Рекомендации

Рекомендация MCЭ-R RS.2105-3 (06/2025)

Серия RS: Системы дистанционного зондирования

Типовые технические и эксплуатационные характеристики систем спутниковой службы исследования Земли (активной), использующих распределения между 40 МГц и 238 ГГц

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Резолюции МСЭ-R 1. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: https://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

	Серии Рекомендаций МСЭ-R
	(Представлены также в онлайновой форме по адресу: https://www.itu.int/publ/R-REC/ru .)
Серия	Название
ВО	Спутниковое радиовещание
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения
BS	Радиовещательная служба (звуковая)
BT	Радиовещательная служба (телевизионная)
F	Фиксированная служба
M	Подвижные службы, служба радиоопределения, любительская служба и относящиеся к ним спутниковые службы
P	Распространение радиоволн
RA	Радиоастрономия
RS	Системы дистанционного зондирования
S	Фиксированная спутниковая служба
SA	Космические применения и метеорология
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы
SM	Управление использованием спектра
SNG	Спутниковый сбор новостей
TF	Передача сигналов времени и эталонных частот
V	Словарь и связанные с ним вопросы

Примечание. — Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции МСЭ-R 1.

Электронная публикация Женева, 2025 г.

© ITU 2025

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ МСЭ-R RS.2105-3

Типовые технические и эксплуатационные характеристики систем спутниковой службы исследования Земли (активной), использующих распределения между 40 МГц и 238 ГГц

(2017-2021-2023-2025)

Сфера применения

В настоящей Рекомендации представлены типовые технические и эксплуатационные характеристики систем спутниковой службы исследования Земли (активной), использующих распределения между 40 МГц и 238 ГГц, для применения в исследованиях совместного использования частот и совместимости.

Ключевые слова

Спутниковая служба исследования Земли (ССИЗ (активная)), дистанционное зондирование, формирователь изображения радара с синтезированной апертурой (РСА), высотомер, радар контроля осадков, рефлектометры, радар профилирования облачности.

Сокращения/глоссарий

ARNS	Aeronautical radionavigation service	ВРНС	Воздушная радионавигационная служба
CPR	Cloud profile radar		Радар профилирования облачности
EESS	Earth exploration-satellite service	ССИ3	Спутниковая служба исследования Земли
e.i.r.p.	Effective isotropically radiated power	э.и.и.м.	Эквивалентная изотропно излучаемая мощность
FM	Frequency modulation	ЧМ	Частотная модуляция
GPR	Ground-penetrating radar		Радар подземного зондирования
IFOV	Instantaneous field of view		Мгновенное поле обзора
LFM	Linear FM	ЛЧМ	Линейная частотная модуляция
LHCP	Left hand circular	ЛСКП	Левосторонняя круговая поляризация
LRM	Low resolution mode		Режим низкого разрешения
LST	Local solar time		Местное солнечное время
Non-GSO	Non-geostationary satellite orbit	НГСО	Негеостационарная спутниковая орбита
NSS	Non-sun-synchronous	HCC	Несолнечно-синхронная
pfd	Power flux-density	п.п.м.	Плотность потока мощности
PRF	Pulse Repetition Frequency		Частота повторения импульсов
RF	Radio frequency	РЧ	Радиочастота
RHCP	Right hand circular	ПСКП	Правосторонняя круговая поляризация
SAR	Synthetic aperture radar	PCA	Радар с синтезированной апертурой
SRS	Space research service	СКИ	Служба космических исследований
SSO	Sun-synchronous	CCO	Солнечно-синхронная орбита
SWE	Snow water equivalent		Водный эквивалент снега

Ассамблея радиосвязи МСЭ,

учитывая,

- *a)* что системы наблюдения спутниковой службы исследования Земли (ССИЗ) (активной) могут принимать излучения от активных служб;
- *b)* что в определенных полосах ССИЗ (активной) частоты распределены для совместного использования с другими активными службами;
- *c)* что в рамках МСЭ-R проводятся исследования, касающиеся защиты систем ССИЗ (активной) и защиты от таких систем;
- *d)* что для проведения исследований по совместимости и совместному использованию частот с системами ССИЗ (активной) должны быть известны технические и эксплуатационные характеристики этих систем,

признавая,

- a) что в Рекомендации МСЭ-R RS.577 приводятся данные о ширине полос для систем активных датчиков, которые предполагается использовать в распределенных полосах частот между 40 МГц и 238 ГГц;
- *b)* что в ряде Рекомендаций и Отчетов МСЭ-R приводятся данные о текущих и будущих характеристиках систем ССИЗ (активной), работающих в нескольких полосах частот (см. таблицу 2 Приложения),

рекомендует

в исследованиях, касающихся систем ССИЗ (активной), которые используют распределения между 40 МГц и 238 ГГц, учитывать технические и эксплуатационные параметры, представленные в Приложении к данной Рекомендации.

Приложение

Типовые технические и эксплуатационные параметры систем спутниковой службы исследования Земли (активной), использующих распределения между 40 МГц и 238 ГГц

СОДЕРЖАНИЕ

		Стр.
Прил	ложение – Типовые технические и эксплуатационные параметры систем спутниковой службы исследования Земли (активной), использующих распределения между 40 МГц и 238 ГГц	2
1	Введение	4
2	Типы активных датчиков и их типовые характеристики	4
3	Типовые орбиты	6
4	Критерии качества и помехоустойчивости активных датчиков	6
5	Вопросы совместного использования частот активными датчиками	6

5.1	Существующие Рекомендации и Отчеты МСЭ-R
5.2	Уровни плотности потока мощности излучений активных бортовых космических датчиков
5.3	Динамические характеристики связи между антеннами датчиков и систем других служб
Опре,	деления параметров
Параг	метры стандартных систем
7.1	Типовые параметры активных датчиков, работающих в полосе частот 40–50 МГц
7.2	Типовые параметры активных датчиков, работающих в полосе частот 432–438 МГц
7.3	Типовые параметры активных датчиков, работающих в полосе частот 1215–1300 МГц
7.4	Типовые параметры активных датчиков, работающих в полосе частот 3100–3300 МГц
7.5	Типовые параметры активных датчиков, работающих в полосе частот 5250–5570 МГц
7.6	Типовые параметры активных датчиков, работающих в полосе частот 8550–8650 МГц
7.7	Типовые параметры активных датчиков, работающих в полосе частот 9200–10 400 МГц
7.8	Типовые параметры активных датчиков, работающих в полосе частот 13,25–13,75 ГГц
7.9	Типовые параметры активных датчиков, работающих в полосе частот 17,2–17,3 ГГц
7.10	Типовые параметры активных датчиков, работающих в полосе частот 24,05–24,25 ГГц
7.11	Типовые параметры активных датчиков, работающих в полосе частот 35,5–36,0 ГГц
7.12	Типовые параметры активных датчиков, работающих в полосе частот 78–79 ГГц
7.13	Типовые параметры активных датчиков, работающих в полосе частот 94–94,1 ГГц
7.14	Типовые параметры активных датчиков, работающих в полосе частот 133,5–134 ГГц
7.15	Типовые параметры активных датчиков, работающих в полосе частот 237,9–238 ГГц

1 Введение

При дистанционном зондировании Земли и ее атмосферы при помощи спутников исследования Земли и метеорологических спутников в определенных полосах частот, распределенных спутниковой службе исследования Земли (ССИЗ) (активной), применяются активные датчики. Данные, полученные этими активными датчиками, широко применяются в метеорологии, климатологии и других отраслях науки для целей эксплуатации и в научных целях.

Технические и эксплуатационные параметры, представленные в настоящей Рекомендации, следует учитывать в исследованиях, касающихся систем ССИЗ (активной), которые используют распределения между 40 МГц и 238 ГГц. Однако необходимо отметить, что некоторые системы ССИЗ (активной) находятся сейчас в стадии разработки, и приведенные здесь типовые значения определенных параметров следует считать предварительными, так как они могут измениться.

2 Типы активных датчиков и их типовые характеристики

В настоящей Рекомендации рассматривается шесть типов активных бортовых космических датчиков.

- Тип 1. Радиолокационные зонды датчики, ориентированные на надир, использующие более низкие центральные частоты для применений радаров подземного зондирования (GPR), которые измеряют радиолокационный сигнал, отраженный от поверхности Земли и ее подповерхностных слоев, для идентификации и описания подземных объектов, таких как водоносные горизонты и ледниковые щиты.
- Тип 2. Формирователи изображения радаров с синтезированной апертурой (PCA) датчики, ориентированные по одну сторону от траектории надира и собирающие данные об изменении по фазе и во времени когерентного радиолокационного эхосигнала, на основе которых можно получить радиолокационный снимок поверхности Земли или ее топографическое изображение по данным интерферометрии.
- Тип 3. Рефлектометры датчики, ориентированные под различными углами обзора относительно траектории надира и измеряющие изменение мощности эхосигнала в зависимости от угла ориентации для определения шероховатости земной поверхности или направления и скорости ветра над поверхностью мирового океана.
- Тип 4. Высотомеры датчики, ориентированные на надир, которые измеряют точное время между событием передачи сигнала и событием его приема для получения точных данных о высоте уровня мирового океана.
- Тип 5. Радары контроля осадков датчики, сканирующие перпендикулярно траектории надира и измеряющие радиолокационный эхосигнал от дождевых осадков для определения их интенсивности над поверхностью Земли и трехмерной структуры таких осадков.
- Тип 6. Радары профилирования облачности датчики, ориентированные на надир и измеряющие радиолокационный эхосигнал от облаков для определения профиля отражательной способности облаков над поверхностью Земли.

Некоторые типовые характеристики активных бортовых космических датчиков приведены ниже в таблице 1. Фактические характеристики систем, работающих в полосах частот, которые указаны в пункте 7 настоящей Рекомендации, могут существенно отличаться от типовых, приведенных в таблице 1.

ТАБЛИЦА 1 Типовые характеристики активных бортовых космических датчиков

	Тип датчика							
Характеристика	Радиолока- ционный зонд	Формирователь изображения РСА	Высотомер	Рефлектометр	Радар контроля осадков	Радар профилирования облачности		
Зона обслуживания	Суша/ ледовый покров	Суша/ прибрежные районы/ океан	Океан/ ледовый покров/суша/ прибрежные районы	Океан/ ледовый покров/ прибрежные районы/ внутренние воды	Суша/океан	Суша/океан		
Тип луча антенны	Широкий луч	Веерный, иглообразный	Веерные лучиИглообразные лучи	Иглообразный	Иглообраз- ный	Иглообразный		
Геометрические характеристики обзора	Обзор в надир	Боковой обзор под углом 10°-60° к надиру	Три или шесть веерных лучей по азимуту Один или несколько лучей с коническим сканированием	 Обзор в надир Обзор под нескольким и углами падения 	Сканиро- вание перпенди- кулярно траектории надира	Обзор в надир		
Зона луча/ динамика обзора	Фиксиро- ванная в точке надира	Фиксированная относительно одной стороны Сканирование по углу места (ScanSAR) Полосовой обзор Точечная	 Фикси- рованная в пределах азимута Несколько лучей с коническим сканирова- нием 	 Фикси- рованная в точке надира Обзор под нескольким и углами падения 	Сканиро- вание поперек траектории от надира	Фиксированная в точке надира		
Ширина полосы РЧ	10 МГц	≤ 10−1 200 MΓц	5–80 кГц (океан) или 1–4 МГц (суша)	320-500 МГц	14 МГц	300 кГц		
Пиковая мощность передаваемого сигнала, Вт	100	1 500–16 000	100–5 000	20	600	1 000–1 500		
Форма сигнала	Линейные ЧМ- импульсы	Линейные ЧМ-импульсы	Прерывистое ЧМ-излучение или короткие импульсы (океан) или линейные ЧМ-импульсы (суша)	Линейные ЧМ-импульсы	Короткие импульсы	Короткие импульсы		
Коэффициент заполнения передаваемого сигнала, %	10,2	1–30	31 (океан) или 10 (суша)	46	0,9	1–14		

3 Типовые орбиты

Системы ССИЗ (активной) работают на негеостационарных орбитах (НГСО). Обычно это круговые орбиты высотой от 350 до 1400 км. Часть систем ССИЗ (активной) работает на солнечно-синхронной орбите. Одни датчики используются для ежедневных измерений в одной и той же области Земли, а другие – для более редких наблюдений (обычно с периодом повторения более двух недель).

