The ITU Radiocommunication Assembly,

considering

a) that there may be a need to calculate the probabilities of exceeding a given interference level in interference or sharing studies between non-geostationary satellite orbit (non-GSO) stations and other stations;

b) that there are computer simulation programmes to derive the required statistics but such programmes may not be commonly available;

c) that computer simulations can be used to provide a large amount of statistics with good accuracy, but they may need expertise in their use and may require considerable time to run;

d) that in some cases analytical methods may be time saving and need less sophisticated means for calculation of limited amount of statistics,

recommends

1 that the analytical methodology given in Annex 1 can be used to obtain statistics for interference and sharing studies between non-GSO stations and other stations. (The term “probability” is not used in the strict mathematical sense. It signifies “percentage of time”.)

NOTE 1 – The methodology can be used for interference calculations between non-GSO feeder links and GSO stations. They can also be applied to any case where one antenna is pointing to a fixed direction and the other is either on board a non-GSO satellite, or is tracking the non-GSO satellite.

NOTE 2 – The methodology gives an average value for a non-synchronous satellite constellation. It is applicable also for a synchronous orbit constellation (satellite tracks are repeating after a certain period of time) if there are several satellite tracks through the area of interest.

NOTE 3 – The limitations of the methodology described in Annex 1 have to be taken into account.

ANNEX 1

Appendix 1 gives a method to define an area for which the probability that a satellite falls within the area to be calculated.

Appendix 2 gives the method to calculate the probability.

Appendix 3 gives the derivation of the formulae used in Appendix 2.
Calculation of the needed discrimination angle for a given interference level

The case considered here is non-GSO/GSO sharing.

The area is defined for interference:

a) from non-GSO earth station to GSO satellite;

b) from non-GSO satellite to GSO earth station;

c) from GSO earth station to non-GSO satellite;

d) from GSO satellite to NGSO earth station.

In the following equations:

- \(\varepsilon \) : elevation angle of a satellite from a station
- \(r \) : earth radius = 6 376 km
- \(H \) : altitude of the GEO satellite (km)
- \(h \) : altitude of the non-GSO satellite (km)
- \(d_I \) : distance from the interference source to the interfered receiver (km)
- \(d_N \) : distance to the non-GSO satellite from a station (km)
- \(d_G \) : distance to the GSO satellite from a station (km)
- \(f \) : frequency (GHz)
- \(E \) : e.i.r.p. spectral density (dB(W/Hz))
- \(N_0 \) : noise spectral density (dB(W/Hz))
- \(G(\varphi) \) : antenna gain to the direction \(\varphi \) (degrees) from the main beam axis (dB)
- \(G \) : antenna on-axis gain (dB)

Suffix \(G \) refers to the GSO network

Suffix \(N \) refers to the non-GSO network

Suffix \(E \) refers to an earth station

Suffix \(S \) refers to a satellite

Suffix \(T \) refers to transmitting parameter

Suffix \(R \) refers to receiving parameter

\(PR \) : protection ratio

Distances to a non-GSO and GSO satellite from a station for the in-line case are:

\[
d_N = \sqrt{r^2 \sin^2 \varepsilon + 2r h + h^2} - r \sin \varepsilon \quad (1)
\]

\[
d_G = \sqrt{r^2 \sin^2 \varepsilon + 2r H + H^2} - r \sin \varepsilon \quad (2)
\]
C₀/I₀ method

\[
(C_0/I_0)_{in-line} = E_{GE} - E_{NE}
\]

for case a) \hspace{1cm} (3)

\[
(C_0/I_0)_{in-line} = E_{GS} - E_{NS} - 20 \log d_G + 20 \log d_N
\]

for case b) \hspace{1cm} (4)

\[
(C_0/I_0)_{in-line} = E_{NE} - E_{GE}
\]

for case c) \hspace{1cm} (5)

\[
(C_0/I_0)_{in-line} = E_{NS} - E_{GS} - 20 \log d_N + 20 \log d_G
\]

for case d) \hspace{1cm} (6)

The GSO and non-GSO earth stations should be either co-located or, in cases a) and d), the GSO satellite antenna discrimination has to be taken into account, and in cases b) and c) the non-GSO satellite antenna discrimination has to be taken into account.

