disseminated. Although TT is a theoretical uniform time-scale and TAI is derived statistically, a 

practical realization for TT is TT = TAI + 32.184 s. 

Coordinated Universal Time (UTC) is the atomic time-scale for civil timekeeping which differs 

from TAI by an integral number of leap seconds. UTC is disseminated every month in BIPM 

Circular T in the form of the differences from individual laboratory realizations UTC(k), where k is 

the designation of the laboratory involved.  

4 Clock Comparison 

Earth-Centred Inertial (ECI) Coordinate System 

The coordinate time associated with an Earth-Centered Inertial (ECI) coordinate system, 

e.g. GCRS, is Geocentric Coordinate Time (TCG). Through terms of order 1/c 2, the components of 

the metric tensor in this coordinate system are  g00 = 1 – 2 U/c 2, g0j = 0, and gij = (1 + 2 U/c2) ij, 

where U is the gravitational potential. 

The elapsed TCG in the ECI coordinate system corresponding to the elapsed proper time during the 

transport of a clock between points A and B is given by: 

  
2

2 2

1 1 1
1 .

c 2 c

B

A

t U v d
 

     
 





 (11) 

where U is the Earth’s gravitational potential at the location of the clock excluding the centrifugal 

potential. v is the velocity of the clock with respect to the geoid. U may be expressed at radial 

distance r, geocentric latitude , and longitude  as an expansion in spherical harmonics: 

    

   

2 0

2 2 1

, , 1 sin cos sin

1 sin sin ( cos sin ) ,

n
n

E

n m n m n m

n m

n
n n

E E

n n n m m n m n

n n m

E

E

GM
U r

r

GM

r

R
P C m S m

r

R R
J P P J m K m

r r



 

 

  

  



    

      

  
  

   

    
    

     



 
 (12) 



6 Rec.  ITU-R  TF.2118-0 

where GME is the gravitational constant of the Earth and RE is the equatorial radius of the Earth. The 

factors Pn(sin ) are the Legendre polynomials of degree n and the factors Pnm(sin ) are the 

associated Legendre functions of degree n and order m. The geocentric latitude c is related to the 

geographic latitude g by tan c = (1 – f 2) tan g, where f is the flattening. 

Clock at Rest on the Geoid 

For a clock at rest on the surface of the rotating Earth, it is necessary to account for the velocity of 

the clock v = r in the ECI coordinate system, where  is the angular velocity of the Earth and 

r is the position of the clock. Thus the coordinate time (TCG) elapsed as the clock records proper 

time  is 

  
2

02 2 2

1 1 1
1 ( ) 1 ,

c 2c c

B B

A A

t U d W d
   

           
   

 
 
 

ω r  (13) 

where W0 is the gravity potential composed of the sum of the gravitational potential, U, and the 

rotational potential, ½(r)2. As the gravity potential W0 over the surface of the geoid is constant, it 

may be evaluated on the equator and is approximately given by: 

  2 2

0 2

1 1
1

2 2

E
E

E

GM
W J R

R

 
    

 
 (14) 

Time Transfer 

When transferring time from point P to point Q by means of a clock the coordinate time elapsed 

during the motion of the clock is: 

  

Q

P

t  
 

2

2 2

g( ) – U
1

c 2c

U 
  

  

v rr
 ,d  (15) 

where U(r) is the gravitational potential at the location of the clock excluding the centrifugal 

potential, v(r) is the velocity of the clock as viewed in the geocentric non-rotating reference frame, 

and Ug is the potential at the geoid. 

A Clock on an Earth Orbiting Satellite 

For a clock carried on an Earth-orbiting satellite, the orbit may be regarded as Keplerian 

(unperturbed) in the first approximation. The potential at distance r from the Earth’s centre is 

U = GME/r, and the coordinate time (TCG) elapsed as the clock records proper time  is 

approximately 

 
2 2 2 2

21 1 3 1 2
1 1 sin

c 2 c 2 c c

B

E E E
E

A

GM GM GM
t d GM a e E

a r a

   
          

  





 (16) 

where E is the eccentric anomaly determined from the mean anomaly by Kepler’s equation, 

M  nt = E – e sin E, n being the mean motion given by 3
2 / GM /En T a   , T is the orbital 

period, and a is the orbital semi-major axis. 
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In order to compare the proper time of a clock on an Earth-orbiting satellite with the proper time of 

a clock at rest on the geoid this must be converted to TT. Thus, the interval of proper time recorded 

by a clock at rest on the geoid corresponding to the interval of proper time recorded by a clock on 

the satellite can be given by: 

 
2 2

0 22 2 2 2

3 1 1 1 1 2
1 1 sin

2 c 2 2c c

E E
E E

E

GM GM
J R GM a e E

c a R

  
         

  
 (17) 

where J2 is the Earth’s second order oblateness coefficient. The second term is a correction for 

variation in velocity and potential due to the orbital eccentricity. 