В определенных условиях в группировке работает несколько спутников. Спутниковая группировка ССИЗ дает возможность измерять различные характеристики системы Земли (суши, океана, атмосферы, криосферы и твердой оболочки Земли) с использованием множества приборов в различных ориентациях. Измерения, выполненные множеством космических аппаратов, будут отстоять друг от друга на временные промежутки, меньшие постоянной времени наблюдаемого явления. Обычно эти промежутки составляют порядка 5–15 минут, но в каких-то случаях могут равняться и нескольким секундам.

4 Критерии качества и помехоустойчивости активных датчиков

Критерии качества, помех и наличия данных для различных типов активных бортовых космических датчиков приводятся в Рекомендации МСЭ-R RS.1166. Критерии качества активных бортовых космических датчиков необходимы для разработки соответствующих критериев помех. Критерии помех в свою очередь могут использоваться при оценке совместимости с другими активными службами и активными датчиками, работающими в тех же полосах частот.

5 Вопросы совместного использования частот активными датчиками

5.1 Существующие Рекомендации и Отчеты МСЭ-R

Вопросам совместного использования частот активными бортовыми космическими датчиками ССИЗ (активной) и другими службами посвящены Рекомендации и Отчеты МСЭ-R, перечисленные в таблице 2. В этих Рекомендациях и Отчетах рассматриваются конкретные полосы или диапазоны частот, а также другие службы, работающие на этих частотах.

Вопросы совместного использования частот активными бортовыми космическими датчиками включают, среди прочего, уровень плотности потока мощности (п.п.м) и мощности принимаемой помехи на поверхности Земли, тип передаваемого РЧ-сигнала, динамические характеристики связи антенн с системами других служб и типы таких систем.

ТАБЛИЦА 2
Перечень документов МСЭ-R по вопросам совместного использования частот активными датчиками

Рекомендации				
МСЭ-R RS.1260	Возможность совместного использования частот активными датчиками на борту космических аппаратов и другими службами в диапазоне 420-470 МГц			
МСЭ-R RS.1261	Возможность совместного использования частот бортовыми спутниковыми радарами обнаружения облаков и другими службами в диапазоне 92–95 ГГц			
MCЭ-R RS.1280	Выбор характеристик излучения активного бортового спутникового датчика для уменьшения возможности создания помех наземным радиолокаторам, работающим в полосах частот 1–10 ГГц			
МСЭ-R RS.1281	Защита станций радиолокационной службы от излучений активных бортовых спутниковых датчиков в полосе частот 13,4–13,75 ГГц			
МСЭ-R RS.1282	Возможность совместного использования частот радиолокаторами ветрового профиля и активными бортовыми спутниковыми датчиками вблизи частоты 1260 МГц			

ТАБЛИЦА 2 (продолжение)

	Рекомендации
МСЭ-R RS.1347	Возможность совместного использования частот приемниками радионавигационной спутниковой службы и спутниковой службой исследования Земли (активной) и службой космических исследований (активной) в полосе частот 1215—1260 МГц
MCЭ-R RS.1628	Совместное использование полосы частот 35,5–36 ГГц спутниковой службой исследования Земли (активной) и службой космических исследований (активной) и другими службами, которым распределена эта полоса частот
MCЭ-R RS.1632	Совместное использование частот в полосе 5250—5350 МГц системами спутниковой службы исследования Земли (активной) и системами беспроводного доступа (включая локальные вычислительные радиосети) подвижной службы
MCЭ-R RS.1749	Метод подавления для облегчения использования полосы частот 1215—1300 МГц спутниковой службой исследования Земли (активной) и службой космических исследований (активной)
MCЭ-R RS.2042	Типовые технические и эксплуатационные характеристики систем бортовых космических радиолокационных зондов, использующих полосу 40–50 МГц
МСЭ-R RS.2043	Характеристики радаров с синтезированной апертурой, работающих в спутниковой службе исследования Земли (активной) в полосе около 9600 МГц
MCЭ-R RS.2065	Защита линий космос—Земля службы космических исследований (СКИ) в полосах 8400—8450 МГц и 8450—8500 МГц от нежелательных излучений радаров с синтезированной апертурой, работающих в спутниковой службе исследования Земли (активной) на частоте около 9600 МГц
MCЭ-R RS.2066	Защита радиоастрономической службы в полосе частот 10,6–10,7 ГГц от нежелательных излучений радаров с синтезированной апертурой, работающих в спутниковой службе исследования Земли (активной) на частоте около 9600 МГц
МСЭ-R RS.2068	Существующее и будущее использование диапазона около 13,5 ГГц активными бортовыми датчиками
MCЭ-R RS.2094	Исследования совместного использования частот спутниковой службой исследования Земли (активной) и службой радиоопределения, работающими в полосах частот 9300–9500 МГц и 9800–10 000 МГц, и совместного использования частот спутниковой службой исследования Земли (активной) и фиксированной службой в полосе частот 9800–10 000 МГц
MCЭ-R RS.2165	Оценка вероятности создания импульсных помех приемникам радионавигационной спутниковой службы со стороны планируемых и будущих бортовых космических радиолокационных датчиков с синтезированной апертурой, работающих в спутниковой службе исследования Земли (активной), в полосе частот 1215—1300 МГц
МСЭ-R RS.2178	Важная роль и общемировое значение использования радиочастотного спектра для наблюдения Земли и связанных с ним применений
	Отчеты
MCЭ-R RS.2273	Возможные помехи от рефлектометров ССИЗ (активной) системам ВРНС в полосе частот 1215–1300 МГц
МСЭ-R RS.2274	Потребности в спектре для применений бортовых радаров с синтезированной апертурой, планируемых в расширенном распределении спутниковой службе исследования Земли в диапазоне около 9600 МГц
MCЭ-R RS.2310	Уровни помех от систем радиолокационной службы приемникам активных датчиков спутниковой службы исследования Земли (активной) в полосе частот 35,5—36,0 ГГц для наихудшего случая при связи между антеннами через главные лепестки диаграммы направленности
МСЭ-R RS.2311	Измерение влияния импульсных радиочастотных сигналов систем спутниковой службы исследования Земли (активной) на системы и сети РНСС в полосе частот 1215—1300 МГц и возможные методы их ослабления

ТАБЛИЦА 2 (окончание)

	Отчеты
MCЭ-R RS.2313	Анализ совместного использования частот спутниковой службой исследования Земли (активной) для широкополосных передач и станциями службы радиоопределения, работающими в полосах частот 8700—9300 МГц и 9900—10 500 МГц
MCЭ-R RS.2314	Анализ совместного использования частот радарами с синтезированной апертурой спутниковой службы исследования Земли (активной) для широкополосных передач и станциями фиксированной, подвижной, любительской и любительской спутниковой служб, работающими в полосах частот 8700—9300 МГц и 9900—10 500 МГц
МСЭ-R RS.2536	Исследования совместного использования частот и совместимости, касающиеся радиолокационных зондов на борту космических станций в полосе частот 40–50 МГц
MCЭ-R RS.2537	Типовые технические характеристики бортовых космических радиолокационных датчиков с синтезированной апертурой, работающих в ССИЗ (активной), и приемных земных станций РНСС, а также общий аналитический метод, используемый для оценки вероятности создания импульсных радиочастотных помех приемным земным станциям РНСС в полосе частот 1215–1300 МГц

5.2 Уровни плотности потока мощности излучений активных бортовых космических датчиков

Характеристики различных типов активных бортовых космических датчиков, приведенные в таблице 1, показывают, что пиковая мощность передаваемого сигнала и, следовательно, уровни мощности на поверхности Земли могут варьироваться в широких пределах. В таблице 3 приведены уровни п.п.м. активных датчиков на поверхности Земли для некоторых типовых конфигураций таких датчиков.

ТАБЛИЦА 3 Типовые уровни п.п.м. на поверхности Земли

	Тип датчика						
Параметр	Радио- локационный зонд	Формиро- ватель изображения РСА	Высото- мер	Рефлекто- метр	Радар контроля осадков	Радар профилирования облачности	
Пиковая мощность передаваемого сигнала, Вт	100	1 500	20	100	578	630	
Усиление антенны, дБи	10	36,4	43,3	34	47,7	63,4	
Высота, км	400	695	1 344	1 145	350	400	
п.п.м., дБ(Вт/м²)	-93,03	-59,67	-77,25	-78,17	-46,55	-31,64	

5.3 Динамические характеристики связи между антеннами датчиков и систем других служб

Данные о геометрических характеристиках обзора, зоне луча и динамике обзора для активных датчиков приведены в таблице 1. Активные датчики всех шести типов монтируются на космических аппаратах рабочей поверхностью вниз – к поверхности Земли.

Угол обзора, то есть угол между надиром и осью луча, в случае PCA варьируется от 10 до 55°. У рефлектометров угол обзора составляет приблизительно 40° от надира.

Радиолокационные зонды, высотомеры, радары контроля осадков и радары профилирования облачности ориентированы на надир. Типовые наземные поисковые радиолокаторы работают в диапазоне малых углов места, поэтому они не имеют связи через главный лепесток с радиолокационными зондами, высотомерами, радарами контроля осадков или радарами профилирования облачности.

При движении космического аппарата по орбите лучи антенн его бортовых датчиков проходят в местах расположения наземных систем. При ширине луча датчика в 2° он проходит место расположения наземной системы примерно за 2-3 секунды. РСА, как правило, ведут обзор по одну сторону от траектории надира, либо под одним заданным углом, либо под различными углами (в режимах со сканированием по углу места). Рефлектометры либо фиксируются под различными азимутами, либо осуществляют коническое сканирование одним или несколькими лучами вокруг направления на надир. Луч датчика шириной в 2° при коническом сканировании на скорости 15 об./мин проходит место расположения наземной системы менее чем за 25 миллисекунд. Типовые наземные поисковые радиолокаторы ведут круговой обзор по азимуту на скоростях от 5 до 10 об./мин, поэтому луч такого радиолокатора шириной в 1° проходит место расположения бортового космического датчика всего за 30–60 миллисекунд. Радары контроля осадков обычно ориентированы на надир и осуществляют поперечное сканирование в окрестности траектории надира. Луч радара контроля осадков шириной в 0,7° при поперечном сканировании на угловой скорости 57° в секунду проходит место расположения наземной системы всего за 12,5 миллисекунд. Радиолокационные зонды, высотомеры и радары профилирования облачности обычно ориентированы на надир.