The required antenna discrimination for a non-GSO earth station, in cases a) and d), and for a GSO earth station in cases b) and c), is:

\[
G - G(\phi) = (C_0/I_0)_{in-line} - PR
\]

To calculate the required avoidance angle \(\phi\), the appropriate antenna gain patterns has to be used. For GSO earth stations the side lobe pattern used in equation (8) is given in Recommendation ITU-R S.580. Avoidance angle at side lobe area is:

\[
\phi = 10^{(29 - G(\phi))/25}
\]

For the main beam area, the discrimination angle may be calculated by:

\[
\phi = \phi_0 \sqrt{\frac{G - G(\phi)}{12}}
\]

In case b) the distance from the non-GSO satellite to the GSO earth station changes as the satellite moves on its orbit. For small values of \(\phi\) and for high elevation angles \(\varepsilon\) it need not be taken into account but in other cases the distance \(d_N\) has to be calculated separately for the highest elevation \((\varepsilon + \phi)\) and for the lowest elevation \((\varepsilon - \phi)\) and the new values have to be used in equation (2).

For calculations in Appendices 2 and 3 the angle \(\phi\) is the radius of the area for which the probability is to be calculated. For the calculation of statistics \(\varepsilon_1 = \varepsilon - \phi/2\) and \(\varepsilon_2 = \varepsilon + \phi/2\).

I₀/N₀ method

To calculate the required avoidance angle \(\phi\) for the case based on \(I_0/N_0\) requirement, the following equations are used:

\[
G - G(\phi) = (I_0/N_0)_{in-line} - (I_0/N_0)_{required}
\]

(10)
\[\frac{I_0}{N_0} \text{ for the in-line case can be calculated by:} \]
\[(I_0/N_0)_{\text{in-line}} = E - N_0 - 20 \log d_I - 20 \log f - 92.5 \]
(11)

where:

- \(E \): e.i.r.p. of the interfering transmitter
- \(N_0 \): noise spectral density of the wanted receiving system.

APPENDIX 2

TO ANNEX 1

Calculation of in-area statistics for non-GSO satellites

1 **Introduction**

The method given in this Appendix can be used in calculating the probability to find a satellite of a constellation in a circular or rectangular area (azimuth/elevation or latitude/longitude). A circular area may be for example a radio-relay link or satellite earth station antenna main beam or side lobe area. If the area is based on an offset angle where certain interference level is achieved, the result is the probability that a given interference level is exceeded. The method can be used to calculate the interference between non-GSO and GSO networks. The method can also be used in calculating the probability of interference between a non-GSO earth station and a receiving fixed satellite station or fixed satellite service (FSS) earth station. The calculation uses the discrimination angle to define an area where the permissible interference level is exceeded.

The method can be used for any observation point (e.g. earth station) latitude and for any satellite altitude, inclination, azimuth and elevation, but only in the case that the satellite may be visible in the defined area. (See § 5.)

2 **Symbols used (in Appendix 2 and Appendix 3)**

- \(T_s \): Satellite orbital period (min)
- \(T_e \): Earth rotation time (min)
- \(L_0 \): Latitude of the observation point (rad)
- \(L \): Latitude of the area (rad)
- \(l_m \): Medium length of the tracks through a circle
- \(b \): Length of the area in longitudinal direction (rad)
- \(i \): Inclination of satellite orbit (rad)
- \(r_c \): Radius of the circular area (rad)
- \(\alpha \): Angle between ground track and latitude line (rad)
- \(A \): Area on a spherical surface (sterad)
- \(A_c \): Area of a circle on a spherical surface (sterad)
- \(P_h \): Probability to hit the area (one satellite calculation)
- \(P_I \): Probability to be inside the area if hit during the revolution (one satellite calculation)
3 Calculation of probability

The following formulae are a collection of those in Appendix 3 and given here are only those which are needed for the probability calculation. The numbering of formulae is the same as in Appendix 3, explanation is given for the calculated parameters.

\[k = \frac{r}{r + h} \quad (21) \]

\[\theta_{\varepsilon 1} = \pi - \gamma - (\pi/2 + \varepsilon_1) = \arccos(k \cos \varepsilon_1) - \varepsilon_1 \quad (22) \]

\[\theta_{\varepsilon 2} = \pi - \gamma - (\pi/2 + \varepsilon_2) = \arccos(k \cos \varepsilon_2) - \varepsilon_2 \quad (22) \]

\[\Delta \theta_\varepsilon = \theta_{\varepsilon 2} - \theta_{\varepsilon 1} \quad (23) \]

\[\theta_\varepsilon = \frac{\theta_{\varepsilon 1} + \theta_{\varepsilon 2}}{2} \quad (24) \]

