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RECOMMENDATION  ITU-R  SA.1345 

METHODS  FOR  PREDICTING  RADIATION  PATTERNS  OF  LARGE  ANTENNAS 
USED  FOR  SPACE RESEARCH  AND  RADIO  ASTRONOMY 

(Question ITU-R 127/7) 

 

(1998) 

 
Rec. ITU-R SA.1345 

The ITU Radiocommunication Assembly, 

considering 

a) that in many cases reflector antennas used by space research and radio astronomy are similar in that they are of 
large diameter and operate at frequencies up to tens of GHz; 

b) that because of the large distances required to achieve conventional far-field conditions (2D2/λ), standard 
antenna test range or anechoic chamber measurements are inappropriate; 

c) that many potential sources of terrestrial based interference to the two services will be in the near-field of the 
antenna; 

d) that accurate models and associated software are becoming available for the prediction of antenna radiation 
patterns in both the near-field and the far-field, and also for situations which involve interaction with additional reflectors 
or undesirable obstacles; 

e) that the predictions generated by such procedures can in some instances be validated by calibrated 
measurements, 

recommends 

1 that where a choice of the most appropriate modelling technique is required for predicting the gain pattern of 
large reflector antennas, the methods described in Annex 1 and summarized in Table 1 be used: 

2 that with respect to modelling techniques involving measurement, the description of the methods in Annex 2 be 
used as a guide in selecting the most appropriate method; 

3 that in determination of the significance of the mechanical characteristics of the antenna to be modelled, 
attention be paid to the conclusions from the results of computer modelling described in Annex 3. 

TABLE  1 

Analysis Techniques for Large Reflectors 

 

 

Sector 
(see Fig. 1) 

Recommended Analysis Techniques 

SECTOR I 
Forward axial sector 

Physical Optics 

SECTOR II 
Far sidelobes 

Geometrical Theory of Diffraction/Uniform Theory 
of Diffraction and Induced Field Ratio 

SECTOR III 
Backlobes 

Geometrical Theory of Diffraction/Uniform Theory 
of Diffraction 

SECTOR IV 
Rear axial sector 

Equivalent edge currents 
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ANNEX  1 

Suitability of various electromagnetic modelling methods to predict the gain 
and radiation patterns of large reflector antennas 

1 Introduction 

There are a large number of techniques available for solving electromagnetic problems. Each technique may have 
advantages for modelling particular problems but may be impracticable for other problems. This annex considers the 
techniques used for the modelling of reflector antennas and considers their suitability for analysis of the large reflector 
antennas typically used for space research and radio astronomy. 

2 Analytical and numerical methods 

2.1 Method of moments 

The method of moments is a mathematical technique for solving inhomogeneous linear equations of the type: 

  Lf  =  g (1) 

where L is usually a linear integro-differential operator, and the functions f and g are elements of Hilbert spaces. In this 
equation, g is known and the idea is to invert L to obtain the unknown function f = L–1g. The procedure involves a 
technique that transforms the operator equation (1) to a system of linear algebraic equations. To this end, the unknown 
function f is expanded in a series of basis functions {fn} with unknown constant coefficients {Cn}. Substituting this back 
into equation (1), and taking the inner product of both sides with a set of known testing functions {wm} reduces 
equation (1) to a simple matrix equation of the form: 

  Ax  =  b (2) 
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where A and b are given by the inner products Amn = �wm, Lfn�, bm = �wm, g�, and x is the vector of unknown coefficients 
{Cn}. Equation (2) is easily solved for x using elementary numerical methods which then yields f. 

In order to apply this technique to reflector analysis, it is necessary to formulate the problem in the form of equation (1). 
This is accomplished by expressing the field scattered by the antenna as an integral of the unknown surface currents on 
the reflecting surface. Invoking the electromagnetic boundary condition that the tangential component of the total electric 
field be zero on a perfect conductor yields an equation for the unknown surface current density JS in the form of 
equation (1) above: 

  ( ) i
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with r' and r distances for the source and observation points respectively. Ei is the incident electric field, and k = 2π/λ0 is 
the free space wave number. Equation (3a) can be solved by dividing the surface into small patches over each of which 
JS is expanded as a sum of current components along two orthogonal directions. Alternatively, the reflector may be 
modelled in the form of a wire grid. This has the advantage that the scattered field can then be expressed as a one 
dimensional integral of current flowing along the wire. For the case of a thin wire segment along the z-direction defined 
by the unit vector uz, the appropriate equation of the form (1) can be given by: 

  ( ) ( ) ( )( )[ ] i
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0  (3b) 

where the prime denotes the derivative. Equation (3b) is solved for the unknown current distribution by expanding it in a 
suitable set of basis functions. 

In principle, this is the most accurate of all known methods used in electromagnetic scattering analysis. The formulation 
of the governing equation is exact, and extremely accurate solutions can be obtained by a suitable choice of basis and 
testing functions. In addition, struts, feed, subreflector and supporting structures can all be integrated into the problem. 
Well-defined surface irregularities on the reflector can be similarly modelled. The technique essentially fragments the 
complete structure into tiny linear or planar segments, on each of which a boundary condition directly derived from 
Maxwell's equations is applied by brute force. This results in a coupled system of equations in which electromagnetic 
interaction of every segment with every other segment is automatically accounted for. The method is, therefore, capable 
of predicting the complete antenna pattern at all points in space, taking into account the effect of antenna support and 
related sub-systems. Herein lies the difficulty: assuming a wire grid solution, if the reflector is modelled with M wire 
segments, and the current in each is represented by N basis functions, this would, in general, lead to a system of MN 
linear equations in as many unknowns, requiring the numerical evaluation of (MN)2 integrals to obtain the elements of 
the coefficient matrix. Typically, ten to twenty segments per wavelength with three basis functions per segment are 
needed for an accurate representation of the currents, leading to a system with over 650 unknowns per square wavelength 
of the reflecting surface. 

