

Recommandations

Recommandation UIT-R RS.2105-3 (06/2025)

Série RS: Systèmes de télédétection

Caractéristiques techniques et opérationnelles types des systèmes du service d'exploration de la Terre par satellite (active) utilisant des attributions comprises entre 40 MHz et 238 GHz

Avant-propos

Le rôle du Secteur des radiocommunications est d'assurer l'utilisation rationnelle, équitable, efficace et économique du spectre radioélectrique par tous les services de radiocommunication, y compris les services par satellite, et de procéder à des études pour toutes les gammes de fréquences, à partir desquelles les Recommandations seront élaborées et adoptées.

Les fonctions réglementaires et politiques du Secteur des radiocommunications sont remplies par les Conférences mondiales et régionales des radiocommunications et par les Assemblées des radiocommunications assistées par les Commissions d'études.

Politique en matière de droits de propriété intellectuelle (IPR)

La politique de l'UIT-R en matière de droits de propriété intellectuelle est décrite dans la «Politique commune de l'UIT-T, l'UIT-R, l'ISO et la CEI en matière de brevets», dont il est question dans la Résolution UIT-R 1. Les formulaires que les titulaires de brevets doivent utiliser pour soumettre les déclarations de brevet et d'octroi de licence sont accessibles à l'adresse https://www.itu.int/ITU-R/go/patents/fr, où l'on trouvera également les Lignes directrices pour la mise en œuvre de la politique commune en matière de brevets de l'UIT-T, l'UIT-R, l'ISO et la CEI et la base de données en matière de brevets de l'UIT-R.

	Séries des Recommandations UIT-R
	(Également disponible en ligne: https://www.itu.int/publ/R-REC/fr)
Séries	Titre
ВО	Diffusion par satellite
BR	Enregistrement pour la production, l'archivage et la diffusion; films pour la télévision
BS	Service de radiodiffusion sonore
BT	Service de radiodiffusion télévisuelle
F	Service fixe
M	Services mobile, de radiorepérage et d'amateur y compris les services par satellite associés
P	Propagation des ondes radioélectriques
RA	Radio astronomie
RS	Systèmes de télédétection
S	Service fixe par satellite
SA	Applications spatiales et météorologie
SF	Partage des fréquences et coordination entre les systèmes du service fixe par satellite et du service fixe
SM	Gestion du spectre
SNG	Reportage d'actualités par satellite
TF	Émissions de fréquences étalon et de signaux horaires
V	Vocabulaire et sujets associés

Note: Cette Recommandation UIT-R a été approuvée en anglais aux termes de la procédure détaillée dans la Résolution UIT-R 1.

Publication électronique Genève, 2025

© UIT 2025

Tous droits réservés. Aucune partie de cette publication ne peut être reproduite, par quelque procédé que ce soit, sans l'accord écrit préalable de l'UIT.

RECOMMANDATION UIT-R RS.2105-3

Caractéristiques techniques et opérationnelles types des systèmes du service d'exploration de la Terre par satellite (active) utilisant des attributions comprises entre 40 MHz et 238 GHz

(2017-2021-2023-2025)

Domaine d'application

La présente Recommandation définit les caractéristiques techniques et opérationnelles des systèmes d'exploration de la Terre par satellite (active) utilisant des attributions comprises entre 40 MHz et 238 GHz et destinées à être utilisées dans les études de partage et de compatibilité.

Mots clés

SWE

Service d'exploration de la Terre par satellite (SETS (active)), télédétection, système d'imagerie de radar à synthèse d'ouverture (SAR), altimètre, radar de mesure des précipitations, diffusiomètre, radar profileur de nuages