6 Определения параметров

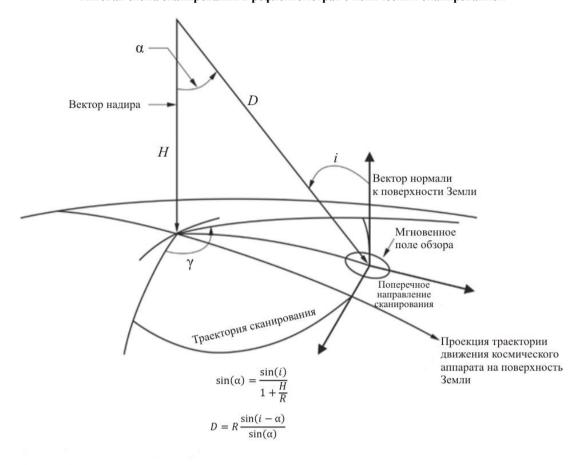
В данном разделе приводятся определения параметров, характеризующих работу активных датчиков, которые рассматриваются в настоящей Рекомендации.

ТАБЛИЦА 4 Определения параметров

Параметр	Определение
Тип датчика	Один из шести типов, описанных в п. 1 настоящей Рекомендации
Параметры орбиты	
Тип орбиты	Примеры: круговая или эллиптическая, солнечно-синхронная (ССО) или несолнечно-синхронная (НСС)
Высота, км	Высота над средним уровнем моря
Наклонение орбиты, градусы	Угол между экватором и плоскостью орбиты
Местное солнечное время восходящего узла	Местное солнечное время восходящего узла — это местное солнечное время (LST), в которое восходящая орбита космического аппарата пересекает экватор.
Эксцентриситет	Отношение расстояния между фокусами (эллиптической) орбиты к длине главной оси
Период повторения, дни	Время, за которое зона луча антенны возвращается (примерно) в то же географическое местоположение
Параметры антенн датчиков	
Антенны датчиков разных типо	в могут различаться по характеристикам
ип антенны Примеры: параболическая со смещенным облучателем и активной фазированной антенной решеткой; пассивная волноводная с активной фазированной антенной решеткой; плоская волноводно-щелевая антенная решетка	
Количество лучей	Количество лучей – это количество одновременно зондируемых участков поверхности Земли.

ТАБЛИЦА 4 (продолжение)

Параметр	Определение
Диаметр антенны, м или Размер антенны или Диаметр/размер антенны	Диаметр отражателя антенны или длина и ширина плоской решетки (в зависимости от того, что применимо)
Пиковое усиление на передачу/прием, дБи и/или Пиковое усиление на передачу, дБи и/или Пиковое усиление на прием, дБи	Пиковое усиление антенны на передачу/прием — это отношение мощностей, передаваемых/принимаемых изотропной антенной соответственно. Максимальное (пиковое) усиление антенны может быть измеряемым или расчетным параметром (в случае если данные измерений отсутствуют). В случае параболических отражателей максимальное усиление антенны можно рассчитать, используя КПД антенны η , диаметр D отражателя (если это применимо) и длину волны λ передаваемого/принимаемого излучения (где D и λ выражены в одинаковых единицах измерения): Максимальное усиление антенны D D 0 D 1 D 2 D 3 в случае плоских антенных решеток максимальное усиление можно рассчитать, используя КПД антенны D 1 и ширину D 2 и ширину D 3 в случае применимо), а также длину волны D 4 и ширину D 5 применимо (где D 4, D 6 и D 7 выражены в одинаковых единицах измерения), с помощью следующей формулы:
Поляризация	Максимальное усиление антенны = $\eta 4\pi lw/\lambda^2$ Плоскость направления колебаний для всех волн входящего/исходящего излучения. Для круговой поляризации эта плоскость вращается вокруг направления распространения. Линейная (H – горизонтальная, V – вертикальная) или круговая поляризация (правосторонняя круговая (ПСКП) или левосторонняя круговая (ЛСКП)). ПРИМЕЧАНИЕ. – Если указана поляризация HV, то H относится к передаваемому, а V – к принимаемому сигналу, и наоборот, если указано VH.
Ширина луча по уровню –3 дБ, градусы	Ширина луча по уровню -3 дБ (другое название — ширина луча по половинной мощности (HPBW)), или $\theta_{3дь}$, определяется как угол между двумя направлениями, в которых интенсивность излучения равна половине максимального значения.
IFOV	Мгновенное поле обзора (IFOV) — это область, над которой датчик осуществляет измерение. Зная высоту спутника над поверхностью Земли, можно рассчитать размеры IFOV на поверхности Земли в точке надира — обычно IFOV выражается в км × км. IFOV является мерой элемента разрешения.
	 В сканирующей системе IFOV – это пространственный угол, охватываемый датчиком, когда сканирование остановлено. Для радиолокаторов конического сканирования обычно вычисляются два значения: продольное – в направлении движения платформы (вдоль траектории); поперечное – в направлении, перпендикулярном движению платформы датчика. Для сканирующих радиолокаторов, ориентированных на надир (см. пример на рисунке 1), IFOV = Hθ_{3дБ}, где H – высота спутника над поверхностью Земли, а θ_{3дБ} – ширина луча по половинной мощности.
Угол падения луча антенны на поверхность Земли, градусы	Угол между направлением наведения антенны и нормалью к поверхности Земли. Обозначен на рисунке 1 как i (в некоторых случаях, дается угол от надира).
Частота сканирования по азимуту, об./мин	Частота сканирования по азимуту – количество полных оборотов луча антенны по азимуту в минуту.


ТАБЛИЦА 4 (продолжение)

Параметр	Определение
Угол обзора луча антенны, градусы	Угол обзора луча антенны α — это угол между электрической осью антенны и надиром. Иногда называется углом наведения от надира. В некоторых системах вместо него приводится угол падения i луча антенны. Углы α и i показаны на рисунке 1 .
Азимут луча антенны, градусы	Азимут луча антенны — это угол между электрической осью антенны и вектором скорости в плоскости, задаваемой вектором скорости и отрицательным вектором нормали к орбите (см. рисунок 2).
Ширина луча антенны по углу места, градусы	Ширина луча антенны по углу места — это угловое расстояние между двумя направлениями по углу места, в которых интенсивность излучения составляет —3 дБ от максимального значения.
Ширина луча антенны по азимуту, градусы	Ширина луча антенны по азимуту — это угловое расстояние между двумя направлениями по азимуту, в которых интенсивность излучения составляет —3 дБ от максимального значения.
Ширина полосы обзора, км	Ширина полосы обзора определяется как линейное расстояние на поверхности Земли, обозреваемое в поперечном направлении.
Коэффициент полезного действия главного луча, %	Область главного луча определяется как угловой размер конуса с углом раскрыва, в 2,5 раза превышающим измеренное значение ширины луча по уровню –3 дБ. Коэффициент полезного действия главного луча определяется как отношение принятой в главном луче энергии к энергии, принятой всей антенной.
Динамические свойства луча	Динамические свойства луча определяются следующим образом:
	 при коническом сканировании – это частота вращения луча;
Диаграмма направленности антенны датчика	 при сканировании надира – это число сканирований в секунду. Усиление антенны как функция от угла отклонения от оси.
Характеристики передатчико	В
Центральная частота радиосигнала, МГц	Центральная частота радиосигнала — это частота, на которую приходится центральная часть полосы частот передаваемого сигнала.
Ширина полосы РЧ, МГц	Ширина полосы РЧ — это ширина полосы частот передаваемого сигнала по уровню —3 дБ. При анализе совместимости обычно используется в качестве ширины полосы пропускания приемника.
Пиковая мощность передаваемого сигнала, Вт	Пиковая мощность передаваемого сигнала — это пиковая мощность огибающей сигнала передатчика.
Средняя мощность передаваемого сигнала, Вт	Средняя мощность передаваемого сигнала — это произведение пиковой мощности огибающей сигнала передатчика и коэффициента заполнения передаваемого сигнала.
Длительность импульса, мкс	Длительность импульса – это длительность передаваемого импульса по половинной мощности.
PRF, Γц	Частота повторения импульсов (PRF) – это частота, с которой передаются отдельные импульсы.
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	Крутизна внутриимпульсной перестройки частоты сигнала с линейной частотной модуляцией (ЛЧМ) – это отношение ширины полосы РЧ в мегагерцах к длительности импульса в микросекундах.
Коэффициент заполнения передаваемого сигнала, %	Коэффициент заполнения передаваемого сигнала — это произведение длительности передаваемого импульса и частоты повторения импульсов.
Длительность рабочего цикла, %	Доля времени, на протяжении которого передатчик активен, за один полный оборот спутника по орбите (может меняться в зависимости от режима работы).

ТАБЛИЦА 4 (окончание)

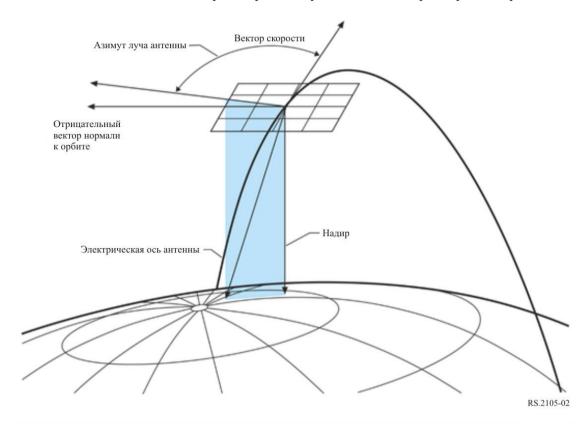
Параметр	Определение
Пиковая э.и.и.м., дБВт	Пиковая эквивалентная изотропно излучаемая мощность (э.и.и.м.) — это теоретическая мощность излучения изотропной антенны, которая бы давала наблюдаемое значение пиковой плотности мощности в направлении максимального усиления антенны. Пиковая э.и.и.м представляет собой произведение пиковой мощности передаваемого сигнала и пикового усиления антенны и измеряется в дБВт.
Средняя э.и.и.м., дБВт	Средняя эквивалентная изотропно излучаемая мощность (э.и.и.м.) — это теоретическая мощность излучения изотропной антенны, которая бы давала наблюдаемое значение средней плотности мощности в направлении максимального усиления антенны. Средняя э.и.и.м представляет собой произведение средней мощности передаваемого сигнала и пикового усиления антенны и измеряется в дБВт.
Параметры приемников датч	шков
Время подсветки датчиком	Время подсветки датчиком — это длительность временного интервала, в течение которого детектор датчика ведет измерения эхосигнала от мгновенной зоны наблюдения или поля обзора.
Чувствительность, dBZ	Чувствительность радара контроля осадков или радара профилирования облачности определяется как <i>наименьшее</i> поддающееся обнаружению значение отражающей способности Z (мм 6 /м 3) и измеряется в dBZ.
Коэффициент шума системы, дБ или Шумовая температура системы, К	Коэффициент шума системы определяется как частное от деления отношения сигнал/шум по мощности $(S/N)_i$ для входного сигнала на отношение сигнал/шум по мощности $(S/N)_o$ для выходного сигнала. Шумовая температура — это мера выражения согласованной мощности шума, создаваемого компонентом или источником. Шумовая температура системы приблизительно равна сумме шумовых температур антенны и первого каскада приемника; вкладами остальных элементов системы в этот параметр обычно можно пренебречь, если усиление первого каскада приемника превышает 16 дБ.
Пространственное разрешени	ие измерений
Разрешение по дальности, м	Пространственное разрешение часто определяется как возможность различить на изображении два расположенных рядом объекта. Обычно оно
Разрешение по азимуту, м	выражается в виде разрешения по дальности, или горизонтального разрешения (как правило, поперечного) и разрешения по азимуту, или вертикального разрешения (продольного). (Отметим, что "вертикальное" в данном случае не обозначает высоту).