In practice, however, some simplifications can be effected. In the case of focus-fed axi-symmetric reflectors, circular 
symmetry can be exploited to significantly reduce the number of unknown coefficients. In addition, Kirchoff's current 
law can be invoked at wire junctions to relate some of the unknown constants. In Numerical Electromagnetics 
Code (NEC), a well-known commercially available suite of moment method software that uses equation (3b), the 
current I(z) in each segment is represented as the sum of three terms - a constant, a sine and a cosine. Of the three 
coefficients, two are eliminated by the conditions that charge and current be continuous at wire junctions leaving only 
one constant, which determines the current amplitude, to be determined by matrix methods. For this representation to be 
adequate, the length of each wire segment needs to be less than λ/10, producing over 220 segments per square 
wavelength of the reflecting surface. 
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For a 100λ diameter reflector, in the absence of symmetry, this method would require determination of about 1.8 million 
elements in the coefficient matrix A, followed by the inversion of a 1 340 × 1 340 complex matrix. If the sub-systems and 
support structures are also modelled, it would result in a significantly larger system of equations. Apart from CPU time, 
computer memory resources also increase rapidly with reflector size. The method is, therefore, computationally 
intensive, and is not a viable technique for electrically large reflectors. Typical maximum size for which the method of 
moments can be successfully applied is 10λ. If circular symmetry is exploited, reflectors as large as 25λ may be 
analysed. These limits are continuously extended with powerful computer machines becoming available but it is doubtful 
whether they can be applied to large reflector antennas, at least in the near future. 

2.2 Aperture field method 

The aperture field method is based on a theorem which states that if S is a closed surface enclosing a finite collection of 
sources Σ, then the field due to Σ at any arbitrary point exterior to S can be expressed in terms of integrals of field vectors 
Ea and Ha over S, where the subscript a refers to the tangential component. Thus, if S is chosen to be a sphere enclosing 
the antenna, then a spherical near-field scanning set-up can be used to measure the magnitude and phase of Ea and Ha 
over S, and from this the field of the antenna at every point in space outside S can be computed. However, measuring the 
near-field over a complete spherical surface surrounding a large reflector is very difficult, if not impossible, to carry out 
in practice. An alternative is to determine the fields over S by analytical techniques, but with complex sub-systems this is 
often an intractable problem and various approximations need to be invoked. 

One such approximation, called the aperture field method (see Fig. 2a), is based on the assumption that Ea and Ha are 
non-zero over only a finite sector of S. This is justified in the case of a large class of focus-fed convex reflectors where 
there exists a finite closed contour ΓΑ which circumscribes the family of all specularly reflected rays from the 
illuminated side of the reflector. The projection along the reflected ray paths on S defines a sector A∈  S, bounded by ΓΑ, 
over which Ea and Ha are computed using the laws of geometrical optics, with Ea = 0 and Ha = 0 over S – A. This 
prescription specifies a sharp discontinuity along ΓΑ which is inconsistent with Maxwell's equations. To overcome this 
difficulty, electric and magnetic charge densities are postulated along ΓΑ in accordance with the equation of continuity. 
With this, the field scattered by the reflector is given by the expression: 

  ( ) ( ) ( ) ( )[ ] SGjj anananAs d1 ∇××+∇∇•×ωε−×ωµ−�= − EuHuHuE   (4) 

where un is the outward unit normal to A, and G is the free-space scalar Green's function. 

Equation (4) forms the fundamental result of the aperture field method, and applies equally to both near- and far-fields 
exterior to S. In the far-field sector of the antenna, some simplifications can be effected in equation (4) which 
significantly eases its computational complexity. Its main drawback, however, is the discontinuity postulated along ΓΑ 
which is then overcome by a purely artificial construct. Apart from making the formula consistent with Maxwell's 
quations, the addition of electric and magnetic charge densities along ΓΑ does not make it any more accurate. In actual 
usage, however, equation (4) is often reduced to a scalar integral by a suitable choice of S, as discussed in the next 
section. It is in this form that the method is better known. 
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2.3 Scalar radiation integral/projected aperture method 

The projected aperture method, (see Fig. 2b)), is essentially a simplification of the aperture field method discussed in the 
previous section. The surface S is taken to be made up of an infinite plane P (chosen on the radiating side of the reflector) 
closed at infinity by an infinite hemisphere on the source side, thereby enclosing the antenna. The field over the 
hemispherical sector vanishes (in view of the radiation condition) and the right hand side of equation (4) reduces to a 
surface integral over P. With some mathematical manipulation this can be transformed into a scalar radiation integral: 
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where F stands for any Cartesian component of the aperture electric field, and ∂/∂n is the normal derivative. Equation (5) 
can be written in a more usable form by taking P to coincide with the x-y plane as shown in Fig. 2b) with the sources 
confined to the sector z < 0. This gives the scattered field Es (x, y, z) at any arbitrary point, Q(x, y, z), as: 
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where r is the distance from the point (ξ, η, 0) on the aperture to the field point, Q(x, y, z), us is a unit vector normal to 
the wavefront at (ξ, η, 0), and ur etc. are unit vectors along directions indicated by the corresponding subscripts. In 
equation (6), the integral has been truncated to a finite aperture A∈  P with the implicit assumption that F(ξ, η) = 0 over 
P – A. Sector A is the surface enclosed by the curve of intersection of the reflection shadow boundary with P. 

In the far-field sector, along the direction given by (θ, ϕ), equation (6) simplifies further to: 

  ( ) ( ) ( ) ηξηξ�
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Equation (7) is the well-known scalar diffraction integral which expresses the far-field in terms of the tangential electric 
field over a planar aperture. In its derivation it is assumed that the phase of F varies little over A although this fact is 
often overlooked. 
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Equation (7) is widely used in the prediction of far-field patterns. The aperture field F (ξ, η) is determined using 
geometrical optics in the sector of specularly reflected rays. The field truncates along the reflection shadow boundary Γ 
resulting in a discontinuity in F (ξ, η) along Γ. This is, of course, not true in reality. Nevertheless, equation (7) has been 
widely used in the past and correctly predicts the main beam and near-in sidelobes. 

The integral in equation (7) can be evaluated in explicit closed form for a large class of aperture fields. Since F is 
assumed zero outside A, the limits of integration can be set to -∞ to ∞ without any loss of accuracy, whence it takes the 
form of a double Fourier integral. Fast numerical algorithms like the Fast Fourier Transform (FFT) can then be employed 
in its numerical evaluation. 