At the sub-nanosecond level of precision, it is necessary to take into account the orbital 

perturbations due to the harmonics of the Earth’s gravitational potential, the tidal effects of the 

Moon and the Sun, and solar radiation pressure. At this level of precision, the J2 perturbation 

produces variations in r and v that result in additional periodic effects on the order of 0.1 ns. 

Therefore, to fully account for the J2 perturbation, it is necessary to perform a numerical integration 

of the orbit and a numerical integration of equation (16). The tidal effects of the Moon and the Sun 

and solar radiation pressure should also be considered. 

For Low-Earth Orbits, both the zonal and tesseral gravitational harmonics are important. The usual 

eccentricity correction of equation (16) is no longer accurate. In this case, it is preferable to 

integrate the orbit and integrate equation (16) numerically including the higher order harmonics of 

the Earth’s gravitational potential. 

5 Earth-Centred Earth-Fixed (ECEF) Coordinate System 

Through terms of order 1/c 2, the metric components are  g00 = 1 – 2 U/c 2 – (  r) 2/c2 = 1 – 

2W0/c2, g 0j = (  r) j/c , and gij = ij. In the rotating Earth-Centred Earth-Fixed (ECEF) coordinate 

system the coordinate time is equal to Terrestrial Time (TT), and the elapsed coordinate time 

accumulated during clock transport is: 

  
  2

2 2 2

1 1
1 ( ) ,

c 2c c

B B

A A

U
t v d d

 
        

  
r

ω r v  (18) 

where U(r) is the gravitational potential difference (including the centrifugal potential) between 

the location of the clock at r and the geoid as viewed from an Earth-fixed coordinate system, in 

agreement with the convention (Resolution A4, IAU, 1992) that U(r) is negative when the clock is 

above the geoid. When the height h of the clock is less than 24 km above the geoid, U(r) may be 

approximated by gh, where g is the total acceleration due to gravity (including the rotational 

acceleration of the Earth) evaluated at the geoid. This approximation applies to all aerodynamic and 

earthbound transfers. When h is greater than 24 km, the potential difference U(r) may be 

calculated to greater accuracy as follows: 

   
2

2 2 2 2

2 1 g3

1 3cos
sin U .

2 2

E
E

GM
U J GM a r

r r

   
     

 
r  (19) 

For time transfer at the 1 ns level of accuracy, this expression should not be used beyond a distance 

of about 50 000 km from the centre of the Earth. 

The second integral in equation (18) is the Sagnac effect for a transported clock. This may be 

expressed: 
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2

2

Sagnac 2 2

2R
cos ,

c c

B
E

A

A
t d


      (20) 

where R is the radius of the Earth,  is the latitude, is the longitude, and where AE is the projection 

onto the equatorial plane of the area swept out by the position vector with respect to the centre of 

the Earth (positive for the eastward direction and negative for the westward direction). The 

correction is positive for a clock traveling east and is negative for a clock traveling west. 

Time Transfer 

When transferring time from point A to point B by means of a portable clock, the coordinate time 

accumulated during transport is: 

  

2

2 2 2

2ω
1

c 2c c

B

E

A

U( ) ( )
t d A

  
    

 
 

r r
 (21) 

where AE is measured in an earth-fixed coordinate system. As the area AE is swept, it is taken as 

positive when the projection of the path of the clock on the equatorial plane moves eastward. For 

time transfer at the 1 ns level of accuracy, this expression should not be used beyond a distance of 

about 50 000 km from the centre of the Earth. Beyond that distance the time transfer should be 

calculated in the Barycentric Coordinate System. 

6 Barycentric Coordinate System 

The interval of barycentric coordinate time (TCB) corresponding to an interval of proper time is: 

    
0 0 0

2 2

ext2 2 2 2

1 1 1 1 1 1
TCB 1 | | ,

c 2 c c 2 c
E E E E

U d U v d

 

  

        
   
      

  
 

R R r v R  (22) 

where R is the geocentric position of the clock, rE is the barycentric position of the Earth's centre of 

mass, UE(R) is the Newtonian potential of the Earth, Uext(R) is the external Newtonian potential of 

all of the bodies in the solar system, apart from the Earth, evaluated at the clock, and vE is 

barycentric velocity of the Earth's centre of mass. Equation (22) applies to a clock anywhere in the 

vicinity of Earth, including a clock on a satellite or on the Earth’s surface. For a clock at rest on the 

geoid, the first term is TCG. Therefore, to order 1/c2 the coordinate time difference between TCB 

and TCG is: 

  

 
0

2

ext2 2

1 1 1
TCB TCG ( ) ( ).