РИСУНОК 1 Типовая схема сканирования в рефлектометрах с коническим сканированием

i – угол падения в центре зоны луча

 α — угол от надира

γ – полный угол сканирования


H – высота над средним уровнем моря

D – расстояние до центра поля обзора

R – радиус Земли (не показан на схеме)

RS.2105-01

РИСУНОК 2 Плоскость, задаваемая вектором скорости и отрицательным вектором нормали к орбите

7 Параметры стандартных систем

В этом разделе представлены типовые параметры активных датчиков для полос ССИЗ (активной) на частотах между 40 МГц и 238 ГГц. Для каждой полосы частот применяется согласованный набор параметров, на основе которого может проводиться статический и динамический анализ наихудшего случая.

7.1 Типовые параметры активных датчиков, работающих в полосе частот 40–50 МГц

Радиолокационные зонды диапазона 45 МГц представляют собой активные микроволновые датчики, работающие в полосе частот 40–50 МГц, что позволяет обеспечить баланс между глубиной проникновения и разрешением. Эти зонды могут использоваться для составления подробных карт пространственного распределения неглубоко залегающих водоносных горизонтов (порядка 10–100 м) в засушливых районах, а также построения топографических планов базальной поверхности и определения толщины ледниковых щитов (порядка 5 км). Типовые характеристики радиолокационных зондов диапазона 45 МГц приведены в таблице 5. Дополнительные сведения содержатся в Рекомендации МСЭ-R RS.2042-2.

ТАБЛИЦА 5 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 40–50 МГц

Параметр	SNDR-AA1		
Тип датчика	Радиолокационный зонд		
Тип орбиты	Круговая, ССО		
Высота, км	400		
Наклонение орбиты, градусы	97		
Местное солнечное время восходящего узла	04:00		
Период повторения, дни	548		
Тип антенны	9-элементная крестообразная директорная		
Количество лучей	1		
Пиковое усиление антенны на передачу/прием, дБи	10		
Поляризация	Круговая		
Частота сканирования по азимуту, об./мин	0		
Угол обзора луча антенны, градусы	0		
Азимут луча антенны, градусы	0		
Ширина луча антенны по углу места, градусы	40		
Ширина луча антенны по азимуту, градусы	40		
Центральная частота радиосигнала, МГц	45		
Ширина полосы РЧ, МГц	10		
Пиковая мощность передаваемого сигнала, Вт	100		
Средняя мощность передаваемого сигнала, Вт	10,2		
Длительность импульсов, мкс	85		
PRF, Гц	1 200		
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,1176		
Коэффициент заполнения передаваемого сигнала, %	10,2		
Длительность рабочего цикла, %	6,25		
Пиковая э.и.и.м., дБВт	30,0		
Средняя э.и.и.м., дБВт	20,1		
Коэффициент шума системы, дБ	5		

7.2 Типовые параметры активных датчиков, работающих в полосе частот 432–438 МГц

РСА диапазона 435 МГц — это активные СВЧ-датчики, работающие в полосе частот 432—438 МГц и обеспечивающие всепогодное круглосуточное наблюдение за поверхностью суши. Относительно низкочастотный сигнал способен проходить через растительный покров. На основе полученных таким образом данных можно создавать глобальные модели растительности и лучше количественно описывать глобальный биогеохимический цикл углерода. Типовые характеристики РСА, работающих в диапазоне 435 МГц, приведены в таблице 6.

ТАБЛИЦА 6 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 432–438 МГц

Параметр	SAR-A1		
Тип датчика	PCA		
Тип орбиты	CCO		
Высота, км	665		
Наклонение орбиты, градусы	98,1		
Местное солнечное время восходящего узла	06:00		
Период повторения, дни	17		
Количество лучей	1		
Диаметр антенны, м	12		
Пиковое усиление антенны на передачу, дБи	33,6		
Пиковое усиление антенны на прием, дБи	33,6		
Поляризация	Линейная (H, V)		
Частота сканирования по азимуту, об./мин	0		
Угол обзора луча антенны, градусы	22,7; 25,9; 28,2		
Азимут луча антенны, градусы	86,2–93,8		
Ширина луча антенны по углу места, градусы	4,8		
Ширина луча антенны по азимуту, градусы	3,2		
Центральная частота радиосигнала, МГц	435		
Ширина полосы РЧ, МГц	6		
Пиковая мощность передаваемого сигнала, Вт	170		
Средняя мощность передаваемого сигнала, Вт	10		
Длительность импульсов, мкс	38		
PRF, Гц	1 550 (максимум)		
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,200; 0,182; 0,1861		
Коэффициент заполнения передаваемого сигнала, %	5,9		
Пиковая э.и.и.м., дБВт	55,9		
Средняя э.и.и.м., дБВт	43,6		
Коэффициент шума системы, дБ	3		

7.3 Типовые параметры активных датчиков, работающих в полосе частот 1215–1300 МГц

РСА диапазона 1,25 ГГц представляют собой активные СВЧ-датчики, работающие в полосе частот 1215–1300 МГц и обеспечивающие круглосуточное всепогодное наблюдение за поверхностью суши. Такие РСА могут иметь несколько режимов работы, включая картографические режимы высокого и среднего разрешения, а также режимы со сканированием по углу места (scanSAR). Типовые характеристики РСА, работающих в полосе частот 1215–1300 МГц, приведены в таблице 7.

Таблица 7 содержит характеристики типового рефлектометра поверхности суши, работающего в полосе частот 1215–1300 МГц.

ТАБЛИЦА 7

Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 1215—1300 МГц

Параметр	SCAT-B1	SCAT-B2	SAR-B1	SAR-B2	SAR-B3	SAR-B4
Тип датчика	Рефлектометр	Рефлектометр	PCA	PCA	PCA	PCA
Тип орбиты	Круговая, ССО	Круговая, ССО	Круговая, ССО	Круговая, ССО	Близкая к круговой, ССО	Круговая, ССО
Высота, км	670	657	747	628	693	628
Наклонение орбиты, градусы	98	98	98,4	97,9	98,18	97,9
Местное солнечное время восходящего узла	18:00	18:00	06:00	00:00	18:00	00:00
Период повторения, дни	3	7	12	14	12	14
Тип антенны	Параболический отражатель со смещенным облучателем	Параболический отражатель с тремя смещенными облучателями	Развертываемый сетчатый рефлектор	Плоская фазированная антенная решетка	Плоская фазированная антенная решетка	Плоская фазированная антенная решетка
Количество лучей	1	3	1	1	1	1
Диаметр/размер антенны	6 м	2,5 м	12 м	9,9 × 2,9 m	11 × 3,6 м	9,9 × 3,9 м
Пиковое усиление антенны на передачу, дБи	36	28,1	35	34,7	33,5 (двойная поляризация), 34,6 (четверная поляризация), 39,5 (в волновом режиме) ⁽¹⁾	35,2
Пиковое усиление антенны на прием, дБи	36	28,1	45	36,6	25,4	33,4
Поляризация	Двойная, линейная (H, V)	Двойная, линейная (H, V)	Двойная/ четверная, круговая, линейная (H, V)	Двойная/ четверная, круговая, линейная (H, V)	Одиночная/ двойная/ четверная, линейная (H, V)	Двойная/ четверная, линейная (H, V)
Частота сканирования по азимуту, об./мин	13,0–14,6	0	0	0	0	0
Угол обзора луча антенны, градусы	34	25,9/33,9/40,3	37 (на передачу), 20–40 (на прием)	7,2–59	25,2–38,7	7,2-59
Азимут луча антенны, градусы	0–360	99,7/74,8/96,5	-90	±9/±3,5	90	±90/±3,5
Ширина луча антенны по углу места, градусы	2,5	6,5/6,7/7,1	11,5	4,3–4,6	3,36 (на передачу), 13,45 (на прием)	3,5
Ширина луча антенны по азимуту, градусы	2,5	6,5/6,7/7,1	0,9	1,3–2,1	1,1 (на передачу), 5,5 (на прием)	1,2-2,1
Центральная частота радиосигнала, МГц	1 215–1 300	1 260	1 215–1 300	1 236,5/ 1 257,5	1 215–1 300	1 236,5/ 1 257,5/ 1 278,5
Ширина полосы РЧ, МГц	1	4	5, 20, 40, 77	14-84	40–85	28-84
Пиковая мощность передаваемого сигнала, Вт	200	200	1 334	3 944–6 120	9 000	5 390-8 680

ТАБЛИЦА	7 (окончание)

Параметр	SCAT-B1	SCAT-B2	SAR-B1	SAR-B2	SAR-B3	SAR-B4
Средняя мощность передаваемого сигнала, Вт	28	ı	9,7–102,2	453–454	600 (двойная поляризация), 720 (четверная поляризация)	490–960
Длительность импульса, мкс	15	1 000	4,4–40	18–71	10-80	21-67
PRF, Гц	3 500	100	1 543,2–3 086,4	1 050–3 640	1 300–3 800	1 100-3 955(2)
Крутизна внутри- импульсной перестройки частоты, МГц/мкс	0,067	0,004	0,20-2,00	0,21–1,95	0,15-0,93	0,42-3,68
Коэффициент заполнения передаваемого сигнала, %	5,25	10	0,7-7,7	6,8–11,5	6,7–8 (2% для волнового режима) ⁽¹⁾	6,4-9,1(2)
Пиковая э.и.и.м., дБВт	60	51,1	66,3	70,7–74,5	78	74,5
Коэффициент шума системы, дБ	4,0	7,0	3,9	4,9	3,3	2,6

Волновой режим используется только над океаном.

7.4 Типовые параметры активных датчиков, работающих в полосе частот 3100-3300 МГц

Типовые характеристики РСА, работающих в диапазоне 3,1 ГГц, приведены в таблице 8.

ТАБЛИЦА 8 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 3100-3300 МГц

Параметр	SAR-C1	SAR-C2	SAR-C3	SAR-C4
Тип датчика	PCA	PCA	PCA	PCA
Тип орбиты	Круговая, ССО	Круговая	Круговая	Круговая, ССО
Высота, км	500	503-536	503-536	747
Наклонение орбиты, градусы	97,3	97,4	97,4	98,4
Местное солнечное время восходящего узла	06:00	09:00±1:00	10:00±1:00	06:00
Период повторения, дни	31	16	16	12
Тип антенны	-	Параболическое зеркало	Параболическое зеркало	Развертываемый сетчатый рефлектор
Количество лучей	9	_	_	24
Диаметр антенны, м	_	6	6	12
Пиковое усиление передачи/приема антенны, дБи	37,6	42	44	38
Поляризация	VV	H, V	H, V	Двойная/ четверная, круговая, линейная (H, V)

В некоторых режимах наблюдения работа с непостоянной частотой повторения импульсов (PRF) будет осуществляться в этом диапазоне PRF.