This method is comparatively fast, and efficient codes that employ this technique are available for a wide variety of 
aperture type antennas. If the edge of the reflector forms a planar contour Γ, A can be chosen to be the surface 
circumscribed by Γ. In such cases, the radiation integral of equation (7) offers a distinct computational advantage over 
the physical optics approximation (discussed in the next section) since the integral in equation (7) is over a planar surface 
(unlike in the latter where suitable curvilinear coordinate systems need to be employed over curved reflectors). To a first 
order, this can predict deformities on the reflector surface that are large in terms of wavelength, typically those with 
minimum radii of curvature over five wavelengths in size for geometrical optics to be valid. Qualitative effects of 
aperture blockage can be accounted for by suitably tracking the rays. The effect of struts can be included in the analysis 
by a technique known as IFR (Induced Field Ratio) which is described in § 2.6 of this annex. As mentioned earlier, the 
projected aperture method can correctly predict only the main beam and first few sidelobes, and of necessity only the 
pattern in the forward hemisphere. However, it fails to predict the cross polar pattern with sufficient degree of accuracy, 
and it can be shown that the method gives symmetric patterns even in cases where there is asymmetry in the feed 
structure. In modern analysis, the projected aperture field method is always used in conjunction with GTD 
techniques (§ 2.5). 

2.4 Physical optics 

Physical Optics (PO) is essentially an approximation that relates the surface current on a conductor with the incident 
electromagnetic field. The scattered field Es in an unbounded sector, due to a collection of electric and magnetic current 
sources J and Jm respectively, confined to within a finite volume V, is given by: 

  ( )[ ] vGjkj
mVs d2 ∇×ωε−+∇∇•�

ωε
−= JJJE  (8) 

If the source consists of simply an induced current density Js on a perfectly conducting surface S, equation (8) transforms 
to a surface integral over S: 

  ( )[ ] SGkj
ssSs d2JJE +∇∇•�

ωε
−=  (9) 

Equation (9) is exact and is valid at all points in space exterior to the source sector (on the actual sources the Green's 
function G has a singularity). If the surface current density Js were known at every point on the reflector surface, the 
scattered field in both near and far-field zones could be determined from equation (9). Unfortunately Js is not known, and 
its determination involves the solution of a complex boundary value problem. (In fact, method of moments is an attempt 
in this direction.) 

Physical Optics is an approximation that expresses Js at any point on the reflector in terms of the incident magnetic field 
intensity Hi at that point. Specifically, it is assumed that: 

  ins HuJ ×= 2  (10) 

where un is the unit normal to S. This implies zero current on portions of the reflector surface not directly illuminated by 
the feed. Strictly, equation (10) is valid only for an infinite perfectly conducting plane. The actual current distribution is 
modified (from that given by equation (10)) by the finiteness of the reflector as well as by its curvature. If the radius of 
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curvature is large in terms of wavelength, equation (10) is very accurate except near the edges and in the shadow zone. 
Fringe currents along edge can be added to improve prediction, although this significantly increases computational 
complexity. 

In the far-field sector, along the direction ur, equation (9) simplifies to 

  ( ) ( ) ( ) Skr
r
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where I~  is the unit dyadic. equation (11) is the standard far-field expression used in the PO approximation. In terms of 
CPU time and storage requirements, PO is comparable to the aperture field method. It is, however, generally more 
accurate than the latter and correctly predicts the main beam and close in sidelobes. It also gives a better prediction of the 
cross polar pattern. Smooth surface deformations can be easily modelled. In addition, the effect of struts, feed and other 
sub-systems can be added if the currents flowing on their surfaces (obtained by the PO expression of equation (10)) are 
taken into account but the interactions between various sources are not included, and as a result such predicted effects 
may have only a qualitative value. Physical optics is generally used in all cases except where the radiated field can be 
projected onto a planar aperture comparable in size to the reflector itself, in which case the projected aperture method is 
computationally significantly superior. As with the aperture field method, PO is now always used in tandem with high 
frequency diffraction techniques. 

2.5 Geometrical theory of diffraction 

Geometrical Theory of Diffraction (GTD) is a high-frequency technique suitable for the analysis of antennas that are 
large in terms of wavelength. It was originally formulated by Joseph Keller as an extension of Geometrical Optics (GO) 
to account for the non-zero fields in the shadow sector. This is accomplished by introducing a set of diffracted rays 
analogous to the reflected and transmitted rays of GO. Diffracted rays (Figs. 3 and 4) arise from edges, corners and from 
any other similar discontinuities in the surface curvature. Like GO, diffraction is assumed to be a strictly local 
phenomenon: this means the diffracted field depends only on the strength of the incident field at the point of diffraction, 
and on the local geometry of the diffracting wedge. 
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In GO, the reflected field is obtained by multiplying the incident field by a reflection coefficient. In a similar manner, the 
diffracted field is determined by multiplying the incident field by a diffraction coefficient; the latter is found as an 
asymptotic solution of a suitable canonical problem. 

GTD along with its extensions is the most widely used high-frequency technique in reflector analysis. 

According to GTD, the scattered field Es at a point in space is given by: 

  Es  =  Er  +  Ed (12) 

where Er and Ed are the GO and GTD fields, respectively. The GO field is: 

  jks
ir H −= e~ERE  (13) 

where R~  is the dyadic reflection coefficient (made up of the Fresnel coefficients for reflection from an infinite dielectric 
planar interface), Ei is the incident field at the point of reflection QR, H is a divergence factor which depends on the 
principal radii of curvature of the incident wavefront, and those of the reflecting surface at QR, and s is the distance from 
QR to the field point. The diffracted field is, similarly: 

  jks
id L −= e~EDE  (14) 

where D~  is the dyadic diffraction coefficient, and L is a similar divergence factor. Keller's expression for ,~D  however, 
fails in the transition sectors close to the reflection and shadow boundaries, as well as at the caustics. To overcome this 
difficulty, “uniform” theories have been formulated that yield continuous functions across the transition sectors. These 
include the Uniform Geometrical Theory of Diffraction (UTD), and the Uniform Asymptotic Theory (UAT). Both 
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theories give values of D~  that have no singularity in the transition sectors, and have been successfully applied in far-
field prediction for over two decades now. The diffraction coefficients contain Fresnel integrals that are easily evaluated, 
thus providing a fast and efficient algorithm for the analysis of large reflectors. In computation with GTD, most of the 
time is actually used in locating the points of reflection and diffraction on the reflector, given the source and field points. 
With multiple reflectors and complex geometrical shapes, this can sometimes be quite time consuming although not 
nearly as much as in evaluating double integrals over large surfaces.  