\[\Delta \theta_\beta = 2 \arctan \left(\frac{\tan (\beta/2)}{\cos \varepsilon} \right) \sin \theta_\varepsilon \quad (25) \]

\[L = \arcsin \left(\cos \theta_\varepsilon \cdot \sin L_0 + \sin \theta_\varepsilon \cdot \cos L_0 \cdot \cos \Lambda \right) \quad (27) \]

\[\alpha = \arccos \left(\frac{\cos i}{\cos L} \right) \quad (15) \]

\[P = \frac{A}{2\pi^2} \frac{1}{\sin \alpha} \frac{1}{\cos L} \quad (19a) \]

\[P_c = N \cdot P \]
For a circular area:

\[A = A_c \]

\[A_c = \frac{\pi}{4} \Delta \theta_e \Delta \theta_\beta \]

For a rectangular area:

\[A = \beta (\varepsilon_2 - \varepsilon_1) \quad (26) \]

APPENDIX 3* TO ANNEX 1

Derivation of the formulae given in Appendix 2

1 Probability that a satellite is in a given area

Figure 1 shows a non-GSO satellite orbit around the Earth. A simple case is the orbit over the poles. If the satellite is projected on the Earth surface, ground tracks are created. If the Earth would be stationary, there would be only one track over the poles. However, as the Earth rotates during the time it takes the satellite to make one revolution, the next ground track will be shifted by a longitude difference equal to:

\[T_s / T_e = 2\pi \quad (12) \]

Figure 1 shows several tracks over a longer period of time. The rectangular area is an area for which the probability is to be calculated. The probability that the satellite hits the area is the portion of length 2 \(b \) from the whole length of the shadowed band around the Earth (see Fig. 1). The multiple 2 takes into account the fact that the satellite crosses the band twice during one revolution around the Earth. The length of the band is \(2\pi \cos L \) and the probability to hit a rectangular area as in Fig. 2 is:

\[P_h = \frac{b}{\pi} \frac{1}{\cos L} \quad (13) \]

In this equation, the value of \(b \) is in radians and it is the actual length expressed as a geocentric angle. If the longitude difference is used, then:

\[b = (\text{Longitude difference}) \times \cos L \quad (13a) \]

It should be noted that the area used in calculations is the area at the satellite orbit shell. For a circular antenna beam that area is an ellipsoid whose major axis is in elevation direction. The latitude \(L \) used in calculations is not the station latitude but the latitude of a point from the orbit shell projected to the Earth surface. In this case, the projected point is the centre of the area.

For a common case, when the satellite orbit inclination is different than 90°, the probability of a satellite to be inside the defined area is the probability to hit the area multiplied by the medium length of the tracks inside the area and divided by the length of one revolution. The probability to hit the area is dependent on the length of its projection on a latitude line crossing the middle of the area. The projection is made parallel to the ground tracks. Calculations are here presented for a circular area case, because it is more illustrative.

* The symbols used in this Appendix are given in § 2 of Appendix 2.
According to Fig. 2, the length of b is:

$$b = \frac{2r_c}{\sin \alpha} \quad (14)$$

$$\alpha = \arccos \frac{\cos i}{\cos L} \quad (15)$$

Angle α is the angle between the satellite track and latitude line.

The rotation speed of the Earth does not need to be taken into account in the probability calculation, but it should be taken into account if the real angle, in relation to the rotating Earth, is needed.

The average length of a large number of equally spaced paths traversing a circle is:

$$l_m = \frac{\pi r_c}{2} \quad (16)$$

If the satellite hits the area during one revolution, the probability that it is inside the area is the length of the track inside the area divided by the length of one revolution.

$$P_i = \frac{l_m}{2\pi} = \frac{r_c}{4} \quad (17)$$

The total probability is then:

$$P = P_h P_i = \frac{r_c}{\pi} \frac{1}{\sin \alpha} \frac{1}{\cos L} \frac{r_c}{2} \quad (18)$$

From that follows:

$$P = \frac{A_c}{2\pi^2} \frac{1}{\sin \alpha} \frac{1}{\cos L} \quad (19a)$$

$$P = \frac{A_c}{2\pi^2} \frac{1}{\sqrt{\sin^2 i - \sin^2 L}} \quad (19b)$$

Part of the area may be under the horizon as in the case of the radio-relay link antenna. In that case, only the area above the horizon is used.