c 2 c

t

E E E

t

U v dt t t
 

     
 





r v R

 (23) 

For time transfer between a solar system body and Earth, two transformations are required. The first 

transformation is from TT to TCB and the second is from TCB to time on the solar system body 

TSSB. As TCB is common to both transformations, it cancels out in computing the difference  

TSSB–TT. The transformation from TCB to TT is: 

  
2

1
TCB TT ( )TCBC G EL L P

c
     v R

. (24) 

Similarly, the transformation from Barycentric Coordinate Time (TCB) to TSSB is given by: 

  
2

1
TCB T ( )TCB .

c
SSB CSSB SSB SSBL L P     v R

 (25) 
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In the case of Mars, LCSSB = LCM = 0.972  108  0.84 ms/d, LSSB = LM ≡W0M/c2 = 1.403  1010  

12.1 s/d, W0M being the gravity potential on Mars. 

7 Propagation of an Electromagnetic Signal 

Earth-Centred Inertial (ECI) Coordinate System 

For an electromagnetic signal propagating in an ECI coordinate system, the coordinate time of 

propagation (TCG) is: 

  path

1
.

c

i j

i jt g dx dx  
 (26) 

In a first approximation the gravitational potential may be neglected. The metric is then −g00 ≈ 1, 

g0j = 0, and gij ≈ ij, and the coordinate time (TT) is (1 – LG) t. The right side of equation (26) is 

just /c, where  is the Euclidian path length in the ECI system. 

If the signal is transmitted at coordinate time tT and is received at coordinate time tR , the coordinate 

time (TCG) of propagation over the path is: 

 
2

1 1 1 1
| ( ) ( ) | | ( ) | | | ,

c c c c c
            r r r v r r vR R T T R R T Rt t t t t


 (27) 

where, the transmitter has position rT and the receiver has position rR and velocity vR and r  rR(tT) 

– rT(tT) is the difference between the position of the receiver and the transmitter at the coordinate 

time of transmission tT. The correction to the coordinate time due to the receiver velocity is: 

  2

vel / c .   r vRt  (28) 

To account for the effect of the gravitational potential on an electromagnetic signal, it is necessary 

to include the potential in both the spatial and temporal parts of the metric. The gravitational time 

delay is: 

  delay 3

2
ln ,

c

EGM R r
t

R r

  
   

  
 (29) 

where R and r represent the geocentric radial distance of transmitter and receiver respectively. The 

coordinate time of propagation (TT) equivalent to the proper time interval recorded by a clock at 

rest on the geoid is: 

  
3

2
(1 ) ln .

c c c

E
G G

GM R r
L t L

R r

    
      

  
 (30) 

Earth-Centered Earth-Fixed (ECEF) Coordinate System 

For an electromagnetic signal propagating in an ECEF coordinate system, the coordinate time of 

propagation (TCG) is: 

  

0

path path

1 1
.

c c

i j i

i j jt g dx dx g dx   
 (31) 

The metric components are g00 = 1 – 2U/c2, g0j = (  r)j/c, and gij  ij, where r is the position of a 

point on the signal path. The coordinate time (TT) is (1 – LG) t. The coordinate time elapsed 

between emission and reception of an electromagnetic signal is then: 
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 

 
2

path path

2
1

c
,

1 1

c c




 
 

  
 

r
rω×r

U
dr dt  (32) 

where dr is the increment of standard length, or proper length, along the transmission path, U(r) is 

the potential at the point, r, on the transmission path less the potential at the geoid (see 

equation (19)), as viewed from an Earth-fixed coordinate system. 

Neglecting U(r), the first term of equation (32) is /c, where  is the Euclidean path length in the 

ECEF coordinate system. If the transmitter has position rT and the receiver has position rR and 

velocity vR, then: 

  
2

1 1 1 1
| ( ) ( ) | | ( ) | | | .

c c c c c
R R T T R R T Rt t t t


           r r r v r r v  (33) 

where r  r(tT) – rT(tT). 

The second term of equation (32) is the Sagnac effect: 

  
 Sagnac 2 2

21
,

c

B
E

A

A
t d

c


     ω r r

 (34) 

where AE is the projection onto the equatorial plane of the area formed by the center of rotation and 

the endpoints of the signal path. The area is positive when the signal path has an eastward 

component. 