ТАБЛИЦА 8 (окончание)

Параметр	SAR-C1	SAR-C2	SAR-C3	SAR-C4
Частота сканирования по азимуту, об./мин	0	0	0	0
Угол обзора луча антенны, градусы	25–47	25–55	20–55	37
Азимут луча антенны, градусы	90	90/–90	90/–90	-90 (смещенная подача на -3,5 относительно надира
Ширина луча антенны по углу места, градусы	2,5	1	1	11
Ширина луча антенны по азимуту, градусы	1	1	1	0,5
Центральная частота радиосигнала, МГц	3 200	3 200	3 200	3 200
Ширина полосы РЧ, МГц	60	50/200	50/200	10/25/37,5/75
Пиковая мощность передаваемого сигнала, Вт	3 000	5 000	11 220	37 857
Средняя мощность передаваемого сигнала, Вт	300	_	_	2 082
Длительность импульсов, мкс	27	10	1–16	10-25
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	2,22	5/20	5/20	1–3
Коэффициент заполнения передаваемого сигнала, %	10	Переменный, макс. 20%	Переменный, макс. 20%	5,50
Коэффициент шума системы, дБ	2	3	3	5

7.5 Типовые параметры активных датчиков, работающих в полосе частот 5250-5570 МГц

Типовые характеристики датчиков PCA нескольких типов, высотомеров и рефлектометров, работающих в полосе частот 5250–5570 МГц, приведены в таблицах 9, 10 и 11.

Следует отметить, что зона обслуживания большинства этих датчиков является глобальной. В частности, это так для SAR-D4, SAR-D5, SAR-D6 и SAR-D1 (группировка из двух спутников).

ТАБЛИЦА 9 **Характеристики датчиков РСА, работающих в полосе частот 5250–5570 МГц**

Параметр	SAR-D1	SAR-D2	SAR-D3	SAR-D4	SAR-D5	SAR-D6	SAR-D7	SAR-D8
Тип датчика	PCA	PCA	PCA	PCA	PCA	PCA	PCA	PCA
Тип орбиты	Круговая, ССО	Круговая, ССО	CCO	Близкая к круговой	Близкая к круговой	Близкая к круговой	Близкая к круговой	Близкая к круговой
Высота (км)	693	764	536	792–813	586,9–615,2	586,9–615,2	755	410–420
Наклонение орбиты, градусы	98,18	98,6	97	98,6	97,74	97,74	98,4	51,6
Местное солнечное время восходящего узла	18:00/6:00 (1)	10:30	6:00	6:00	6:00	6:00 (подлежит уточнению)	18:00	Н/п
Период повторения, дни	12	35	13	24	12	12 (подлежит уточнению)	29	_
Тип антенны	Фазированная антенная решетка	Фазированная антенная решетка	Плоская фазированная антенная решетка	Плоская фазированная антенная решетка	Плоская фазированная антенная решетка	Плоская фазированная антенная решетка	Плоская фазированная антенная решетка	Фазированная антенная решетка
Количество лучей	1	1	1	1	1	1	1	1
Размер антенны	12,3 × 0,8 м	10 × 1,3 м	10 × 3 м	15 × 1,5 м	6,88 × 0,37 м	6,88 × 1,37 м	15 × 1,232 м	2,5 × 1,2 M
Пиковое усиление антенны на передачу, дБи	43,5–45.3	40–45	35	49 ⁽²⁾	45 ⁽³⁾	45 ⁽³⁾	48	38,7
Пиковое усиление антенны на прием, дБи	43,5–44.8	40–45	35	49 ⁽³⁾	45 ⁽³⁾	45 ⁽³⁾	48	38,7
Поляризация	V, H	H, V	Линейная (H, V)	HH, HV, VH, VV	HH, VV, HV, VH, CH, CV	HH, VV, HV, VH, CH, CV	HH, HV, VH, VV	H, V
Угол обзора луча антенны, градусы	20–47 ⁽³⁾	15–45	10–45	9–50	16–51	16–53	10-60	15–40
Азимут луча антенны, градусы	90	90	90	0	0	0	0	0/180
Ширина луча антенны по углу места, градусы	6–8	2,5	4,6	1,88 (для сфокусиро- ванного луча)	2,05 (для сфокусиро- ванного луча)	2,05 (для сфокусиро- ванного луча)	2,288	3,15
Ширина луча антенны по азимуту, градусы	0,3	0,3	1,4	0,19	0,42 (для сфокусиро- ванного луча)	0,42 (для сфокусиро- ванного луча)	0,188	1,6
Ширина полосы обзора, км	20-410	10-405	10–225	18-500	20-500	20-500	10–650	40–400

ТАБЛИЦА 9 (окончание)

Параметр	SAR-D1	SAR-D2	SAR-D3	SAR-D4	SAR-D5	SAR-D6	SAR-D7	SAR-D8
Центральная частота радиосигнала, МГц	5 405	5 331	5 350	5 405	5 405	5 405	5 400	5 350
Ширина полосы РЧ, МГц	100	16	18,75–75	11,6; 17,3; 30; 50; 100	14–100	14–300	2–240	36,3
Средняя мощность передаваемого сигнала, Вт	4 140	2 500	4 000	2 400 или 3 700	1 490	1 990	15 360	5 000
Пиковая мощность передаваемого сигнала, Вт	370	200	260	300	180	240	1 900	750
Длительность импульсов, мкс	5–53	16–41	20	21, 42	10-50	10–50	15-50	17,5–25,5
PRF, Гц	1 450–2 000	1 600–2 100	3 250	1 000–2 800	2 000-7 000	2 000-7 000	1 100 ~ 4 500	6 800–8 560
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,34-3,75	0,39	0,937–3,75	0,27–2,38	0,14–10	0,14–10	0,13-6,85	1,41–2.05
Коэффициент заполнения передаваемого сигнала, %	0,5-9,0 в зависимости от режима работы	8,61	6,5	Переменный, макс. 8%	Переменный, макс. 12%	Переменный, макс. 12%	Переменный, макс. 20%	Переменный, макс 15%
Пиковая э.и.и.м., дБВт	80	78,0	71,0	83,5 (4)	76,7	78,0	89,8	75,7
Средняя э.и.и.м., дБВт	70 (при коэффициенте заполнения 9%)	68,0	68,0	Примерно 73 ⁽⁵⁾	67,67	69,0	Примерно 80,7	67,5
Коэффициент шума системы, дБ	3,2	4,5	5,8	6	6	6	4	4/6

⁽¹⁾ Система представляет собой группировку из двух спутников.
(2) При большей ширине луча может использоваться меньшее усиление.
(3) Угол падения луча антенны.

⁽⁴⁾ Максимальная э.и.и.м. за период повторения импульсов. (5) Средняя э.и.и.м. за период повторения импульсов.

ТАБЛИЦА 10 **Характеристики высотомеров, работающих в полосе частот 5250–5570 МГц**

Параметр	ALT-D1	ALT-D2 ⁽¹⁾	ALT-D3	ALT-D4 ⁽¹⁾	ALT-D5	ALT-D6
Тип датчика	Высотомер	Высотомер	Высотомер	Высотомер	Высотомер	Высотомер
Тип орбиты	НСС	Круговая, ССО	CCO	НСС	НСС	Круговая, ССО
Высота, км	1 336	814	963	1 336	890	1 000
Наклонение орбиты, градусы	66	98,65	99,3	66	78	99,4
Местное солнечное время восходящего узла	HCC	22:00	06:00	НСС	HCC	_
Период повторения, дни	10	27	14	10	21	14
Тип антенны	Параболи- ческий отражатель	Параболи- ческий отражатель	Параболи- ческий отражатель	Параболи- ческий отражатель	Параболи- ческий отражатель	Параболи- ческий отражатель
Количество лучей	1	1	1	1	1	1
Диаметр антенны, м	1,2	1,2	1,4	1,2	1,2	1,5
Пиковое усиление антенны на передачу, дБи	32	32	35	33,5	32,0	33,6
Пиковое усиление антенны на прием, дБи	32	32	43	33,5	32,0	33,6
Поляризация	Линейная	Линейная	Линейная (VV)	Линейная	Линейная	Линейная
Частота сканирования по азимуту, об./мин	0	0	0	0	0	0
Угол обзора луча антенны, градусы	0	0	0	0	0	0
Азимут луча антенны, градусы	0	0	0	0	0	0
Ширина луча антенны по углу места, градусы	3,4	3,4	2,3	3,4	3,4	3
Ширина луча антенны по азимуту, градусы	3,4	3,4	2,3	3,4	3,4	3
Ширина полосы обзора, км	79,4	48,4	38,7	97	52,9	51,4
Центральная частота радиосигнала, МГц	5 300	5 410	5 250	5 410	5 300	5 300
Ширина полосы РЧ, МГц	100, 320	320	160	320	100, 320	100, 320
Пиковая мощность передаваемого сигнала, Вт	17	32	20	25	17	15,8
Средняя мощность передаваемого сигнала, Вт	0,51	0,4 (LRM), 0,25 (PCA)	8,2	< 2	0,51	0,51; 0.71
Длительность импульса, мкс	106,0	49	102,4	32	106,0	110,5
PRF, Гц	300	275 (LRM), 157 (PCA)	670	2 060–9 280	300	294, 412
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,9; 3,0	6,5	1,56	9,69	0,9; 3,0	0,9; 2,9
Коэффициент заполнения передаваемого сигнала, %	3,1	1,5 (LRM), 0,7 (PCA)	40,96	30	3,1	3,2; 4,5
Пиковая э.и.и.м., дБВт	44,8	49,5	48	47,47	44,3	45,6
Средняя э.и.и.м., дБВт	29,5	30,8 (LRM), 28,4 (PCA)	44,1	36,51	29,2	30,7; 32,1
Коэффициент шума системы, дБ	4,45	3,8	3,5	3,5	4,45	5,75

⁽¹⁾ Двухчастотный радиолокационный высотомер (диапазонов С/Ки), обеспечивающий выполнение измерений либо в режиме низкого разрешения (LRM), либо в режиме радара с синтезированной апертурой (надир-РСА). Режим низкого разрешения — это обычный режим работы высотомера с импульсным ограничением и чередованием импульсов диапазонов С и Кu, а режим надир-РСА — режим высокого продольного разрешения с синтезированием апертуры. Система представляет собой группировку из двух спутников.