Uniform theories, however, fail along caustics, defined as sectors where a family of rays converge to form focal points or 
focal lines. Such sectors can be analysed by the Equivalent Current Method (ECM), which works back from the GTD 
solution away from caustics to obtain an equivalent current that would produce identical fields there. This current is then 
used to extrapolate the field at the caustics. GTD, UTD, UAT and ECM all fail in sectors where GTD caustics and the 
transition sectors overlap. Such sectors can be treated by the Physical Theory of Diffraction (PTD), which is a systematic 
extension of the PO approach, just as GTD is an extension to GO. PTD formulates electric and magnetic edge currents 
from the GO fields tangential to the edge; to evaluate the diffracted field, it is necessary to integrate these currents along 
the length of the edge. In sectors where PTD and UTD/UAT both apply, it can be shown that the leading terms of the 
latter can be recovered from the PTD solution. However, application of PTD involves an additional integration along the 
edge, and numerical computations indicate that it does not improve accuracy over UTD/UAT techniques outside sectors 
where GTD caustics overlap GO shadow boundaries. 

The main advantages of GO/UTD/UAT are that it renders itself to fast computation and that it can be used on arbitrarily 
shaped surfaces with arbitrary contours, provided the surfaces and contours have radii of curvature that are large in terms 
of wavelength. This means well-defined surface irregularities and surface deformations (caused, for example, by 
gravitational effects) can be treated by this method. Feeds and subreflectors can be accounted for through multiple 
reflections. In some cases imperfectly conducting surfaces and dielectric media can be included in the analysis. The 
GO/GTD method fails along caustics and alternative formalisms need to be invoked in such sectors. 

2.6 Aperture blockage and strut effects 

This section gives consideration to the modelling techniques for aperture blockage and strut effects. 

The radio astronomy or space research antenna feed, the subreflector, if any, as well as the associated mechanical support 
structures and cable feeding may block some of the energy that would normally arrive at the antenna aperture. This 
problem is obviously much more important to axisymmetric systems than to offset arrangements. Nevertheless, these 
blockage problems reduce the performance of the antenna. The associated effects manifest as a reduction in gain, a 
significant increase in sidelobe levels (at least in certain directions) as well as deterioration in the polarization purity of 
the antenna system. 

It is possible to include the blockage effects when we analyse the antenna pattern with any technique such as PO, 
aperture integration or GO/UTD. 

Subreflector and feed blockage can usually be taken into account by considering the optical shadowing effects on the PO 
surface currents or aperture fields. This is usually adequate since it allows us to evaluate the drop in main beam gain and 
the changes in the near-in sidelobe levels. Equally well the radiation pattern due to the original understated illumination 
could be subtracted from the illumination that would exist hypothetically over the blocked portion of the structure. If a 
scheme is employed by which PO is switched to GO/UTD along certain directions then this subtraction approach could 
still be employed with the only difference that the “unobstructed” pattern will be calculated by the GO/UTD approach. 
As the main beam due to the “blocked illumination” is usually much wider than the main beam of the total antenna 
pattern, a PO or aperture integration can still be employed to calculate the blocked pattern over much wider angular 
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sectors than the range of validity of the corresponding methods for the core of the main reflector patterns. Effects due to 
struts can be also handed in a similar fashion, i.e. by considering the optical shadowing effects. This can be a successful 
approach provided that the strut cross-section is electrically large. If this is not true accurate predictions of strut effects 
are still possible with the aid of the Induced Field Ratio (IFR). The underlying philosophy behind the IFR concept is 
simple. The primary feed, after reflection from the main reflector, illuminates the struts and is then blocked; this 
illumination field has locally the character of a plane wave. The next step is to find the two dimensional (per length) 
“forward scattering” properties of an infinity long object having the same cross-section as the strut under plane wave 
illumination. Finally, the actual strut blockage field, and in particular the forward scattered field, can be calculated by 
scaling by the length and weight appropriate to the local illumination. The IFR concept allows the definition of two 
corresponding values for the two independent polarizations into which local incident plane waves can be decomposed; 
hence this methodology also allows the evaluation of polarization related effects due to strut scattering. 

The IFR is a quantity which relates the actual forward strut scattered field to the strut blockage field under geometrical 
optics shadowing conditions. The formal definition of IFR for a cylindrical object under plane wave illumination states 
that it is a ratio between the forward scattered field to a hypothetical field radiated in the forward direction by a plane 
wave having a width equal to the optical shadow size of the geometrical cross section of the cylinder. The useful aspect 
of the IFR concept lies in the fact that the actual IFR quantity can be determined with analytical, numerical (Method of 
Moments, finite elements etc.) or even experimental techniques so as the strut effects can be predicted accurately. The 
analytical or numerical evolution of the IFR also permits, as an intermediate step, the determination of real or equivalent 
currents on the struts themselves. In principle, the full fan-shaped scattered pattern of the strut can therefore be 
calculated. In this case, the above process correctly includes the strut blockage and scattering effects over a large angular 
sector of the antenna pattern. 

When the reflector surface is made of panels, interpanel gap diffraction can affect the radiation pattern as well as the 
boresight gain. These effects are naturally stronger as the frequency of operation increases and should be taken into 
account for antennas intended to be operational at millimetre wave frequencies. The concept of optical blockage is 
applicable if the gaps have an electrical large width. In the opposite case a Magnetic Current Induced Field Ratio (MIFR) 
can be defined, much along the same lines as the traditional IFR concept. 

