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RECOMMENDATION  ITU-R  TF.2018 

Relativistic time transfer in the vicinity of the Earth and in the solar system 
(2012) 

Scope 

The purpose of this Recommendation is to establish common conventional algorithms and procedures to be 
used in comparing clocks on the surface of the Earth and on platforms far from the Earth but within the solar 
system. These expressions are explicitly determined in the general relativity theory that is presently accepted 
to form the basis of space-time reference systems. It is envisioned that these algorithms and procedures 
would be used for comparisons of clocks on Earth satellites, interplanetary spacecraft, and on the surfaces of 
solar system bodies. 

The ITU Radiocommunication Assembly, 

considering 
a) that it is desirable to maintain coordination of standard time and frequency on platforms 
operating in the vicinity of the Earth and in the solar system; 

b) that accurate means of transferring time and frequency are required to meet the future needs 
of timekeeping, navigation, science, and communication systems in the vicinity of the Earth and in 
the solar system; 

c) that clocks are subject to path-dependent time and frequency variations due to their motion 
and to the gravitational potential in which they operate; 

d) that the conceptual foundation for the transfer of time and frequency should be clearly 
outlined; 

e) that procedures for the transfer of time and frequency in the vicinity of the Earth and across 
celestial bodies and spacecraft in the solar system require the use of mathematical algorithms that 
account for relativistic effects; 

f) that requirements for precision and accuracy for the transfer of time and frequency in the 
vicinity of the Earth and in the solar system depend on the specific application, 

recommends 

that the mathematical algorithms that account for relativistic effects in the transfer of time and 
frequency as provided in Annex 1 should be used, as appropriate. 
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Annex 1 
 
 

Objective 
The purpose of this Recommendation is to raise the level of awareness for the need to address the 
effects of relativity in timekeeping, navigation, science, and communication systems. The 
Recommendation recalls the basic concepts and procedures to be applied in the analysis of such 
systems. No attempt is made to describe the details of any particular system. Rather, it is intended 
that the information presented here may serve as a convenient reference and a point of departure for 
specific applications. 

One important application of this Recommendation is the comparison of the times registered by 
clocks on spacecraft in orbit around the Earth, in interplanetary space, and on planetary surfaces 
with the times recorded by clocks on Earth. An appropriate timescale for terrestrial measurements is 
Coordinated Universal Time (UTC). Therefore, the objective might be to relate the times registered 
by clocks, wherever they may be in the vicinity of the Earth and in the solar system, with the times 
of clocks on Earth that measure UTC. 

The following discussion is based on the IERS Conventions (2010), the ITU-R Handbook on 
Satellite Time and Frequency Transfer and Dissemination (2010), Nelson, Metrologia (2011), 
and Petit and Wolf, Metrologia (2005). Users may consult those publications and references cited 
therein for further details. 

Relativistic framework 
The relativistic framework for space-time reference systems has been defined by Resolutions of 
international scientific organizations. The most important are: 
1) IAU Resolution A4 (1991) defines the Geocentric Celestial Reference System (GCRS) and 

the Barycentric Celestial Reference System (BCRS) and their time coordinates. IAU 
Resolution B1 (2000) further refines the BCRS definition. 

2) IUGG Resolution 2 (2007) defines the Geocentric Terrestrial Reference System (GTRS), 
along with the International Terrestrial Reference System (ITRS). 

The nomenclature used in this document follows the one used in the past ITU-R Recommendations 
and may be related to the IAU/IUGG framework as follows: in this Recommendation the GCRS is 
termed the Earth-Centered Inertial (ECI) coordinate system, the GTRS (in practice, the ITRS) is 
termed the Earth-Centered Earth-Fixed (ECEF) coordinate system, and the BCRS is termed the 
barycentric coordinate system.  

Definitions 

Proper time 

Proper time τ is the actual reading of a clock or the local time in the clock’s own frame of reference.  