ТАБЛИЦА 11 **Характеристики рефлектометров, работающих в полосе частот 5250–5570 МГц**

Параметр	SCAT-D1	SCAT-D2
Тип датчика	Рефлектометр	Рефлектометр
Тип орбиты	CCO	CCO
Высота, км	832	832
Наклонение орбиты, градусы	98,7	98,7
Местное солнечное время восходящего узла	21:30	21:30
Период повторения, дни	29	29
Тип антенны	Шесть антенн с веерными лучами (волноводно-щелевые антенные решетки)	Шесть антенн с веерными лучами (волноводно-щелевые антенные решетки)
Количество лучей	6	6
Размер антенны	2,251 × 0,337 м (центральная), 3,003 × 0,253 м (боковая)	2,757 × 0,315 м (центральная), 3,02 × 0,315 м (боковая)
Пиковое усиление антенны на передачу, дБи	24–32	23–31 (1)
Пиковое усиление антенны на прием, дБи	24–32	23–31
Поляризация	Линейная (VV) для всех лучей	Линейная (VV) для всех шести лучей + VH/HV и линейная (HH) для двух центральных лучей
Частота сканирования по азимуту, об./мин	0	0
Угол обзора луча антенны, градусы	22–45,6 (центральные лучи) 29,5–53,4 (боковые лучи)	17,5–45,5 (центральные лучи) 24–54 (боковые лучи)
Азимут луча антенны, градусы	45, 90, 135, 225, 270, 315	45, 90, 135, 225, 270, 315
Ширина луча антенны по углу места, градусы	23,6 (центральные лучи) 23,9 (боковые лучи)	28 (центральные лучи) 30 (боковые лучи)
Ширина луча антенны по азимуту, градусы	1,5 (центральные лучи) 1,2 (боковые лучи)	1,3
Ширина полосы обзора, км	550 с каждой стороны от плоскости орбиты	665 с каждой стороны от плоскости орбиты
Центральная частота радиосигнала, МГц	5 255	5 355
Ширина полосы РЧ, МГц	0,5	2
Пиковая мощность передаваемого сигнала, Вт	120	2 512
Средняя мощность передаваемого сигнала, Вт	29 (центральные лучи) 36,5 (боковые лучи)	92
Длительность импульсов, мкс	10 000	1 000
PRF, Гц	28,259	32
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,00002	0,00002
Коэффициент заполнения передаваемого сигнала, %	28,29	3,68
Пиковая э.и.и.м., дБВт	53	57–65
Средняя э.и.и.м., дБВт	39–47	42-50
Коэффициент шума системы, дБ	3,0	3,5

⁽¹⁾ Усиление антенны зависит от ее положения в системе (центральная или боковая) и угла падения луча.

7.6 Типовые параметры активных датчиков, работающих в полосе частот 8550–8650 МГц

Типовые характеристики РСА, работающих в диапазоне 8,6 ГГц, приведены в таблице 12.

ТАБЛИЦА 12 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 8550–8650 МГц

Параметр	SAR-E1
Тип датчика	PCA
Тип орбиты	Круговая, НСС
Высота, км	400
Наклонение орбиты, градусы	57
Период повторения, дни	3
Количество лучей	1
Тип антенны	Волноводно-щелевая
Пиковое усиление антенны на передачу/прием, дБи	44,0
Поляризация	Линейная (H, V)
Частота сканирования по азимуту, об./мин	0
Угол обзора луча антенны, градусы	20–55
Азимут луча антенны, градусы	90
Ширина луча антенны по углу места, градусы	2,5
Ширина луча антенны по азимуту, градусы	0,4
Центральная частота радиосигнала, МГц	8 600
Ширина полосы РЧ, МГц	10, 20
Пиковая мощность передаваемого сигнала, Вт	3 500
Средняя мощность передаваемого сигнала, Вт	243
Длительность импульсов, мкс	40
PRF, Γι	1 395–1 736
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	1,0; 0,5
Коэффициент заполнения передаваемого сигнала, %	7
Коэффициент шума системы, дБ	4,3

7.7 Типовые параметры активных датчиков, работающих в полосе частот 9200–10 400 МГц

Типовые характеристики PCA, работающих в полосе частот $9200-10~400~M\Gamma$ ц, приведены в таблице 13. Дополнительные сведения содержатся в Рекомендации MCЭ-R RS.2043.

ТАБЛИЦА 13 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 9200–10 400 МГц

Параметр	SAR-F1	SAR-F2	SAR-F3	SAR-F4	SAR-F5	SAR-F6	SAR-F7	SCAT-F8
Тип датчика	PCA	PCA	PCA	PCA	PCA	PCA	PCA	Рефлектометр
Тип орбиты	Круговая, ССО	Круговая, ССО	CCO	CCO	CCO	Круговая, ССО	Круговая	Круговая
Высота, км	514	620	512	620	514	514	650–850	835
Наклонение орбиты, градусы	97,4	97,8	97,9	97,8	97,44	97,4	97–99	98,85
Местное солнечное время восходящего узла	18:00	06:00	06:00	06:00	18:00	18:00	Н/п	19:30
Период повторения, дни	11	16	5	16	11	11		_
Тип антенны	Активная фазированная антенная решетка	Плоская антенная решетка	Отражатель со смещенным облучателем в виде линейной антенной решетки	Плоская антенная решетка	Активная фазированная антенная решетка	Активная фазированная антенная решетка	Фазированная решетка	Фазированная решетка
Количество лучей	1	1	1	1	1	1	1	1
Пиковое усиление антенны на передачу/прием, дБи	45,5	45,5	46	46,8	43,4	47	45,6	39,5/38,5
Поляризация	Линейная (VV)	Линейная (НН)	Линейная (VV, VH)	Линейная (НН)	Линейная (HH, VV)	Линейная (HH, VV)	Линейная (HH, VV)	Линейная (VV)
Частота сканирования по азимуту, об./мин	0	0	0	0	0	0	0	0
Угол обзора луча антенны, градусы	15–60	21–44	30–40	37,8	15–45	18–50	15–55	90
Азимут луча антенны, градусы	90	90	90	90	90	90	90	Н/п
Ширина луча антенны по углу места, градусы	2,54	1,32	1,5	1,34	2,5	1,13	1–1,2	26
Ширина луча антенны по азимуту, градусы	0,37	0,32	0,5	0,32	0,4	0,53	0,4-0,45	0,13
Центральная частота радиосигнала, МГц	9 650	9 600	9 600	9 500	9 650	9 800	9 600	9 623,275
Ширина полосы РЧ, МГц	150, 300	41–118	10	40–300	5-300	1 200	600	0,5

ТАБЛИЦА 12 (окончание)

Параметр	SAR-F1	SAR-F2	SAR-F3	SAR-F4	SAR-F5	SAR-F6	SAR-F7	SCAT-F8
Средняя мощность передаваемого сигнала, Вт	2 000	7 600	3 000	7 600	2 260	7 000	1 800	1 600
Пиковая мощность передаваемого сигнала, Вт	400	836	270	836	452	2 100	_	-
Длительность импульсов, мкс	47	18–31	20–30	18–31	47	50	36	2
PRF, Гц	2 000–6 500	2 850–3 230	1 000-3 000	1 000-3 000	3 000–6 500	6 000	_	_
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	3,2; 6,8	3,81	0,5–0,67	3,81–9,7	0,85–6,38	24	16,6	Н/п
Коэффициент заполнения передаваемого сигнала, %	20	7–11	2–9	7–11	20	30	Переменный, макс. 15%	Переменный, макс. 15%
Коэффициент шума системы, дБ	2,9	1,0	3	1,0	5,0	3	4	4

7.8 Типовые параметры активных датчиков, работающих в полосе частот 13,25–13,75 ГГц

Типовые характеристики высотомеров, работающих в диапазоне 13,5 ГГц, приведены в таблице 14.

Типовой рефлектометр поверхности океана, работающий на частоте около 13,5 ГГц, определяет скорость и направление ветра над водой по коэффициентам обратного рассеяния от поверхности океана, полученным при нескольких различных азимутах при вращении лучей антенны вокруг направления на надир. Характеристики рефлектометров, работающих в диапазоне 13,5 ГГц, приведены в таблице 15.

Типовые характеристики радаров контроля осадков, работающих в диапазоне 13,5 ГГц, приведены в таблице 16.

Радары для определения водного эквивалента снега (SWE) представляют собой многочастотные датчики типа формирователя изображения РСА, ориентированные по одну сторону от траектории надира и использующие чувствительность измерений обратного рассеяния от SWE, обусловленную свойствами рассеяния в объеме сухого снега, для получения информации о снежной массе. Типовые характеристики радаров для определения SWE типа формирователя изображения РСА, работающих в диапазоне 13,5 ГГц, приведены в таблице 17.

ТАБЛИЦА 14 **Характеристики высотомеров, работающих в полосе частот 13,25–13,75 ГГц**

Параметр	ALT-G1	ALT-G3	ALT-G4	ALT-G5	ALT-G6 (Приложение 1)	ALT-G7 (Приложение 1)	ALT-G8	ALT-G9
Тип датчика	Высотомер	Высотомер	Высотомер	Высотомер	Высотомер	Высотомер	Высотомер	Высотомер
Тип орбиты	CCO	CCO	HCC	HCC	CCO	HCC	Круговая, ССО	HCC
Высота, км	764	963	1 336	717	814	1 336	1 000	714
Наклонение орбиты, градусы	98,6	99,3	66	92	98,65	66	99,4	92
Местное солнечное время восходящего узла	10:30	06:00	Н/п	Н/п	22:00	Н/п	-	Н/п
Период повторения, дни	35	14	10	369 (1)	27	10	14	367
Количество лучей	1	1	1	1	1	1	1	1
Диаметр/размер антенны	1,2 м	1,4 м	1,2 м	2 отражателя 1,2 × 1,1 м	1,2 м	1,2 м	1,5 м	2 отражателя 1,4 × 1,25 м
Пиковое усиление антенны на передачу, дБи	41,2	43	43,2	42	42	42,1	42,2	42,3
Пиковое усиление антенны на прием, дБи	41,2	43	43,2	42	42	42,1	42,2	42,3
Поляризация	Линейная	VV	Линейная	Линейная	Линейная	Линейная	Линейная	Линейная
Частота сканирования по азимуту, об./мин	0	0	0	0	0	0	0	0
Угол обзора луча антенны, градусы	0	0	0	0	0	0	0	0
Азимут луча антенны, градусы	0	0	0	0	0	0	0	0
Ширина луча антенны по углу места, градусы	1,2	0,9	1,27	1,2	1,27	1,35	1,5	1
Ширина луча антенны по азимуту, градусы	1,2	0,9	1,27	1,1	1,27	1,35	1,5	1
Центральная частота радиосигнала, МГц	13 575	13 580	13 575	13 575	13 575	13 575	13 575	13 500
Ширина полосы РЧ, МГц	320, 80, 20	320	320	320	350	320	320	500
Пиковая мощность передаваемого сигнала, Вт	60	20	25	25	7,1	8	5,6	21,7 ⁽²⁾ ; 24,2 ⁽³⁾

ТАБЛИЦА 14 (окончание)

Параметр	ALT-G1	ALT-G3	ALT-G4	ALT-G5	ALT-G6 (Приложение 1)	ALT-G7 (Приложение 1)	ALT-G8	ALT-G9
Средняя мощность передаваемого сигнала, Вт	2,16	8,2	5,41	2,22	0,66	< 4	1,27	19,1(2); 7,1(3)
Длительность импульсов, мкс	20	102,4	106,0	50	49	32	110,5	49 ⁽²⁾ ; 18 ⁽³⁾
PRF, Гц	1 795,33	2 000	2 060	1 970 (LRM) 1 818,1 (режим РСА)	1 924 (LRM) 1 782,5 (режим РСА)	2 060–9 280	2 060	18 000 ⁽²⁾ ; 15 500–16 800 ⁽³⁾
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	16, 4, 1	3,12	3,02	7,11	7,14	9,69	2,9	10,2 ⁽²⁾ ; 27,8 ⁽³⁾
Коэффициент заполнения передаваемого сигнала, %	3,6	40,96	21,63	8,88	1,35–2,65; 9,31	30	22,7	88,2 ⁽²⁾ ; 29,1 ⁽³⁾
Пиковая э.и.и.м., дБВт	59,0	56,0	56	60,0	50,5	51,03	49,7	55,7 ⁽²⁾ ; 56,2 ⁽³⁾
Средняя э.и.и.м., дБВт	44,5	52,1	49,33	45,5	40,2	48,02	43,2	55,1 ⁽²⁾ ; 50,8 ⁽³⁾
Коэффициент шума системы, дБ	2,5; 3,0	2,8	2,6	1,9 (4)	3,1	2,5	5,75	2,8

⁽¹⁾ Подпериод 30 дней.