3 Recommendations 

Most of the techniques outlined in § 2 are capable of predicting accurately the far-field patterns in their respective sectors 
of validity. In general, a complete characterization of the antenna pattern is best achieved by a suitable combination of 
various methods. The physical optics integration is the most widely used technique for large reflector analysis. It 
provides accurate results in the main beam sector and near-in sidelobes. Enhancing the PO solutions with GTD and its 
derivatives (UTD etc.) or with PTD provides full description of the antenna patterns in all directions including the wide 
angle illumination and back radiation. 

The aperture field method plus GTD is used in some cases where S can be reduced to a plane. GTD based diffracted rays 
are added to cover a finite surface A where A is chosen such that F decays to a negligible value along its periphery. This 
leads to a smooth and continuous function F over the entire plane P and a planar integration quickly yields the pattern in 
the entire forward hemisphere. If A is considerably larger than the normal projection A' of the source antenna on P, then 
this method fails since the phase variation of F outside A' increases rapidly as we move further away from its boundary. 
If the rim of the reflector is planar, A can be chosen to cap the reflector. 

Feed spillover past the reflector can be included by straightforward superposition of the fields, although GTD is also 
required to provide an accurate model close to the shadow boundary. Subreflector or feed blockage can be included as a 
shadow or projected shadow on the main reflector surface. The IFR technique can be used to estimate the strut 
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contributions. The IFR technique is limited to measured values or to the canonical problems that can be solved 
approximately or exactly and additional work may be required to establish the strut radiation patterns for a specific 
installation. However, general approximations can provide acceptable estimation to the levels of strut scattering which 
usually occurs at a significant angle from boresight (dependent upon the strut configuration) and this may be sufficient 
for most purposes. The Physical Optics integration technique can include the reflector deformation or feed/subreflector 
misalignments. The reflector profile can be determined experimentally by measurements or mechanical analysis. 
Microwave holography, theodolite based measurements and photogrammetry are diagnostic techniques that can also be 
used to assess the mechanical state of the reflector surface and associated systems such as feed and subreflector 
positioning, as described in Annex 2. 

In many systems, the reflector is in the near-field of the feed or subreflector. This requires accurate evaluation of the 
near-field patterns of the feed or feed + subreflector combination. The Method of Moments (MoM) and hybrid 
MoM/GTD techniques may be suitable methods.  

The combination of Physical Optics integration with UTD or PTD is the recommended analysis tool for predicting the 
radiation pattern of large reflector antennas. The “real” profile of the reflectors can be obtained by diagnostic techniques 
such as holography or photogrammetry. 

Depending on the details of a particular installation, one should also take into account effects due to the environment in 
which the antenna operates. Radome effects, reflection from the ground and surrounding buildings are factors that should 
be taken into account. Due to the obvious complications of a composite antenna environment scenario, it is advisable to 
use the simplest possible technique. As such, a ray-based methodology is usually likely to be the only practical approach 
to evaluate the interaction of a large antenna with its immediate environment. 

The recommendations are summarized in Fig. 5 and Table 2 below. The radiation pattern of a large reflector is divided 
into four sectors. 

Sector I: Forward axial sector 

Sector II: Far-out sidelobes 

Sector III: Backlobes 

Sector IV: Rear axial sector 

The main mechanisms and recommended analysis techniques are given in Table 2. 

TABLE  2 

Mechanism and Analysis Techniques for Large Reflectors 

 

 

 Main Mechanisms Analysis Techniques 
SECTOR I 
Forward axial sector 

– Feed/subreflector performance 
– Overall antenna configuration 
– Reflector/feed alignment 
– Reflector distortions 

PO 

SECTOR II 
Far sidelobes 

– Feed/subreflector performance 
– Overall antenna configuration 
– Reflector edge diffraction 
– Struts 

GTD/UTD and IFR 

SECTOR III 
Backlobes 

– Reflector edge diffraction GTD/UTD 

SECTOR IV 
Rear axial sector 

– Reflector edge illumination 
– Reflector edge geometry 

Equivalent edge 
currents 
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ANNEX  2 

Analysis using experimental data 

1 Introduction 
Apart from relying in purely theoretical techniques, the radiation pattern of a radiotelescope antenna can be assessed 
when intermediate experimentally retrieved data are processed. The methods considered here involve experimental data 
associated with: 

– Near-field probing 

– Microwave Holography 

– Theodolite based measurements 

– Photogrammetry 

Each of the techniques is described below. The most suitable technique for any application depends on the specific 
circumstances of each case and thus a general recommendation cannot be given. 

2 Near-field measurements 
The theoretical foundation of near-field measurements is based on the enclosing surface theorem as this is expressed by 
equation (4) in Annex 1. The only difference is that now symbol A is used to describe the full surface S. We can see that 
if the tangential fields over a surface enclosing an antenna are known, then the radiation pattern of the antenna can be 
found everywhere. Here however, rather than using a theoretical technique to evaluate the surface fields, direct 
measurements are involved. 

Planar near-field probing can be used to evaluate the radiated fields over most of a hemisphere. On the other hand 
cylindrical and most importantly spherical near-field metrology can provide patterns for directions within most or all of 
the complete radiation sphere. 
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For these canonical geometries, the radiation pattern can be cast as an integration or summation of elemental plane wave 
components, cylindrical or spherical harmonics. Numerical algorithms exist which can carry out all the necessary 
arithmetic manipulation in a very efficient manner. However, the problems associated with the applicability of near-field 
metrology for the determination of the radiation pattern of a radio astronomy or space research antenna are due to the 
large amounts of near-field data required as well as the practical problems faced in order to acquire these data in a 
reliable way. The amount of near-field data required for an accurate pattern determination is defined by the necessary 
sampling interval. In the case of planar scanning this sampling interval should be 

2
λ  or less. For the case of a cylindrical 

scanning the sampling distance along the axis of the cylinder should be 
2
λ  or less whilst the angular sampling interval 

along the circular cross section should be λ/(2R) in radians or less, where R is the radius of enclosing cylindrical surface. 
Similarly for a spherical near-field scanner the angular sampling intervals in azimuth and elevation should be at no more 
than λ/(2R) radians. 