Abréviations/Glossaire

ARNS	service de radionavigation aéronautique (aeronautical radionavigation service)
FRI	fréquence de répétition des impulsions (pulse repetition frequency)
GPR	radar à pénétration du sol (ground-penetrating radar)
IFOV	champ de vision instantané (instantaneous field of view)
LHCP	circulaire à gauche (left hand circular)
LST	temps solaire local (local solar time)
MBR	mode basse résolution (low resolution mode)
MF	modulation de fréquence (frequency modulation)
MFL	modulation de fréquence linéaire (linear FM)
non OSG	orbite de satellite non géostationnaire (non-geostationary satellite orbit)
NSS	non-héliosynchrone (non-sun-synchronous)
NSS p.i.r.e.	non-héliosynchrone (non-sun-synchronous) puissance isotrope rayonnée équivalente (effective isotropically radiated power)
p.i.r.e.	puissance isotrope rayonnée équivalente (effective isotropically radiated power)
p.i.r.e. pfd	puissance isotrope rayonnée équivalente (effective isotropically radiated power) densité de flux de puissance (power flux-density)
p.i.r.e. pfd RF	puissance isotrope rayonnée équivalente (effective isotropically radiated power) densité de flux de puissance (power flux-density) fréquence radio (radio frequency)
p.i.r.e. pfd RF RHCP	puissance isotrope rayonnée équivalente (effective isotropically radiated power) densité de flux de puissance (power flux-density) fréquence radio (radio frequency) polarisation circulaire à droite (right hand circular polarization)
p.i.r.e. pfd RF RHCP RPN	puissance isotrope rayonnée équivalente (effective isotropically radiated power) densité de flux de puissance (power flux-density) fréquence radio (radio frequency) polarisation circulaire à droite (right hand circular polarization) radar profileur de nuage (cloud profile radar)
p.i.r.e. pfd RF RHCP RPN RSO	puissance isotrope rayonnée équivalente (effective isotropically radiated power) densité de flux de puissance (power flux-density) fréquence radio (radio frequency) polarisation circulaire à droite (right hand circular polarization) radar profileur de nuage (cloud profile radar) radar à synthèse d'ouverture (synthetic aperture radar)

équivalent en eau de la neige (snow water equivalent)

L'Assemblée des radiocommunications de l'UIT,

considérant

- a) que lors de ses observations, le service d'exploration de la Terre par satellite (active) (SETS) est susceptible de recevoir des émissions provenant de services actifs;
- b) que le SETS (active) dispose des mêmes attributions que les services actifs dans certaines bandes;
- c) que des études concernant la protection des systèmes du SETS (active) et contre les systèmes du SETS (active) sont en cours au sein de l'UIT-R;
- d) qu'afin de réaliser des études de compatibilité et de partage avec les systèmes du SETS (active), il faut connaître les caractéristiques techniques et opérationnelles de ces systèmes,

reconnaissant

- *a)* que la Recommandation UIT-R RS.577 fournit des informations sur les largeurs de bande des systèmes à capteurs actifs qu'il est envisagé d'exploiter dans les bandes attribuées entre 40 MHz et 238 GHz;
- b) que plusieurs Recommandations et Rapports UIT-R fournissent des informations sur les caractéristiques présentes et futures des systèmes du SETS (active) fonctionnant dans plusieurs bandes de fréquences (voir l'Annexe, Tableau 2),

recommande

de tenir compte des caractéristiques techniques et opérationnelles spécifiées dans l'Annexe de la présente Recommandation dans les études prenant en considération les systèmes du SETS (active) utilisant des attributions comprises entre 40 MHz et 238 GHz.

Annexe

Caractéristiques techniques et opérationnelles des systèmes du SETS (active) utilisant des attributions comprises entre 40 MHz et 238 GHz

TABLE DES MATIÈRES

		Page
Ann	exe – Caractéristiques techniques et opérationnelles des systèmes du SETS (active) utilisant des attributions comprises entre 40 MHz et 238 GHz	2
1	Introduction	4
2	Types de capteurs actifs et caractéristiques types	4
3	Orbites types	5
4	Critères de qualité de fonctionnement et de brouillage des capteurs actifs	6
5	Partage avec les capteurs actifs	6

	5.1	Recommandations et Rapports UIT-R existants	6
	5.2	Niveaux de puissance surfacique causés par des capteurs actifs spatioportés	8
	5.3	Comportement dynamique du couplage d'antenne avec des systèmes d'autres services	9
6	Défin	ition des paramètres	9
7	Paran	nètres des systèmes types	14
	7.1	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 40-50 MHz	14
	7.2	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 432-438 MHz	15
	7.3	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 1 215-1 300 MHz	16
	7.4	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 3 100-3 300 MHz	18
	7.5	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 5 250-5 570 MHz	19
	7.6	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 8 550-8 650 MHz	24
	7.7	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 9 200-10 400 MHz	25
	7.8	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 13,25-13,75 GHz	28
	7.9	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 17,2-17,3 GHz	34
	7.10	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 24,05-24,25 GHz	36
	7.11	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 35,5-36,0 GHz	37
	7.12	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 78-79 GHz	40
	7.13	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 94-94,1 GHz	40
	7.14	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 133,5-134 GHz	42
	7.15	Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 237 9-238 GHz	42

1 Introduction

Les capteurs actifs sont utilisés pour la télédétection portant sur la Terre et son atmosphère par des satellites d'exploration de la Terre et des satellites météorologiques dans certaines bandes de fréquences attribuées au service d'exploration de la Terre par satellite (SETS) (active). Les données issues de ces capteurs sont largement utilisées en météorologie, en climatologie et dans d'autres disciplines à des fins opérationnelles et scientifiques.