ПРИМЕЧАНИЕ 1. — Системы ALT-G5 и ALT-G6 представляют собой двухчастотные радиолокационные высотомеры (диапазонов C/Ku), обеспечивающие выполнение измерений либо в режиме низкого разрешения (LRM), либо в режиме радара с синтезированной апертурой (надир-PCA). Режим низкого разрешения — это обычный режим работы высотомера с импульсным ограничением и чередованием импульсов диапазонов С и Ku, а режим надир-PCA — режим высокого продольного разрешения на основе обработки информации PCA. Система ALT-G6 находится на стадии подготовки. Это будет группировка из двух спутников на одной орбите с разностью фаз 180°.

⁽²⁾ Закрытый импульсный режим (closed burst mode).

⁽³⁾ Открытый импульсный режим (open burst mode).

⁽⁴⁾ Коэффициент шума приемника.

ТАБЛИЦА 15 **Характеристики рефлектометров, работающих в полосе частот 13,25–13,75** ГГц

Параметр	SCAT-G1	SCAT-G2	SCAT-G3	SCAT-G4
Тип датчика	Рефлектометр	Рефлектометр	Рефлектометр	Рефлектометр
Тип орбиты	CCO	CCO	CCO	CCO
Высота, км	803	963	720	836
Наклонение орбиты, градусы	98,6	99,3	98,28	98,75
Местное солнечное время восходящего узла	06:00	06:00	12:00 (нисходящий узел)	06:00
Период повторения, дни	4	14	2	5,5
Количество лучей	2	2	2	4
Диаметр антенны, м	1	1,3	1	3
Пиковое усиление антенны на передачу, дБи	41	42	39,5	48
Пиковое усиление антенны на прием, дБи	41	42	39,5	48
Поляризация	H (внутренняя), V (внешняя)	HH, VV	HH, VV	HH, VV
Частота сканирования по азимуту, об./мин	18	19,0	21,14	15
Угол обзора луча антенны, градусы	40, 46	35, 41	43,63 (HH), 49,09 (VV)	36, 40
Азимут луча антенны, градусы	0-360	0–360	0–360	0-360
Ширина луча антенны по углу места, градусы	1,6	1	1,67	0,9
Ширина луча антенны по азимуту, градусы	1,6	1	1,47	0,3
Центральная частота радиосигнала, МГц	13 402	13 255,5	13 515	13 350
Ширина полосы РЧ, МГц	0,53	3–6	0,4	2
Пиковая мощность передаваемого сигнала, Вт	100	120	100	1 000
Пиковая э.и.и.м., дБВт	61,0	62,8	20	78,0
Средняя мощность передаваемого сигнала, Вт	30,6	28,8	27	450
Длительность импульсов, мкс	1 700	650–1 200	1 350	1 500
PRF, Гц	180	100-200	200	300
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,000311765	0,005	0,0003	0,0013
Коэффициент заполнения передаваемого сигнала, %	30,6	24	27,0	45
Пиковая э.и.и.м., дБВт	61,0	62,8	59,5	78,0
Средняя э.и.и.м., дБВт	55,9	56,6	53,8	74,5
Коэффициент шума системы, дБ	3,4	4,2	3,0	3,5

ТАБЛИЦА 16 **Характеристики радаров контроля осадков, работающих в полосе частот 13,25–13,75 ГГц**

Параметр	PR-G1	PR-G2	PR-G3
Тип датчика	Радар контроля осадков	Радар контроля осадков	Радар контроля осадков
Тип орбиты	HCC	HCC	HCC
Высота, км	410	407	400
Наклонение орбиты, градусы	50	65	50
Период повторения, дни	11	82	6
Количество лучей	2	1	4
Диаметр/размер антенны	2 м	2,1 м × 2,1 м	5,3 м
Пиковое усиление антенны на передачу/прием, дБи	47	47,4	55
Поляризация	НН	Н	HH, HV
Период сканирования по азимуту, секунды на одно сканирование, с/скан.	0,7	0,7	0,42
Угол обзора луча антенны, градусы	±20	±17	±31
Азимут луча антенны, градусы	±90	±90	±90
Ширина луча антенны по углу места, градусы	0,7	0,7	0,28
Ширина луча антенны по азимуту, градусы	0,7	0,7	0,28
Центральная частота радиосигнала, МГц	13 647, 13 653	13 597, 13 603	13 626, 13 642, 13 658, 13 674
Количество лучей	2	49	4
Ширина полосы РЧ, МГц	0,6 × 2	0,6+0,6	8 × 4
Пиковая мощность передаваемого сигнала, Вт	1 000	1 000	2 000
Средняя мощность передаваемого сигнала, Вт	7,2	12,1	360
Длительность импульсов, мкс	1,6	1,6	40
PRF, Гц	4 500	4 485	4 500
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	Н/п*	Η/π*	0,2
Коэффициент заполнения передаваемого сигнала, %	0,72	1,21/0,67	18
Пиковая э.и.и.м., дБВт	77,0	77,4	88,0
Средняя э.и.и.м., дБВт	55,6	55,7	80,6
Коэффициент шума системы, дБ	5	5,1	3,5

^{*} Немодулированный импульс.

ТАБЛИЦА 17 **Характеристики формирователя изображения РСА, работающего в полосе** частот 13,25–13,75 ГГц

Параметр	SAR-G1
Тип датчика	РСА (радар для определения SWE)
Тип орбиты	CCO
Высота, км	521–550
Наклонение орбиты, градусы	97,48
Местное солнечное время восходящего узла	06:00
Период повторения, дни	27
Тип антенны	Фазированная решетка
Количество лучей	1
Пиковое усиление антенны на передачу/прием, дБи	44–47
Поляризация	Линейная VV, VH
Частота сканирования по азимуту, об./мин	0
Угол обзора луча антенны, градусы	37
Азимут луча антенны, градусы	90
Ширина луча антенны по углу места, градусы	1,4
Ширина луча антенны по азимуту, градусы	0,2-0,5
Центральная частота радиосигнала, МГц	13 500
Ширина полосы РЧ, МГц	8
Пиковая мощность передаваемого сигнала, Вт	≤ 2 000
Средняя мощность передаваемого сигнала, Вт	≤ 358,8
Длительность импульсов, мкс	8–26
PRF, Гц	4 800–6 900
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,31–1,00
Коэффициент заполнения передаваемого сигнала, %	≤ 17,94
Длительность рабочего цикла, %	≤ 25
Коэффициент шума системы, дБ	5

7.9 Типовые параметры активных датчиков, работающих в полосе частот 17,2–17,3 ГГц

Типовые характеристики РСА, работающих в диапазоне 17,25 ГГц, приведены в таблице 18, включая типовые характеристики радаров для определения SWE, работающих на частоте 17,25 ГГц.

ТАБЛИЦА 18 **Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 17,2–17,3** ГГц

Параметр	SAR-H1	SAR-H2
Тип датчика	PCA	PCA (радар для определения SWE)
Тип орбиты	Круговая, ССО	CCO
Высота, км	512	521-550
Наклонение орбиты, градусы	97,9	97,48
Местное солнечное время восходящего узла	06:00	06:00
Период повторения, дни	5	27
Тип антенны	Отражатель со смещенным облучателем в виде линейной антенной решетки	Фазированная решетка
Количество лучей	1	1
Пиковое усиление антенны на передачу/прием, дБи	49	46–49
Поляризация	Линейная (VV, VH)	Линейная VV, VH
Частота сканирования по азимуту, об./мин	0	0
Угол обзора луча антенны, градусы	30–40	37
Азимут луча антенны, градусы	90	90
Ширина луча антенны по углу места, градусы	0,9	1,1
Ширина луча антенны по азимуту, градусы	0,3	0,17-0,35
Центральная частота радиосигнала, МГц	17 250	17 250
Ширина полосы РЧ, МГц	10	8
Пиковая мощность передаваемого сигнала, Вт	4 000	≤ 2 000
Средняя мощность передаваемого сигнала, Вт	360	≤ 358,8
Длительность импульсов, мкс	20–30	8–26
PRF, Гц	1 000–3 000	4 800–6 900
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,5–0,67	0,31–1,00
Коэффициент заполнения передаваемого сигнала, %	2–9	≤ 17,94
Длительность рабочего цикла, %	_	≤ 25
Коэффициент шума системы, дБ	5	5

7.10 Типовые параметры активных датчиков, работающих в полосе частот 24,05-24,25 ГГц

Типовые характеристики бортовых космических радиолокаторов, работающих в полосе частот 24,05-24,25 ГГц (в том числе конкретного радиолокатора, взятого в качестве примера), приведены в таблице 19. Эта полоса частот предназначена для использования радарами контроля осадков и рефлектометрами.

ТАБЛИЦА 19 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 24,05–24,25 ГГц

Параметр	SCAT-I1	PR-I1
Тип датчика	Рефлектометр	Радар контроля осадков
Тип орбиты	Круговая, НСС	Круговая, НСС
Высота, км	803	350
Наклонение орбиты, градусы	98,6	35
Период повторения, дни	4	46
Тип антенны	Отражатель диаметром 0,56 м со смещенным облучателем	Волноводно-щелевая антенная решетка размером 1,18 м
Количество лучей	2	1
Пиковое усиление антенны на передачу/прием, дБи	41	47,4
Поляризация	Н (внутренняя), V (внешняя)	Н
Частота или период сканирования по азимуту, об./мин или с/скан.	18	0,6 с/скан.
Угол обзора луча антенны, градусы	40, 46	±17
Азимут луча антенны, градусы	0–360	±90
Ширина луча антенны по углу места, градусы	1,6	0,71
Ширина луча антенны по азимуту, градусы	1,6	0,71
Центральная частота радиосигнала, МГц	24 150	24 150
Ширина полосы РЧ, МГц	0,53	0,6
Пиковая мощность передаваемого сигнала, Вт	100	578
Средняя мощность передаваемого сигнала, Вт	30,6	2,57
Длительность импульсов, мкс	1 700	1,6
PRF, Гц	180	2 776
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	0,0003118	Н/п
Коэффициент заполнения передаваемого сигнала, %	30,6	0,44
Коэффициент шума системы, дБ	5	7

7.11 Типовые параметры активных датчиков, работающих в полосе частот 35,5–36,0 ГГц

Типовые характеристики РСА, радиолокационных высотомеров и радаров контроля осадков, работающих в полосе частот 35,5–36,0 ГГц, приведены в таблице 20.