From these sampling values it can be deduced that for common radio astronomy or space research antenna dimensions 
the amount of near-field data required is extremely large. In addition, there are significant mechanical, electrical and 
financial problems associated with devising suitable arrangements for the actual near-field data acquisition. These 
problems include the requirements for tight mechanical accuracies for the probe position when this moves over the large 
distances required to sample the field of the antenna. Also the RF source and metrology equipment should be sufficiently 
stable (or their variations should be reliably compensated) over the large time used for data acquisition. Environmental 
conditions can severely affect these near-field measurements which, due to practical considerations, have to be 
performed in open space. 

For all these reasons a full near-field determination of a radio astronomy or space research antenna pattern cannot be a 
serious practical proposition. On the other hand, near-field probing can be used in order to evaluate the radiative 
properties of critical antenna subsystems such as the feed, compact feed-subreflector arrangements, or if used, beam 
waveguide feeding subsystems. These measured parameters can be used in a PO or GO + GTD like methodology to 
analyse the antenna performance. 

3 Microwave holography 

Microwave holography includes the measurement of the radiation performance of the antenna; extra complex 
measurements are performed from which the state of the telescope reflector profiles and alignment can be deduced. 
Holography can be used to identify the location and the magnitude of surface distortions. Additional information that can 
be retrieved from the holographic process can relate to possible feed displacement from the nominal focal position. The 
holographic process, achieves its goals when an accurate picture of the phase variation of the antenna's aperture field is 
established. Once this has been done, it is possible to employ ray tracing in order to interpret the aperture phase variation 
as surface profile information. 

The holographic process starts with the recording of the antenna pattern not only in amplitude but also in phase. In order 
that reliable phase information can be recorded, a second (reference) antenna is usually employed which remains 
stationary throughout the measurement process. The pattern is recorded when a distant or close-by source is illuminating 
the antenna. In the latter case, the derived aperture phase distribution should be corrected for the quadratic type phase 
error resulting from the inadequate separation between antenna and source.  

The actual sources used can be located in the terrestrial environment, can be geostationary satellite-borne, or even cosmic 
sources of microwave radiation. The latter two types are very useful for antenna holography as they allow the pattern 
measurement to be performed at elevation ranges similar to those used in the actual operation of the radio astronomy or 
space research antenna. Hence, the gravitational distortion effects will have much more representative values than in the 
case when a terrestrial illuminating source was employed. Holography based on space-borne sources offers the advantage 
over the use of cosmic sources in the sense that the measurement can be performed with a sufficiently large value of 
signal to noise ratio. It is, however, necessary to employ algorithms in order to compensate for the satellite movements 
throughout the measurement period, and special-to-type receivers are normally required. 
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Once the radiation pattern is recorded, the Fourier transform relationships are employed in order to derive the aperture 
field. Sampling theorem dictates that the radiation pattern should be recorded at discrete directions with a sampling 
interval δUV in the U-V space (U = sin θ cos ϕ, V = sin θ sin ϕ) such that: 

  δUV  ≤  λ/D (15) 

where D is the diameter of the antenna. Fourier transform theory can be employed to prove that if an N × N measurement 
array is the U-V space is processed, then the aperture distribution can be recovered with pixel resolution having 
dimensions: 

  
UV

XY Nδ
λ=δ  (16) 

The recovered amplitude and phase value for a pixel represents the average values for the actual fields that exist in the 
corresponding area. This is the result of convolution type effects, due to the fact that only a truncated part of the total 
radiation pattern is recorded and subsequently processed. In this sense, holography can only record local averages and 
not point information for the antenna surface profile. 

Polynomial fitting of the aperture phase information can recover deterministic errors such as gravitational and global 
thermal distortion and aberration due to axial and lateral displacement of the feed. If all these factors are subtracted then 
what remains can be attributed to a pseudo-random deformation of the surface profile. These random deformations can 
usually be attributed primarily to manufacturing errors, and if panels are used, to panel misalignment. In the latter case, 
these retrieved surface data can be used in order to improve the alignment state of the panels that form the reflector 
surface. In any case, the statistical properties of the antenna surface are usually described by σ which is the r.m.s. value 
of the surface deviation from a specified (usually parabolic) reflector profile. The value of σ that can be unambiguously 
determined from the holographic process depends on a number of factors including the operating wavelength, the signal 
to noise ratio, the extent of the measured pattern record, phase instabilities on the receiving systems etc. Practical 
measurements have indicated that the highest achievable D/σ values that can be reliably measured are of the order 
of 250 000. 

Once holographic information for the antenna is retrieved it is possible to provide analytical expressions for the reflector 
surface using spline interpolation functions, zernike polynomials etc. This is primarily the value of holography as a 
pattern prediction tool. The analytical surface description can now be used in conjunction with any technique such as PO, 
PO + PTD, or GO + GTD to provide radiation pattern data over angular sectors not covered in the original holographic 
data acquisition or for frequencies other than the one used in the holographic process. Due to the convolution phenomena 
explained earlier, certain information on the surface profile variation is inevitably lost. This means that the employed 
surface description may not be entirely correct. Hence some ambiguity may exist as far as the accuracy of the predicted 
far out sidelobe level is concerned. However, this situation may not be as bad since the far out sidelobes are also strongly 
influenced by the accuracy with which the reflector rim geometry and associated illumination is reproduced in the 
theoretical model. 

The holographic approach may not however be entirely successful in providing surface profile information when a 
multireflector antenna is considered. In this case, it is not straightforward to correctly and unambiguously associate 
retrieved aperture phase information with deterministic or random profile errors for the main reflector or the 
subreflector(s). 

As it can be seen from the above, microwave holography is not normally needed if the only requirement is to assess the 
antenna RF performance rather than to also identify the profile errors causing performance degradation. However, the 
technique can be used to measure the antenna at an intermediate range and derive the far-field. 
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4 Theodolite based measurements 

Measurements using theodolites, as well as the photogrammetry methods which will be discussed later, are optically 
based approaches which utilises the geometrical nature of optical propagation in order to establish the geometrical 
coordinates of selected points (targets). These targets can be set on the surface of the main reflector, the subreflector, the 
backing structure, the struts or even on the primary feed of the antenna. 