Coordinate time 
Coordinate time t is the independent variable in the equations of motion of material bodies and in 
the equations of propagation of electromagnetic waves. It is a mathematical coordinate in the 
four-dimensional space-time of the coordinate system. For a given event, the coordinate time has 
the same value everywhere. Coordinate times are not measured; rather, they are computed from the 
proper times of clocks. 
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Space-time interval 

The relation between coordinate time and proper time depends on the clock’s position and state of 
motion in its gravitational environment and is derived by integration of the space-time interval. In 
the comparison of the proper times of two clocks, the coordinate time is ultimately eliminated. Thus 
the relativistic transfer of time between clocks is independent of the coordinate system. The 
coordinate system may be chosen arbitrarily on the basis of convenience.  

In general, the space-time interval is described by: 
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where:  
 gμν: components of the metric. 

A Greek index assumes the range 0, 1, 2, 3 and a Latin index assumes the range 1, 2, 3. A repeated 
index implies summation on that index. The metric depends upon the gravitational potentials and 
upon the angular velocity and linear acceleration of the reference frame. Upon a transformation of 
the coordinates, the space-time interval remains invariant. Thus the metric gμν transforms as a 
second order covariant tensor. 

The general expression for the relationship between proper time τ and the coordinates of the chosen 
coordinate system, comprising the coordinate time x0 ≡ ct and the spatial coordinates xi, is given by: 
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where: 
 τ : the proper time. 

Thus dt = dτ for a clock at rest in an inertial frame of reference, for which dxi = 0 and −g00 = 1, g0 j 
= 0, and gi j = δi j. The elapsed coordinate time corresponding to the measured proper time as 
registered by a clock along a path between points A and B is: 
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For an electromagnetic signal, the space-time interval is: 
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The speed of light is c in every inertial frame of reference. The elapsed coordinate time of 
propagation along a path between points A and B is: 
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The expression γ i j ≡ g i j + g 0 i g 0 j / (–g 00) represents the metric of three-dimensional space and 
ji

ij dxdxd γ=ρ  represents the increment of three-dimensional distance. 



4 Rec.  ITU-R  TF.2018 

Time scales 

Atomic time scales 
The fundamental scale of time based on atomic clocks is International Atomic Time (TAI), which is 
calculated at the BIPM from a weighted average of the readings of atomic clocks in timing 
laboratories distributed around the world. It is a continuous reference timescale without steps. 

The atomic timescale for civil timekeeping is Coordinated Universal Time (UTC), which differs 
from TAI by an integral number of seconds. In 2011, UTC = TAI – 34 s. UTC is disseminated 
every month in BIPM Circular T in the form of the differences from individual laboratory 
realizations UTC(k). 

Coordinate time scales 
Geocentric Coordinate Time (TCG) is the coordinate time in a coordinate system with origin at the 
Earth’s center (ECI or ECEF). 

Terrestrial Time (TT) is another coordinate time that is rescaled from TCG so that it has 
approximately the same rate as the proper time of a clock at rest on the geoid. The geoid is the 
surface of constant gravity potential, which is closely approximated by mean sea level. 
The relationship between TCG and TT is defined such that dTT/dTCG ≡ 1 – LG, where 
LG ≡ 6.969 290 134 × 10−10 ≈ 60.2 μs/d as discussed below following equation (18). The value of LG 
is a defined constant. Consequently, 
 

  ( )01
TTTT

L
LTCGLTTTCG

G

G
G −

−
==−

 

  ( ) ( )00 1
TTTT

L
LTCGTCGLTTTCG

G

G
G −

−
=−=−  (6) 

 

where: 
 TCG0 and TT0: correspond to JD 2443144.5 TAI (1977 January 1, 0h). A practical realization 

of TT is 
 

  TT = TAI + 32.184 s. (7) 
 

Barycentric Coordinate Time (TCB) is the coordinate time in a coordinate system with origin at the 
solar system barycenter. The coordinate time difference between TCB and TCG is a transformation 
that depends on both time and position. To order 1 / c2 
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where: 
 R(t) = E−x x : time-dependent position vector with respect to the geocenter  

 x: barycentric position of the observer and xe and ve denote the barycentric 
position and velocity of the Earth’s center of mass.  
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This equation may be expressed in the form 
 

  )(1)()()( 200 EEC c
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where: 
 LC = 1.480 826 867 41 × 10−8≈ 1.28 ms/d.  