Barycentric Coordinate System 

If an electromagnetic signal is sent in a barycentric coordinate system with Cartesian coordinates 

(x, y, z) from a transmitter at point (aT, b, 0) to a receiver at point (aR, b, 0) along the 

approximately straight line path y = b (neglecting gravitational deflection), where b is the distance 

of closest approach to the Sun. The coordinate time of propagation (TCB) is: 

 

2 2 2 2
00

path

21 1 2 1 1
1 1 ,

c c c c c

R
R

T
T

a
a

i j i j S
S

a
a

g GM
t dx dx U dx dx

g x b


  
             

 
  

 (35) 

where US is the gravitational potential of the Sun. Therefore,  

  

2 2

3 2 2

1
( ) 2 ln .

c c

R RS
T R

T T

a a bGM
t a a

a a b

 
   

  
 (36) 

Scaled to the Terrestrial Time (TT) of propagation recorded by a clock on the geoid, 

  

2 2

3 2 2

1
(1 ) (1 )( ) 2 ln .

c c

R RS
B B T R

T T

a a bGM
t L t L a a

a a b

 
       

  
 (37) 

8 Examples 

Due to relativistic effects, a clock at an elevated location will appear to be higher in frequency and 

will differ in normalized rate from TAI by U/c2. Near sea level this is given by g()h/c2, where 

 is the geographical latitude, g() is the total acceleration at sea level (gravitational and 

centrifugal)  (9.780  0.052 sin2 ) m/s2, and h is the distance above sea level. 
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If a clock is moving relative to the Earth’s surface with speed V, which may have a component VE 

in the direction to the East, the normalized difference in frequency of the moving clock relative to 

that of a clock at rest at sea level is: 

  
 2

2 2 2

1 1
cos ,

2 c c c
E

g hV
f r V


        (38) 

where r is the distance of the clock from the center of the Earth. 

The choice of a coordinate frame is purely a discretionary one, but to define coordinate time, a 

specific choice must be made. It is recommended that for terrestrial use an Earth-fixed frame be 

chosen. In this frame, when a clock B is synchronized with a clock A (both clocks being stationary 

on the Earth) by a radio signal travelling from A to B, these two clocks differ in coordinate time by: 

  
2 2

2
cos ,

c
B A

path

t t r d


      (39) 

where  is latitude,  is East longitude and path refers to the path over which the radio signal travels 

from A to B. 

If the two clocks are synchronized by a portable clock, they will differ in coordinate time by: 

  
  2

2 2

2 2 2
cos ,

c 2c c
B A

path path

U V
t t dr r d

  
      

  
r

 (40) 

where V is the portable clock’s ground speed, and path refers to the path over which the clock 

travels from A to B. 

9 Glossary 

AE equatorial projection of the area swept out during the time transfer by the vector r as its 

terminus moves 

BCRS Barycentric Celestial Reference System 

c speed of light 2.997 924 58  108 m/s 

ECEF Earth-centred, Earth-fixed 

ECI Earth centred inertial 

f flattening of the Earth = 1/298.257 223 563 

GCRS Geocentric celestial reference system, an ECI system of geocentric space-time 

coordinates 

GME  gravitational constant of the Earth = 398 600 km3/s2 

GTRS Geocentric terrestrial reference system, an ECEF coordinate system 

Jmn: Coefficients of spherical harmonics describing the oblateness of the Earth. J2 (m = 2, 

n = 0) is the most significant and can be defined in terms of the polar (C) and equatorial 

(A) moments of inertia of the Earth: 
22

C A
J

MR


 , where M and R are the mass and 

radius of the Earth respectively. J2  1.083  10−3 

LB  1 − (1 – LG)(1 – LC) 

Lc 1 − dTCG/dTCB, dTCG/dTCB being an average offset in rate 

LG  1 − dTT/dTCG, a defined constant  6.969 290 134  1010 
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r vector whose origin is at the centre of the Earth and whose terminus moves with the 

clock 

r magnitude of the vector r 

RE equatorial radius of the Earth = 6 378 136 km 

t coordinate time, the independent variable in the equations of motion of material bodies 

and in the equations of propagation of electromagnetic waves 

TAI International atomic time 

TCB Barycentric coordinate time 

TCG Geocentric coordinate time 

TDB Barycentric dynamical time 

TT Terrestrial time 

UTC Coordinated universal time 

U gravitational potential 

Ug potential (gravitational and centrifugal) at the geoid  62 636.86 km2/s2. 

v velocity of the clock with respect to the ground 

W the gravity potential composed of U, and the rotational potential, ½(r)2 

si j Kronecker delta function: ij = 0 if i ≠ j; ij = 1 if i = j 

U(r): gravitational potential difference (including the centrifugal potential) between the 

location of the clock at r and the geoid as viewed from an Earth-fixed coordinate 

system, in agreement with the convention (Resolution A4, IAU, 1992) that U(r) is 

negative when the clock is above the geoid 

  colatitude 

 longitude

 latitude  

c geocentric latitude c 

g geographic latitude g 

 proper time as measured in the “rest frame” of the clock; that is, in the reference frame 

travelling with the clock. 

 angular velocity of rotation of the Earth  7.292 115  10−5 rad/s 
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