The theodolite is an instrument that basically measures two angles, one elevation and one azimuth, as it aims at the target 
position. There are basically two variants of theodolite measurements that can be made: 

– The theodolite and tape method 

– The multi-theodolite station, triangulation 

In the theodolite and tape method the coordinates of a point are expressed in a coordinate system associated with the 
theodolite. The instrument itself basically offers the two polar angles of a target. The radial distance of the target from a 
theodolite reference point can be measured with either a steel tape or more accurately with a laser rangefinder. 

The theodolite and tape system is assumed to be calibrated prior to the actual start of the measurements. Also, there 
appears to be a potential problem at non-zenith locations as gravity disturbs the optical instrument as it tilts (as it will if 
mounted on the reflector) and so it must be specially designed. 

In multi-theodolite station triangulation, the targets are surveyed by two or more (usually between 2 and 4) instruments 
placed at different locations in front of the antenna. At this stage only angular measurements are recorded. It is possible 
to set up a universal coordinate system so that the rectangular coordinates of every target can be expressed 
unambiguously; the precise location of every theodolite station should therefore be accurately known in advance. This is 
the calibration phase (which is always the first task during a theodolite based measurements) and essentially consists of 
surveying known points, such as end points of a reference marker, bars, etc. 

The measurement accuracy of theodolite systems is of course affected by the basic accuracy of the instrument. 
Nowadays, highly accurate digital theodolites can offer significantly reduced errors of about 0.5 arc sec. This means that 
the final accuracy of the theodolite measurement will be more dominated by the accuracy of the calibration process and 
less by the basic accuracy of the measurement itself. The accuracies experience in actual measurements expressed on the 
ratio of D/σ explained earlier is of the order of 120 000 for two theodolite station and 250 000 for four theodolite stations. 

5 Close range photogrammetry 

Photogrammetry is a process of obtaining reliable geometrical information for an object by measuring its photographic 
images. Again a number of target points are defined on the antenna structure. Using specialized photogrammetric 
cameras, the antenna is photographed from different directions such that the given targets will appear in more than one 
photograph. The coordinates x,y of a target image expressed in a photographic plate coordinate system are determined. 
Using the “projective equations” one can relate the image coordinates of a given target to its true 3-D coordinates 
associated with a universal system. The set of projective equations for all targets on the antenna, and for every 
photograph taken, forms the basis of the photogrammetric triangulation process.  

The projective equations for every target are dependent on a set of parameters (projective parameters) which are constant 
for every individual photograph. The determination of these constants is the goal of the calibration phase. Calibration can 
be performed along similar lines as those used in theodolite based measurements, i.e. surveying a number of control 
points. However, the ability of photogrammetry to record a number of targets within a single photograph can enable an 
alternative calibrating procedure which runs concurrently with the actual target position determination. In essence, the 
possibility of having a given target recorded in a number of photographs leads to an over-determined system which can 
be solved by least square methods. This approach yields the projective parameters through a reduced set of equations. 
The coordinates of the target points can be deduced afterwards. Such an approach is called the “bundle method”. 
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There is a similarity between multi-theodolite system method and photogrammetry as both methods utilise the 
triangulation method for establishing the target coordinates. There is however, an important difference in the sense that 
in photogrammetry there is no need to know the precise position of the instrument station. This point can be retrieved 
from the measurements as the bundle of rays representing the targets imaged in a photograph are always assumed to be 
stigmatic at the reference station position.  

The accuracy of photogrammetry increases as the number of photographs increase and photogrammetry makes it easier 
to survey more points and at more different locations than in the case of theodolite measurements. Photogrammetry is 
also very “quick”, which is good if time variant parameters are present, as they usually are. (Mechanical measurements 
on large antennas often have to be performed at night with good cloud cover for constant temperature.) These advantages 
combined with the above mentioned powerful calibration procedure makes photogrammetry a more accurate coordinate 
determination procedure than when theodolites are employed. D/σ accuracies of 250 000 are routinely available from 
photogrammetry with figs. such as 500 000 or even 1 000 000 entirely feasible from a careful photogrammetric survey of 
large antenna structure. However, since the antenna is usually tilted in elevation to almost horizontal during the 
measurements, unrepresentative gravitational deformations may be introduced. 

Since surveying a large number of points is possible with photogrammetry, a better expression of the antenna main or 
subreflector surface can be found than by other measurement techniques. Processing this data with any technique such as 
PO or GO + GTD can yield a good estimate for the radiation pattern over an extended angular sector. 

 

 

ANNEX  3 

Example results of computer modelling 

1 Introduction 

A commercially available software package1 has been used to model the antenna gain patterns of a large radio astronomy 
antenna. The results illustrate the effect of various parameters on the model's predictions and the significance of various 
mechanical features. 

2 Model methodology 

The model uses a combination of the Physical Optics (PO) and Geometrical Theory of Diffraction (GTD) approaches. 

For the PO calculations, the surface of the reflector is divided into a grid of surface elements. The radiated field is found 
by integration of the surface currents at each point on the grid. To simulate the effect of aperture blockage, the surface 
currents are set to zero in the shadow of the feed on the reflector surface. 

The GTD approach follows three steps: 

1. Selection of significant rays 

2. Ray tracing  

3. Field calculation 

A simple caustic correction procedure is applied which smoothes the diffracted field for angles close to the caustic 
direction. It cannot however accurately predict the field close to the caustic in the boresight direction. 

_______________ 

1  “GRASPC” from TICRA (Denmark). 
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The GTD method, in general, requires less computation time than the PO approach. Therefore, GTD is used for all 
angles except where GTD is inaccurate. Due to the caustic on boresight, the PO method is used for angles in this sector. 

Struts are treated by a method based on the Induced Field Ratio concept. To simplify the method, it is assumed that the 
strut is circular and the field contribution from the strut is limited to far-field analysis only. 

Random surface distortions can be imposed on the surface of the main reflector. The distortions are correlated over a 
distance consistent with the size of the individual panels of the reflector surface. 

3 Antenna mechanical parameters 

The Lovell Mk1A radio astronomy antenna, located at Jodrell Bank in the UK was modelled. The major parameters of 
this antenna are shown in Table 3. 