The last part of equation (19b) may be taken to be a conversion factor:

$$c = \frac{1}{\sqrt{\sin^2 i - \sin^2 L}} \quad (19c)$$

Values of this factor are given in Fig. 5.

Other calculation or simulation results may be converted to other latitudes and inclinations for the same satellite altitude by using conversion factor:

$$c_{21} = \frac{\sqrt{\sin^2 i_1 - \sin^2 L_1}}{\sqrt{\sin^2 i_2 - \sin^2 L_2}} = \frac{c_2}{c_1} \quad (19d)$$

The rotation speed of the Earth does not need to be taken into account for the probability calculation but if the time the satellite is inside an area is to be calculated, the vector sum of the satellite speed and the local Earth speed should be used.

It can be shown that the result is independent of the shape of the area A, which in the case of a circle is πr^2. For a rectangular area (azimuth, elevation) the area is:

$$A = \beta (\varepsilon_2 - \varepsilon_1)$$
2 Calculation of the area

In the following, the area which has been defined by elevation and azimuth values is projected onto the spherical orbit shell of the satellite. From the triangle in Fig. 3:

\[
\frac{\sin (\varepsilon + \pi/2)}{r + h} = \frac{\sin \gamma}{r}
\]

(20)

\[
k = \frac{r}{r + h}
\]

(21)

\[
\theta_\varepsilon = \pi - \gamma (\pi/2 + \varepsilon) = \arccos (k \cos \varepsilon) - \varepsilon
\]

(22)

The angle is calculated separately for the highest point of the area, \(\theta_\varepsilon^2\), and for the lowest point of the area, \(\theta_\varepsilon^1\). The geocentric angle between these two points, corresponding to the “height” of the area, is thus:

\[
\Delta \theta_\varepsilon = \theta_\varepsilon^2 - \theta_\varepsilon^1
\]

(23)

In Fig. 4 the distance from the observation point, O, to the orbit shell changes only slowly with the azimuth angle and may be taken to be constant. The geocentric angle corresponding to the “width” of the area can then be calculated by:

\[
\bar{\theta}_\varepsilon = \frac{\theta_\varepsilon^1 + \theta_\varepsilon^2}{2}
\]

(24)

\[
\Delta \theta_\beta = 2 \arctan \left(\frac{\tan (\beta/2) \sin \theta_\varepsilon}{\cos \varepsilon} \right)
\]

(25)

The values \(\Delta \theta_\varepsilon\) and \(\Delta \theta_\beta\) are used to calculate the area \(A\). For an antenna beam, which is circular, the area on the orbit shell is an ellipsoid and:

\[
A_c = \frac{\pi}{4} \Delta \theta_\varepsilon \Delta \theta_\beta
\]

(26)

The latitude of the centre of the area is given by:

\[
L = \arcsin (\cos \theta_\varepsilon \sin L_0 + \sin \theta_\varepsilon \cos L_0 \cos \lambda)
\]

(27)

It should be checked that no parts of the area have higher latitudes than the inclination of the orbit, since no satellite would pass through those parts.

3 Simulation programme

A simulation programme was used to verify the results. The programme can make a simulation of one satellite on a true circular or elliptical orbit, taking into account also the ascending node drift. The programme uses small time steps to calculate the satellite’s longitude on its orbit. For every point, the subsatellite point longitude and latitude are calculated and they are converted to azimuth and elevation angles. Step size is given as a geocentric angle. For a circular orbit any step size can be given, but for an elliptical orbit the minimum value is 0.1°. The step used in verification of circular orbits was 0.01°, which corresponds 0.2 s to some low orbits. In case of smaller time percentages the step size was reduced to 0.02 s.

The size and location of an area, which can be circular or rectangular, can be defined in an elevation-azimuth scale. The simulation programme creates a log of entering and leaving the area and calculates the total time inside the area. Proper step size and number of tracks inside the area can be checked from the graphical display.
FIGURE 1
Tracks of polar orbit satellite
(Rectangular area for calculation)

FIGURE 2
Length b of a circular
area projection on latitude line

FIGURE 3
Angles in elevation direction

FIGURE 4
Angles for azimuthal movement
of satellite

O: observation point
S: satellite
4 Verification of the formulae

For verification purposes, in the simulation the Earth rotation was stopped in the programme and the drift of the ascending node was set to an artificial value of 0.06°/rotation or smaller, so that there was at least 20 tracks through the area. The step size was 0.01°. For Table 1 these values correspond to a simulation of about 450 days and 216000 000 satellite positions.