In this expression, P represents a series of periodic terms. The last term is diurnal at the surface of 
the Earth, with an amplitude smaller than 2.1 µs. 

An alternative formulation to equation (9) is (IERS Conventions (2010), Chapter 10) 
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where: 
 TT and LB ≡ 1.550 519 768 × 10−8 ≈ 1.34 ms/d is the time argument. 

The value of LB is a defined constant.  

Periodic terms denoted by P(TT) have a maximum amplitude of around 1.6 ms and can be evaluated 
by the “FB” analytical model (Fairhead and Bretagnon, 1990). Alternatively, P(TT) − P(TT0) may 
be provided by a numerical time ephemeris such as TE405 (Irwin and Fukushima, 1999), which 
provides values with an accuracy of ± 0.1 ns from 1600 to 2200. A series, HF2002, providing the 
value of LC (TT − TT0) + P(TT) − P(TT0) as a function of TT over the years 1600-2200 has been fit 
(Harada and Fukushima, 2003) to TE405. This fit differs from TE405 by less than 3 ns over the 
years 1600-2200 with an rms error of ± 0.5 ns.   

The difference between TCB and TT is: 
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The transformation from TCB to TCG consists of an average offset in rate 〈dTCG/dTCB〉 ≡ 1 − LC 
and periodic terms. The transformation from TCG to TT is an exact offset in rate 
dTT/dTCG ≡ 1 − LG. Thus the transformation from TCB to TT has an average offset in rate. 
 

  〈dTT/dTCB〉 = (dTT/dTCG)〈dTCG/dTCB〉 = (1 – LG)(1 – LC) (12) 
 

From the definition of LB , (1 – LG)(1 – LC) ≈ (1 – LB), so that equation (12) may be expressed as 
〈dTT/dTCB〉 = (1 – LB) to within a few parts in 1018. 

Similarly to TT, Barycentric Dynamical Time (TDB) is another coordinate time in a barycentric 
system rescaled to have approximately the same rate as TT. The relationship between TCB and TDB 
is defined such that dTDB/dTCB ≡ 1 – LB . 

Relativistic effects on clocks 
In the following discussion, the transformation between the proper time of an ideal clock (one that 
exactly realizes the SI second) and the coordinate time in the geocentric and barycentric coordinate 
systems is considered. 
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Earth-Centered Inertial coordinate system 

The coordinate time associated with an Earth-Centered Inertial (ECI) coordinate system is 
Geocentric Coordinate Time (TCG). Through terms of order 1 / c 2, the components of the metric 
tensor in this coordinate system are −g00 = 1 – 2 U / c 2, g 0 j = 0, and g i j = (1 + 2 U / c2) δ i j , where 
U is the gravitational potential. The elapsed TCG in the ECI coordinate system corresponding to the 
elapsed proper time as registered by a clock moving along a path between points A and B with 
velocity v is given by: 
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The Earth’s potential at radial distance r, geocentric latitude φ , and longitude λ may be expressed 
as an expansion in spherical harmonics as: 
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where: 
 GM:   the gravitational constant of the Earth  
 RE:   the equatorial radius of the Earth 
The factors Pn(sin φ):  the Legendre polynomials of degree n  
the factors Pnm(sin φ):  the associated Legendre functions of degree n and order m.  

The geocentric latitude φ is related to the geographic latitude ϕ by tan φ = (1 – f 2) tan ϕ, where f is 
the flattening. 

For practical applications it may be sufficient to include only the first oblateness correction and 
approximate the gravitational potential as 
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1) Clock at rest on the geoid 

For a clock at rest on the surface of the rotating Earth, it is necessary to account for the velocity of 
the clock v = ω × r in the ECI coordinate system, where ω is the angular velocity of the Earth and r 
is the position of the clock. Thus TCG elapsed as the clock records proper time Δτ is: 
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where: 

φω+=×ω+= 2222 cos
2
1)(

2
1 rUUW r : the gravity potential.  