Les caractéristiques techniques et opérationnelles spécifiées dans la présente Recommandation sont utilisées dans les études prenant en considération les systèmes du SETS (active) utilisant des attributions comprises entre 40 MHz et 238 GHz. Cela étant, il convient de noter que certains systèmes du SETS (active) sont en cours de développement et que les valeurs types de certains paramètres doivent être considérées comme préliminaires étant donné qu'elles peuvent encore changer.

2 Types de capteurs actifs et caractéristiques types

Six grands types de capteurs spatiaux actifs sont visés dans la présente Recommandation:

- Type 1: les radars sondeurs capteurs orientés sur le nadir utilisant des fréquences centrales plus basses pour les applications de radar à pénétration du sol (GPR), qui mesurent les échos radar depuis la surface et le sous-sol de la Terre, pour recenser et déterminer les caractéristiques souterraines telles que les aquifères et les inlandsis.
- Type 2: les systèmes d'imagerie de radar à synthèse d'ouverture (RSO) capteurs orientés sur un côté de la trace du nadir et recueillant des données sur l'évolution phasique et temporelle de l'écho radar cohérent à partir duquel il est possible de produire une image radar de la surface de la Terre, en utilisant le retour d'écho ou la topographie des retours interférométriques.
- Type 3: les diffusiomètres capteurs orientés selon divers angles de visée par rapport aux côtés de la trace du nadir et utilisant la mesure des variations de puissance du retour d'écho en fonction de l'angle de relèvement, dans le but de déterminer la rugosité de la surface terrestre ou la direction et la vitesse des vents sur la surface océanique.
- Type 4: les altimètres capteurs orientés sur le nadir mesurant précisément le temps écoulé entre une émission et une réception afin d'obtenir l'altitude exacte de la surface des océans.
- Type 5: les radars de précipitations capteurs à balayage perpendiculaire par rapport à la trace du nadir mesurant les échos radar produits par la pluie pour déterminer l'intensité des précipitations au-dessus de la surface terrestre et la structure tridimensionnelle de celles-ci.
- Type 6: les radars profileurs de nuages capteurs orientés sur le nadir mesurant les retours d'écho des nuages afin d'obtenir le profil de la réflectivité des nuages au-dessus de la surface terrestre.

Le Tableau 1 présente quelques caractéristiques types de capteurs actifs spatioportés. Les caractéristiques réelles des systèmes fonctionnant dans les diverses bandes de fréquences indiquées au § 7 de la présente Recommandation peuvent s'écarter considérablement des valeurs caractéristiques types du Tableau 1.

TABLEAU 1
Caractéristiques types des capteurs actifs spatioportés

	Type de capteur					
Caractéristique	Sondeur radar	Système d'imagerie RSO	Diffusiomètre	Altimètre	Radar de mesure des précipitations	Radar profileur de nuages
Zone de service	Terres/glace	Terres/côtes/ océans	Océans/glace/ terres/côtes	Océans/glace/ côtes/eaux intérieures	Terres/ océans	Terres/ océans
Faisceau de l'antenne	Faisceau large	Faisceau en éventail	Faisceauxen éventailFaisceaux- pinceau	Faisceau- pinceau	Faisceau- pinceau	Faisceau- pinceau
Géométrie de visée	Visée du nadir	Balayage latéral à 10°-60° par rapport au nadir	 Trois/six faisceaux en éventail à l'azimut Un ou plusieurs faisceaux à balayage conique 	 Visée du nadir Visée multiinicidences 	Exploration transversale par rapport au nadir	Visée du nadir
Empreinte/dynamique	Fixe au nadir	 Fixe sur un côté ScanSAR Mode bande Spotlight 	 Fixe à l'azimut Multiples faisceaux à balayage conique 	 Fixe au nadir Visée multi-incidences 	Balayage en travers de la trace du nadir	Fixe au nadir
Largeur de bande RF	10 MHz	≤ 10 à 1 200 MHz	5-80 kHz (océans) ou 1-4 MHz (terres)	320-500 MHz	14 MHz	300 kHz
Puissance de crête émise (W)	100	1 500-16 000	100-5 000	20	600	1 000-1 500
Forme d'onde	Impulsions linéaires MF	Impulsions linéaires MF	Impulsions courtes ou entretenues interrompues (océans) ou impulsions linéaires MF (terres)	Impulsions linéaires MF	Impulsions courtes	Impulsions courtes
Facteur d'utilisation de l'émetteur (%)	10,2	1-30	31 (océans) ou 10 (terres)	46	0,9	1-14

3 Orbites types

Les systèmes SETS (active) fonctionnent sur des orbites de satellites non géostationnaires (non OSG). Les orbites sont en général circulaires à une altitude comprise entre 350 et 1 400 km. Quelques systèmes du SETS (active) fonctionnent sur une orbite héliosynchrone. Certains capteurs font des mesures chaque jour sur le même emplacement de la Terre, tandis que d'autres répètent leurs observations selon une période de répétition plus longue (souvent supérieure à deux semaines).