4 Model results 

The antenna was modelled at 150 MHz and at 5 000 MHz. It was modelled in the far-field, both with and without struts. 
The effects of varying the observation distance within the near-field were examined and the effects of surface distortions 
were examined. 

The antenna was also modelled at the 1 420 MHz in order to compare the results with measured data taken at the same 
frequency. 

All the results are for the Mk 1A antenna assumed to be transmitting with circular polarization. The receiver is assumed 
to be using vertical polarization. All patterns are for the azimuth plane, with the antenna pointing at 0° elevation. 

TABLE  3 

Parameters of Mk 1A radio astronomy telescope 

 

 

Diameter 76.2 m, circular aperture 

Focal Length 22.9 m, primary focus 

Frequency Range 150-5 000 MHz 

Support struts The Mk 1A has a central pylon supporting the feed, this has been 
modelled as four individual struts, diameter 0.2 m 

Feed housing 3.8 m diameter 

Feed gain pattern Parabolic, 13 dB below maximum at 59° 

Surface distortions 6 mm r.m.s. (25 mm peak-peak) 

Surface distortion correlation 
distance 

2.8 m 
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4.1 Far-field and near-field at 150 MHz 

Fig. 6 shows the gain pattern at 150 MHz, with surface distortions included and with no struts. The PO method was used 
within 7.06° of boresight, and the GTD method at other angles. The 4 plots show the changing gain pattern as the 
observation point moves from far-field to successively shorter near-field distances. At this frequency, the far-field 
distance is 5.8 km. 

It can be seen that the far-field pattern and the near-field pattern at 1 000 m are almost identical. For distances of 100 m 
and 50 m, the width of the main lobe increases and the maximum gain decreases. Beyond ±130°, there is little change in 
the level of the side-lobe envelope. At these angles the dominant rays are the edge diffracted rays. 
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FIGURE 6
Mk 1A at 5000 MHz without struts, far-field and near field
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4.2 Far-field at 5 000 MHz, with and without struts 

Fig. 7 shows the far-field gain pattern of the Mk 1A at 5 000 MHz. Random surface distortions are included. The PO 
method was used within 0.21° of boresight, and the GTD method at other angles. One plot shows the pattern with no 
struts, the other has struts included. The reference radiation pattern from Recommendation ITU-R SA.509 is included. 

Without struts, the effect of spillover (radiation directly to or from the feed) is visible from the peaks at about ±100°. 
When struts are included, the high level of strut scattering predicted by the model tends to mask the spillover effects. 
With struts included, the gain pattern just exceeds the reference radiation pattern for angles less than 100° from 
boresight. 
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FIGURE 7
Far-field of Mk 1A at 5000 MHz, with and without struts
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4.3 Far-field at 5 000 MHz, with and without surface distortions 

Fig. 8 shows the effect of using a different random number seed for the distribution of random surface deviations. Three 
far-field plots are shown for the MK 1A at 5 000 MHz. They are separated by 50 dB for clarity. One gives the predicted 
pattern with no surface distortion, the others show the effect of different random distributions. The PO method was used 
within 0.21° of boresight, and the GTD method at other angles. 

One can see that the surface distortions produce “spikes” near the main beam. The “spikes” are about 10 dB higher than 
the level with no surface distortion. Beyond about 10° from boresight, surface distortions appear to have little effect. If 
strut scattering were included (as indicated by Fig. 7), the “spikes” close to boresight would be masked. 

4.4 Far-field and near-field at 5 000 MHz, without struts 

Fig. 9 shows the effect of viewing the antenna in the near-field. The plots are for the Mk 1A at 5 000 MHz with surface 
distortions, viewed from the far-field and at 3 different near-field distances. The PO method was used within 0.21° of 
boresight, and the GTD method at other angles. The plots are separated by 70 dB for clarity. 

The prediction for a near-field distance of 10 km is almost identical to the far-field plot. At the 1 km observation distance 
the main beam becomes wider and the maximum gain is lowered. At 100 m the main beam is wider still and maximum 
gain is lowered again. Beyond ±50° there is little difference in the level of the side-lobe gain. The peaks at around 100° 
are due to spillover from the feed. The angle at which the spillover peaks occurs is seen to change as the observation 
distance is shortened. This is because the centre of the coordinate system is at the centre of the main reflector and the 
angle between boresight and the edge of the main reflector changes with distance. 
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FIGURE 8
Far-field at 5000 MHz, with and without surface distortion
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FIGURE 9
Mk 1A at 5000 MHz without struts, far-field and near field
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4.5 Comparison of measured pattern with model prediction 

Fig. 10a) shows a far-field prediction for the Mk 1A at 1420 MHz. The gain is relative to the maximum gain of 57 dBi. 
Fig. 10b) shows the measured gain of the Mk 1A at the same frequency. The peak in the measured signal at around 95° is 
due to spillover. 
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The model appears to underestimate the level of the side-lobes close to the main beam (to about 15°), and the high level 
of spillover. For the sidelobe level between 15° and 80°, there are a limited number of samples but the predicted level 
appears approximately to be correct. 
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FIGURE 10
Mk 1A at 1420 MHz: a) far-field model prediction (top),

b) measured gain (bottom)
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5 Conclusions 

The importance of the feed support struts, feed gain pattern and surface distortions to the modelling of the side-lobe gain 
pattern of large antennas has been considered. 

5.1 Feed support struts 

For a wide range of angles, the sidelobe level is dominated by scattering from the struts. Within this sector the accuracy 
of the treatment of struts is therefore the dominant factor. 

5.2 Feed gain pattern 

At certain angles of view, spillover (radiation direct from the feed) can be a dominant factor. For many antennas, 
spillover produces the highest peak in the far out sidelobe envelope. In the case of the Mk 1A, spillover is dominant 
between approximately 90° and 100°. Thus knowledge of the feed horn gain pattern, particularly at angles near the 
spillover angle, is an important parameter. 

5.3 Surface distortions 

The distortions to the surface of the reflector can cause an increase in the level of the near-in sidelobes. The effect can be 
significant when the wavelength is of the same order as the size of the surface errors. 
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