As the gravity potential W0 over the surface of the geoid is constant, it may be evaluated on the 
equator and is approximately given by: 
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The current best estimate of W0 is 6.2636856 × 107 m2/s2. According to equation (16), the TCG in 
the ECI coordinate system that corresponds to the proper time Δτ 0 measured by a clock at rest on 
the geoid is: 
 

  Δt ≡ TCG = ( 1 + W0 / c2 ) Δτ 0 ≅ (1 + LG) Δτ0 (18) 
 

where: 
 LG ≡ 6.969 290 134 × 10−10.  

By convention, the value of LG is a defined constant. It represents the best available value of W0 / c2 
at the time of its definition in 2000. TT is obtained by rescaling TCG by the factor 1 – LG . Thus: 
 

  Δt′ ≡ TT = (1 – LG) TCG (19) 
 

It follows that TT = (1 – LG)(1 + LG) Δτ 0 ≅ Δτ 0 to within a few parts in 1018. 
2) Clock on a satellite 

For a clock on an Earth orbiting satellite, the orbit may be regarded as Keplerian (unperturbed) 
in the first approximation. The potential at distance r from the Earth’s center is approximately 
U = GM / r . Thus the increment of TCG is: 
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The satellite velocity v is determined by conservation of energy per unit mass E : 
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where: 

 a : the orbital semimajor axis.  

Therefore, to this order, the elapsed coordinate time is: 
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In the second integral dτ is replaced by dt as this term is a relativistic correction of order 1/c2. For a 
Keplerian orbit the radial distance is r = a (1 – e cos E), where e is the orbital eccentricity and E is 
the eccentric anomaly. The eccentric anomaly is determined from the mean anomaly by Kepler’s 

equation, M ≡ n Δt = E – e sin E, where the mean motion is 3//2 aGMTn =π≡ and T is the 
orbital period. Therefore, the TCG elapsed as the clock records proper time Δτ is approximately: 
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The second term is a periodic correction due to the orbital eccentricity that causes a residual 
variation in distance and velocity given by: 
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c c

Δ = = ⋅v r  (24) 
 

In this expression it is assumed that Keplerian (unperturbed) elements are used. 

To compare the proper time of a clock on a satellite with the proper time of a clock at rest on the 
geoid, it is necessary to convert from TCG to TT. By equations (19) and (20), one obtains (TT): 
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Therefore, as 0τΔ≈′Δt , the interval of proper time recorded by a clock at rest on the geoid 
corresponding to the interval of proper time recorded by a clock on the satellite is: 
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where: 
 GM: the gravitational constant of the Earth   
 RE: the equatorial radius of the Earth. 

At the sub-nanosecond level of precision, it is necessary to take into account the orbital 
perturbations due to the harmonics of the Earth’s gravitational potential, the tidal effects of the 
Moon and the Sun, and solar radiation pressure. At this level of precision, the J2 perturbation 
produces variations in r and v that result in additional periodic effects on the order of 0.1 ns.  

To fully account for the J2 perturbation in the potential of equation (15), it is necessary to perform 
a numerical integration of the orbit and a numerical integration of equation (20). The tidal effects of 
the Moon and the Sun and solar radiation pressure should also be considered.  

For Low-Earth orbits, both the zonal and tesseral gravitational harmonics are important. The usual 
eccentricity correction of equation (24) is no longer accurate. In this case, it is preferable to 
integrate the orbit and integrate equation (20) numerically including the higher order harmonics of 
the Earth’s gravitational potential. 
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Earth-Centered Earth-Fixed coordinate system 

Through terms of order 1 / c 2, the metric components are − g 00 = 1 – 2 U / c 2 – (ω × r) 2 / c2 = 
1 − 2W / c2, g 0 j = (ω × r) j / c , and g i j = δ i j . In the rotating Earth-Centered Earth-Fixed (ECEF) 
coordinate system using coordinate time TT, the elapsed coordinate time is: 
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where: 
 h: the height above the geoid 
 g: the local acceleration of gravity  
 v′: the velocity of the clock with respect to the geoid.  

It is assumed that h is small. For high accuracy, the variation of g with latitude and elevation should 
be taken into account. 