Table 1 makes comparison of calculated and simulated values for two FSS earth station latitudes and several antenna elevations and azimuths, which are all towards the GSO. The earth station beamwidth is 2°. The satellite constellation has 48 satellites, orbit altitude is 1 406.8 km and inclination 52°.

<table>
<thead>
<tr>
<th>FSS earth station latitude (degrees)</th>
<th>Earth station antenna elevation angle (degrees)</th>
<th>Earth station antenna azimuth (degrees)</th>
<th>Probability for the whole constellation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.0</td>
<td>103.0</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>19.9</td>
<td>129.4</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>32.6</td>
<td>176.7</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>21.4</td>
<td>227.6</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>257.0</td>
<td>0.219</td>
</tr>
<tr>
<td>10</td>
<td>3.6</td>
<td>92.2</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>24.5</td>
<td>96.4</td>
<td>0.0479</td>
</tr>
<tr>
<td></td>
<td>67.0</td>
<td>119.6</td>
<td>0.0115</td>
</tr>
<tr>
<td></td>
<td>63.9</td>
<td>244.5</td>
<td>0.0123</td>
</tr>
<tr>
<td></td>
<td>26.6</td>
<td>263.1</td>
<td>0.0433</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>268.1</td>
<td>0.155</td>
</tr>
</tbody>
</table>

In Table 2, values are presented for cases where the calculation method would be more inaccurate because of the low altitude of the satellite and because of the latitude of the station and more difficult azimuth angles. Satellite orbit is circular, altitude 780 km, inclination 86° and number of satellites 66. The area is circular and its diameter is 2°.

<table>
<thead>
<tr>
<th>Station latitude (degrees)</th>
<th>Antenna elevation angle (degrees)</th>
<th>Antenna azimuth (degrees)</th>
<th>Probability for the whole constellation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1</td>
<td>65.5</td>
<td>0.277</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>45</td>
<td>0.381</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>10</td>
<td>1.683</td>
</tr>
<tr>
<td>60</td>
<td>41</td>
<td>10</td>
<td>0.0267</td>
</tr>
</tbody>
</table>
In Table 3 the same satellite as in Table 2 is used to show the calculation accuracy as the diameter of the circular area is increased. The station latitude and its elevation and azimuth angles are selected to that the projected latitude of the centre of the area at the orbit shell is about 60°, and the satellite motion is approximately parallel with the major axis of the ellipse formed by the intersection of the circular area with the orbit shell.

Tableau 3

<table>
<thead>
<tr>
<th>Earth station latitude (degrees)</th>
<th>Antenna elevation angle (degrees)</th>
<th>Antenna azimuth (degrees)</th>
<th>Diameter of area (degrees)</th>
<th>Probability for the whole constellation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simulation</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>0.217</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5.660</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>15.236</td>
</tr>
</tbody>
</table>

The following calculations and simulations were made to test how the time percentage changes if the earth station is at 65° latitude and the azimuth is near the highest latitude of the satellite orbit. Satellite was at 1 406.85 km altitude, inclination 52°. The area used was circular, diameter 2° and elevation angle 1°.

Table 4

<table>
<thead>
<tr>
<th>Station latitude (degrees)</th>
<th>Azimuth (degrees)</th>
<th>Area latitude (degrees)</th>
<th>Probability for the whole constellation (1000%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Simulation</td>
</tr>
<tr>
<td>0</td>
<td>90</td>
<td>0</td>
<td>3.36</td>
</tr>
<tr>
<td>65</td>
<td>180</td>
<td>31</td>
<td>4.43</td>
</tr>
<tr>
<td>65</td>
<td>83</td>
<td>51.27</td>
<td>29.58</td>
</tr>
<tr>
<td>65</td>
<td>86</td>
<td>50.15</td>
<td>15.18</td>
</tr>
<tr>
<td>65</td>
<td>90</td>
<td>48.7</td>
<td>11.2</td>
</tr>
</tbody>
</table>

It can be concluded that the formulae give a good accuracy if the latitudes of the area are at least a few degrees less than the orbit inclination. In practice it means that the slope of the curves in Fig. 5 should not change considerably inside the area.

Another conclusion is that with increasing subsatellite point latitude the probability increases. For one specific case in Table 4 the probability was 8.8 times higher than at the Equator.

Examples of statistics for LEO-F for a particular case are given in Figs. 7a and 7b. They are results of simulations and show the probability dependence on antenna azimuth and elevation.