ТАБЛИЦА 20 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 35,5–36,0 ГГц

Параметр	ALT-J1	АLТ-J2 (Примечание 1)	ALT-J3	SAR-J1 (Примечание 2)	PR-J1	PR-J2	PR-J3	PR-J4
Тип датчика	Высотомер	Высотомер	Высотомер	PCA	Радар контроля осадков	Радар контроля осадков	Радар контроля осадков	Радар контроля осадков
Тип орбиты	CCO	HCC	HCC	CCO	CCO	HCC	HCC	HCC
Высота, км	800	891	714	780	650	407	410	600
Наклонение орбиты, градусы	98,53	77,6	92	98,6	98,2	65	50	50
Местное солнечное время восходящего узла	18:00	Н/п	Н/п	18:00	13:00	Н/п	Н/п	Н/п
Период повторения, дни	35	22	367	11	53	82	11	6
Диаметр/размер антенны	1,0 м	5 × 0,26 м	1,4 × 1,25 м	3 × 0,6 м (передача), 3 × 2 м (прием)	2,5 × 5 M	0,8 × 0,816 м	1,2 м	2,1 м
Пиковое усиление антенны на передачу, дБи	49,3	48,5	50,2	49,5	60,4	47,4	47	55
Пиковое усиление антенны на прием, дБи	49,3	48,5	50,2	55,0	60,4	47,4	47	55
Поляризация	Круговая	H, V	Линейная	H, V	H, V	Н	НН	HH, HV
Частота или период сканирования по азимуту, об./мин или с/скан.	0	0	0	0	0	0,7 с/скан. ⁽²⁾	0,7 с/скан.	0,42 с/скан.
Угол обзора луча антенны, градусы	0	0	0	30	±2,4	±17	±20	±31
Азимут луча антенны, градусы	0	0	0	90	90	90	±90	±90
Ширина луча антенны по углу места, градусы	0,6	2,7	0,4	2,9	0,2	0,7	0,7	0,28
Ширина луча антенны по азимуту, градусы	0,6	10	0,4	0,16	0,1	0,7	0,7	0,25
Центральная частота радиосигнала, МГц	35 750	35 750	35 750	35 750	35 600	35 547, 35 553	35 547, 35 553	35 526, 35 542, 35 558, 35 574
Ширина полосы РЧ, МГц	480	210	500	40	2,5	$0,6+0,6, \\ 0,3+0,3$	0,6 × 2	8 × 4

ТАБЛИЦА 20 (окончание)

Параметр	ALT-J1	АLТ-J2 (Примечание 1)	ALT-J3	SAR-J1 (Примечание 2)	PR-J1	PR-J2	PR-J3	PR-J4
Пиковая мощность передаваемого сигнала, Вт	2	1 368	3,8(3); 4,3 (4)	3 000	1 500	140	150	300
Средняя мощность передаваемого сигнала, Вт	0,856	40,51	3,4 ⁽³⁾ ; 1,3 ⁽⁴⁾	300	19,3	2,56	27	54
Длительность импульсов, мкс	107	6,7	49 ⁽³⁾ ; 18 ⁽⁴⁾	36,1	1,67	1,6; 3,2	1,6/10/20/40	40
PRF, Гц	4 000	4 420	18 000 ⁽³⁾ ; 15 500–16 800 ⁽⁴⁾	2 770	7 700	4 485	4 500	4 500
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	4,49	31,34	10,2 ⁽³⁾ ; 27,8 ⁽⁴⁾	1,108	1,54	H/π ⁽¹⁾	0,015-0,375	0,2
Коэффициент заполнения передаваемого сигнала, %	42,8	2,96	88,2 ⁽³⁾ ; 29,1 ⁽⁴⁾	10,0	1,28	1,83	0,7–18	18
Пиковая э.и.и.м., дБВт	52,3	79,9	56 ⁽³⁾ ; 56,6 ⁽⁴⁾	74,3	92,2	68,9	68,8	79,8
Средняя э.и.и.м., дБВт	48,6	64,6	55,5 ⁽³⁾ ; 51,2 ⁽⁴⁾	84,3	73,3	47,1	61,4	72,4
Коэффициент шума системы, дБ	3,9	4	4,1	4,5	4	6,3	6	3,5

⁽¹⁾ Немодулированный импульс.

ПРИМЕЧАНИЕ 1. — Этот высотомер представляет собой радиолокационный интерферометрический прибор с двумя антеннами РСА диапазона Ка на противоположных концах 10-метровой балки, каждая из которых ведет передачу и прием импульсов по обе стороны от орбитальной траектории. Углы обзора составляют менее 4,5°, что дает полосу обзора шириной в 120 км.

Ширина полосы частот, равная 210 МГц, обеспечивает поперечное разрешение на местности от 10 м на дальней границе полосы обзора до приблизительно 60 м на ближней границе полосы обзора. Разрешение около 2 м в продольном направлении достигается путем синтезирования апертуры.

ПРИМЕЧАНИЕ 2. – Проект запуска спутников с РСА диапазона Ка для однопроходных интерферометрических измерений находится еще на стадии концептуального планирования. Рассматривается возможность запуска одиночного спутника с несколькими антеннами или двух спутников в составе группировки.

²⁾ Период сканирования по азимуту в секундах на одно сканирование – это длительность одного полного цикла поперечного сканирования.

³⁾ Закрытый импульсный режим (closed burst mode).

⁴⁾ Открытый импульсный режим (open burst mode).

7.12 Типовые параметры активных датчиков, работающих в полосе частот 78–79 ГГц

Типовые характеристики бортовых космических радиолокаторов, работающих в полосе частот 78-79 ГГц (в том числе конкретного радиолокатора, взятого в качестве примера), приведены в таблице 21.

ТАБЛИЦА 21 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 78–79 ГГц

Параметр	PR-K1
Тип датчика	Радар контроля осадков
Тип орбиты	Круговая, НСС
Высота, км	400
Наклонение орбиты, градусы	60
Период повторения, дни	23
Тип антенны	Параболический отражатель
Пиковое усиление антенны на передачу/прием, дБи	61,7
Поляризация	Линейная (Н)
Частота сканирования по азимуту, об./мин	0,197
Угол обзора луча антенны, градусы	0
Азимут луча антенны, градусы	±17
Ширина луча антенны по углу места, градусы	0,71
Ширина луча антенны по азимуту, градусы	0,71
Центральная частота радиосигнала, МГц	78,500
Ширина полосы РЧ, МГц	0,8
Пиковая мощность передаваемого сигнала, Вт	1 000
Средняя мощность передаваемого сигнала, Вт	14
Длительность импульса, мкс	3,33
PRF, Гц	4 250
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	Н/п
Коэффициент заполнения передаваемого сигнала, %	1,42
Коэффициент шума системы, дБ	3

7.13 Типовые параметры активных датчиков, работающих в полосе частот 94–94,1 ГГц

В таблице 22 показаны типовые характеристики радаров профилирования облачности, работающих в полосе частот 94–94,1 $\Gamma\Gamma$ ц.

ТАБЛИЦА 22

Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 94–94,1 ГГц

Параметр	CPR-L1	CPR-L2
Тип датчика	Радар профилирования облачности	Радар профилирования облачности
Тип орбиты	CCO	CCO
Высота, км	705	393
Наклонение орбиты, градусы	98,2	97
Местное солнечное время восходящего узла	13:30	02:00
Период повторения, дни	16	25
Тип антенны	Параболический отражатель с антенной Кассегрена со смещенным облучателем	Параболический отражатель
Диаметр антенны, м	1,85–2,5	2,5
Пиковое усиление антенны на передачу/прием, дБи	63,1–65,2	66
Поляризация	Линейная	ЛСКП (на передачу) ПСКП (на прием)
Угол падения луча антенны на поверхность Земли, градусы	0	0
Частота сканирования по азимуту, об./мин	0	0
Угол обзора луча антенны, градусы	0	0
Азимут луча антенны, градусы	0	0
Ширина луча антенны по углу места, градусы	0,12	0,095
Ширина луча антенны по азимуту, градусы	0,12	0,095
Ширина диаграммы направленности антенны, градусы	0,095–0,108	0,095
Центральная частота радиосигнала, МГц	94,050	94,050
Ширина полосы РЧ, МГц	0,36	7
Пиковая мощность передаваемого сигнала, Вт	1 000	2 200
Средняя мощность передаваемого сигнала, Вт	21,31	44
Длительность импульсов, мкс	3,33	3,3
PRF, Гц	4 300	1 800–7 500
Крутизна внутриимпульсной перестройки частоты, МГц/мкс	H/π ⁽¹⁾	2,1
Коэффициент заполнения передаваемого сигнала, %	1,33	2
Минимальная чувствительность, dBZ	-3035	-3035
Горизонтальное разрешение	0,7–1,9 км	800 м
Вертикальное разрешение, м	250–500	500
Диапазон доплеровских скоростей, м/с	±10	±10
Погрешность определения доплеровской скорости, м/с	1	1
Коэффициент шума системы, дБ	7	7

 $^{^{(1)}}$ Этот датчик использует немодулированные импульсы.

7.14 Типовые параметры активных датчиков, работающих в полосе частот 133,5–134 ГГц

В таблице 23 приведены типовые характеристики радара профилирования облачности с центральной частотой 133,75 ГГц. Столь высокие частоты необходимы для обеспечения чувствительности к мелким частицам льда.

ТАБЛИЦА 23 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 133,5–134 ГГц

Параметр	CPR-M1
Тип датчика	Радар профилирования облачности
Тип орбиты	CCO
Высота, км	705
Наклонение орбиты, градусы	98,2
Местное солнечное время восходящего узла	13:30
Период повторения, дни	16
Диаметр антенны, м	3
Пиковое усиление антенны на передачу/прием, дБи	75
Поляризация	Линейная
Частота сканирования по азимуту, об./мин	0
Угол обзора луча антенны, градусы	0
Азимут луча антенны, градусы	0
Ширина луча антенны по углу места, градусы	0,043
Ширина луча антенны по азимуту, градусы	0,043
Центральная частота радиосигнала, ГГц	133,75
Центральная полосы РЧ, МГц	0,65
Пиковая мощность передаваемого сигнала, Вт	300
Длительность импульса, мкс	1,6
PRF, Γц	4 000
Разрешение по дальности, м	250
Горизонтальное разрешение	0,2 × 0,7 km
Коэффициент шума системы, дБ	8

7.15 Типовые параметры активных датчиков, работающих в полосе частот 237,9–238 ГГц

В таблице 24 приведены типовые характеристики радара профилирования облачности с центральной частотой 237,95 ГГц. Столь высокие частоты необходимы для обеспечения чувствительности к мелким частицам льда.

ТАБЛИЦА 24 Характеристики датчиков систем ССИЗ (активной), работающих в полосе частот 237,9–238 ГГц

Параметр	CPR-N1
Тип датчика	Радар профилирования облачности
Тип орбиты	CCO
Высота, км	705
Наклонение орбиты, градусы	98,2
Местное солнечное время восходящего узла	13:30
Период повторения, дни	16
Диаметр антенны, м	3
Пиковое усиление антенны на передачу/прием, дБи	78
Поляризация	Линейная
Частота сканирования по азимуту, об./мин	0
Угол обзора луча антенны, градусы	0
Азимут луча антенны, градусы	0
Ширина луча антенны по углу места, градусы	0,024
Ширина луча антенны по азимуту, градусы	0,024
Центральная частота радиосигнала, ГГц	237,95
Ширина полосы РЧ, МГц	0,65
Пиковая мощность передаваемого сигнала, Вт	80
Длительность импульсов, мкс	1,6
PRF, Гц	4 000
Разрешение по дальности, м	250
Горизонтальное разрешение	0,1 × 0,7 km
Коэффициент шума системы, дБ	11