The second integral is the Sagnac effect for a transported clock. This may be expressed as: 
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or as: 
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where: 
 R: the radius of the Earth 

 φ: the latitude 
 λ: the longitude 
 θ′ cosv : the eastward component of the velocity 

 A: the projection onto the equatorial plane of the area swept out by the position 
vector with respect to the center of the Earth (positive for the eastward 
direction and negative for the westward direction).  

The correction is positive for a clock travelling east and is negative for a clock travelling west.  

Barycentric coordinate system 
The interval of barycentric coordinate time (TCB) corresponding to the proper time interval 
Δτ = τ − τ0 is: 
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where: 
 UE(r): the Newtonian potential of the Earth  
 Uext(r): the external Newtonian potential of all of the solar system bodies apart from 

the Earth. 

Coordinate system of solar system bodies 
For clock comparisons between a solar system body M and Earth, several transformations are 
required. The proper times of the clocks have to be transformed to TT for the Earth-bound and to 
TM for the M-bound) clock. Then the first transformation is from TT to TCB and the second is the 
corresponding transformation from TCB to TM. The coordinate transformations are: 
 

  TCB – TT = (LC + LG) TCB + P + vE ⋅ R / c2  (31) 
 

and
  

  TCB – TM = (LCM + LM) TCB + P + vM ⋅ R / c2 (32) 
 

In these equations the periodic terms P and vector position R each apply to the Earth and the 
planetary body M, respectively. The difference between TM and TT is: 
 

  TM – TT = (TCB – TT) – (TCB – TM) (33) 
 

As an example, in the case of Mars, LCM = 0.972 × 10−8≈ 0.84 ms/d, LM =1.403 × 10−10≈ 12.1 μs/d. 
The drift rate is 0.49 ms/d. The amplitudes of the periodic terms are 1.7 ms at the Earth orbital 
period (365.2422 d) and 11.4 ms at the Mars orbital period (687 d). 

Propagation of an electromagnetic signal 
This section deals with the computation of the coordinate time of propagation of an electromagnetic 
signal when the transmitter and receiver positions are both given, as expressed in the ECI, ECEF, 
and barycentric coordinate systems. 

These equations apply in all cases. In particular, they must be used when setting the parameters of 
clocks on satellites that are steered to clocks on the Earth. 

Earth-Centered Inertial coordinate system 
When considering the computation in an Earth-Centered Inertial (ECI) coordinate system, the 
coordinate time of propagation (TCG) may be considered as the sum of a geometric part and a 
gravitational part. The geometric part is: 
 

  ∫
ρ=≈Δ

path

ji
ij c

dxdxg
c

t 1  (34) 

 

where: 
 g i j ≈ δ i j and  
 ρ: the geometric path length.  
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If the signal is transmitted at coordinate time tT and is received at coordinate time tR, the TCG of 
propagation over the path is: 
 

  RTRRTTRR cc
tt

c
tt

cc
t vrrvrrr ⋅Δ+Δ≈−+Δ≈−=ρ=Δ 2

11)(1)()(1  (35) 

 

where, the transmitter has position rT and the receiver has position rR and velocity vR and 
Δr ≡ rR(tT) – rT(tT) is the difference between the position of the receiver and the transmitter at the 
coordinate time of transmission tT. The correction to the coordinate time due to the receiver velocity 
is: 
 

  2
vel /Rt cΔ ≈ Δ ⋅r v  (36) 

 

Note that additional terms of order 1/c3 may amount to several picoseconds, depending on the 
configuration. 

To consider the effect of the gravitational potential on an electromagnetic signal, it is necessary to 
include the potential in both the spatial and temporal parts of the metric. The components of the 
metric are − g 00 = 1 − 2 U / c2 , g 0 j = 0 , and g i j = (1 + 2 U / c2) δ i j . Therefore, the elapsed TCG 
is: 
 

  ∫∫∫ ρ+ρ=δ⎟
⎠
⎞

⎜
⎝
⎛ +≈

−
≈Δ

path

ji
ij

pathpath

jiij dU
cc

dxdxU
cc

dxdx
g
g

c
t 212111

32
00

 (37) 

 

The gravitational time delay is: 
 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−+
ρ++=Δ

rR
rR

c
GMtdelay ln2

3  (38) 

 

where: 
 R and r: the distances from the geocenter to the transmitter and receiver, respectively  

The gravitational delay typically amounts to a few tens of picoseconds for a path between a satellite 
and Earth. The total TCG is the sum of the terms in equations (35) and (38). 