5 Visibility and worst-case azimuth

Figures 6a) and 6b) are results from computer simulations. They show satellite positions in simulation time steps. The figures show the areas where satellites are not visible. In such areas the equation (19a) is not applicable and the probability is zero. The same areas can be found in Figs. 7a and 7b which represent results from a computer simulation of LEO-F for a particular case.
FIGURE 5
Conversion factors for different area latitudes and inclinations

\[c = \frac{1}{\sqrt{\sin^2 i - \sin^2 L}} \quad \text{(Equation (19c))} \]

From equations it can be concluded that at a given elevation angle if:

a) \(i < |L_0| - \theta_\epsilon \) a satellite will not be visible at any azimuth;

b) \(i \geq |L_0| + \theta_\epsilon \) a satellite will be visible at all azimuths;

c) \(|L_0| - \theta_\epsilon \leq i < |L_0| + \theta_\epsilon \) a satellite will be visible at some but not all azimuths.

In case a) the probability \(P \) is zero for all azimuths and equation (19a) does not apply. In case b) the probability \(P \) is highest at either 0° or 180° azimuth, respectively at the northern or southern hemisphere. In case c) the highest probability occurs at the point where the subsatellite latitude \(L = \pm i \) and the probability does not depend on the latitude of the station.

The azimuths where the probability is highest are called worst-case azimuths.

In the case of a zero area size, the corresponding worst-case azimuths are:

\[\Lambda_1 = \arccos \left(\frac{\sin i - \cos \theta_\epsilon \sin L_0}{\sin \theta_\epsilon \cos L_0} \right) \quad \text{(28a)} \]

\[\Lambda_2 = 2\pi - \Lambda_1 \quad \text{(28b)} \]

\[\Lambda_3 = \arccos \left(\frac{-\sin i - \cos \theta_\epsilon \sin L_0}{\sin \theta_\epsilon \cos L_0} \right) \quad \text{(29a)} \]

\[\Lambda_4 = 2\pi - \Lambda_3 \quad \text{(29b)} \]
FIGURE 6
Two typical sky coverages for non-GSO satellite

a)

b)
FIGURE 7a
In-line statistics for different pointing directions:
case LEO-F, $\theta = 0^\circ$, beam side = 3°
FIGURE 7b
Topographical view of in-line statistics for different pointing directions:
case LEO-F, $L_0 = 0^\circ$, beam side = 3°
The azimuths from equations (28) and (29) are symmetrical with respect to the north ($\Lambda = 0^\circ$) and the south ($\Lambda = 180^\circ$) and depend only on parameters L_0, ε, h and i.

These worst-case azimuths exist on the condition that the arc cos x function exists. It exists if the argument $|x| \leq 1$ and thus the azimuths exist if:

for equation (28a):

$$\sin i \leq \sin (L_0 + \theta_\varepsilon) \quad \text{and} \quad \sin i \geq \sin (L_0 - \theta_\varepsilon)$$

(30a)

for equation (29a):

$$-\sin i \leq \sin (L_0 + \theta_\varepsilon) \quad \text{and} \quad -\sin i \geq \sin (L_0 - \theta_\varepsilon)$$

(30b)

If for a given elevation angle ε the condition of equation (30a) is not met, then equations (28) do not apply and give no worst-case azimuth. The same applies to equation (30b) and equations (29). Either equation, (28) or (29), may apply independently. If in equation (30a) or (30b) the inequality applies, then the equation (28) or correspondingly equation (29) gives two maxima. If equality applies, the corresponding equation gives one maximum. Even if one of the equations (28) or (29) does not apply there may be a lower maximum at 0° or 180° azimuth.

It should be noted that equations (28) give accurate worst-case azimuths only for an interested area size of zero. For a practical case, as for a satellite earth station antenna beam, the exact value of worst-case azimuth depends e.g. on the beamwidth of the terrestrial station antenna, but the equations give an estimate which normally does not deviate more than about half of the beamwidth from the real worst-case azimuth. No exact relationship between the beamwidth and worst-case azimuth has been presented. Further, in practical case the maximums may be of different amplitude depending on the beamwidth.

6 Conclusion

From the above Tables it can be concluded that the calculation method in this Recommendation gives results which are accurate enough for most of the practical cases. Even if it is not tested here, the method may be expected to be inaccurate near the highest and the lowest latitudes of a satellite orbit. This is basically related to the fact that some parts of the area may be outside of the visibility of the satellite.