The coordinate time of propagation (TT) is: 
 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−+
ρ+++ρ−ρ=Δ−=′Δ

rR
rR

c
GM

c
L

c
tLlt GG ln2)( 3  (39) 

 

This is the time interval that would be measured by a clock on the geoid. 

For example, for a signal sent from a geostationary satellite with orbital radius 42 164 km to a clock 
on the equator at the same longitude, the path delay is −27 ps. For a GPS satellite at an angle of 
elevation of 40°, the second and third terms nearly cancel and the path delay is −3 ps.  
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Earth-Centered Earth-Fixed coordinate system 
When considering the computation in an ECEF coordinate system, the geometric part of the TCG 
is: 
 

  0
path path

1 1i j i
i j jt g dx dx g dx

c c
Δ = +∫ ∫  (40) 

 

The metric components are − g00≈ 1, g 0 j = (ω × r) j / c , and g i j ≈ δ i j , where r is the position vector 
of a point on the signal path. The coordinate time (TT) is Δt′ = (1 – LG ) Δt. 

The first term of equation (40) is ρ′ / c, where ρ′ is the Euclidean path length in the ECEF 
coordinate system. If the transmitter has position rT and the receiver has position rR and velocity 
v′R, then 
 

  RTRRTTRR cc
tt

c
tt

cc
vrrvrrr ′⋅Δ+Δ≈−′+Δ≈−=ρ′

2
11)(1)()(1  (41) 

 

where: 
 Δr ≡ rR(tT) – rT(tT) 

The second term of equation (40) is the Sagnac effect. Therefore, 
 

  ∫∫∫
ω=⋅ω=×⋅ω=⋅×ω≈Δ

B

A

B

A

B

ASagnac c
Ad

c
d

c
d

c
t 2222

212)(1)(1 Arrrr  (42) 
 

where: 
 A: the projection onto the equatorial plane of the area formed by the center of 

rotation and the endpoints of the signal path. 

The gravitational delay must be considered as well to compute the total time of propagation. 

Barycentric coordinate system 
To describe the propagation of an electromagnetic signal, a barycentric coordinate system with 
Cartesian coordinates (x, y, z) may be used.  

Because only the gravitational effect of the Sun is considered here, for convenience of computation 
of the gravitational delay, one may use a space grid where the transmitter position is (−aT, b, 0) 
and the receiver position is (aR, b, 0) so that the propagation is along the approximately straight line 
path y = b (neglecting gravitational deflection), where b is the distance of closest approach to the 
Sun. The coordinate time of propagation (TCB) is: 
 

  

2 2 2 2
00

path

21 1 2 1 11 1
R

R

T
T

a
a

i j i j S
S

a
a

g GMt dx dx U dx dx
c g c c c c x b−

−

⎛ ⎞⎛ ⎞ ⎜ ⎟Δ ≈ ≈ + = +⎜ ⎟ ⎜ ⎟− ⎝ ⎠ +⎝ ⎠

⌠⌠ ⌠ ⎮⎮⎮ ⎮⌡⌡ ⌡
 (43) 
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where US is the gravitational potential of the Sun. Therefore, 
 

  

2 2

3 2 2

1 ( ) 2 ln R RS
T R

T T

a a bGMt a a
c c a a b

+ +
Δ = + +

− + +
 (44) 

 

To a level of approximation depending on the propagation time, the TT coordinate time of 
propagation may be scaled from the TCB time as: 
 

  

2 2

3 2 2

1(1 ) (1 )( ) 2 ln R RS
B B T R

T T

a a bGMt L t L a a
c c a a b

+ +
′Δ = − Δ = − + +

− + +
 (45) 
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