Dans certaines circonstances, plusieurs satellites fonctionnent en formation. Le vol en formation de satellites du SETS permet de mesurer différentes caractéristiques du système terrestre (terres, océans, atmosphère, cryosphère et solide terrestre) au moyen de plusieurs instruments et selon plusieurs orientations. Les mesures faites par plusieurs engins spatiaux seront séparées par un intervalle de temps plus court que la constante de temps du phénomène mesuré. Cet intervalle est essentiellement compris entre 5 et 15 min, mais peut aussi être très inférieur (quelques secondes).

4 Critères de qualité de fonctionnement et de brouillage des capteurs actifs

Les critères de qualité de fonctionnement, de brouillage et de disponibilité des données pour les différentes catégories de capteurs spatiaux actifs sont décrits dans la Recommandation UIT-R RS.1166. Il est nécessaire de définir des objectifs de qualité de fonctionnement applicables aux capteurs spatiaux actifs pour pouvoir élaborer des critères de brouillage. À leur tour, les critères de brouillage peuvent servir à évaluer la compatibilité d'autres services actifs et capteurs actifs exploités dans des bandes de fréquences communes.

5 Partage avec les capteurs actifs

5.1 Recommandations et Rapports UIT-R existants

Les considérations relatives au partage entre les capteurs actifs spatioportés dans le SETS (active) et d'autres services figurent dans les Recommandations et Rapports UIT-R énumérés dans le Tableau 2. Ces Recommandations et Rapports concernent des bandes ou des gammes de fréquences précises et les autres services exploités dans ces bandes.

Les considérations relatives au partage des capteurs actifs spatioportés comprennent le niveau de puissance surfacique (pfd) et la puissance de brouillage reçus à la surface de la Terre, le type de signal RF émis, le comportement dynamique du couplage d'antenne avec des systèmes d'autres services, et les types de systèmes dans les autres services.

TABLEAU 2
Liste de documents UIT-R contenant des considérations relatives au partage des capteurs actifs

	Recommandations
UIT-R RS.1260	Possibilité de partage de fréquences entre les capteurs spatiaux actifs et les systèmes d'autres services fonctionnant entre 420 et 470 MHz
UIT-R RS.1261	Faisabilité du partage entre radars de nuages placés à bord d'engins spatiaux et d'autres services dans la bande 92-95 GHz
UIT-R RS.1280	Choix des caractéristiques d'émission des capteurs actifs spatioportés visant à atténuer les risques de brouillage causé aux radars terrestres fonctionnant dans les bandes comprises entre 1 et 10 GHz
UIT-R RS.1281	Protection des stations du service de radiolocalisation contre les émissions des capteurs actifs spatioportés dans la bande 13,4-13,75 GHz
UIT-R RS.1282	Possibilité de partage entre les radars profileurs de vent et les capteurs actifs spatioportés au voisinage de 1 260 MHz

TABLEAU 2 (suite)

	Recommandations
UIT-R RS.1347	Faisabilité du partage des fréquences entre les récepteurs du service de radionavigation par satellite, le service (actif) d'exploration de la Terre par satellite et les services (actifs) de recherche spatiale dans la bande 1 215-1 260 MHz
UIT-R RS.1628	Faisabilité du partage de la bande 35,5-36 GHz entre, d'une part, le service d'exploration de la Terre par satellite (active) et le service de recherche spatiale (active) et, d'autre part, d'autres services bénéficiant d'attribution dans cette bande
UIT-R RS.1632	Partage dans la bande 5 250-5 350 MHz entre le service d'exploration de la Terre par satellite (active) et les systèmes d'accès hertzien (y compris les réseaux locaux radioélectriques) dans le service mobile
UIT-R RS.1749	Technique de réduction des brouillages pour faciliter l'utilisation de la bande 1 215-1 300 MHz de la part du service d'exploration de la Terre par satellite (active) et du service de recherche spatiale (active)
UIT-R RS.2042	Caractéristiques techniques et opérationnelles types des systèmes de sondage radar spatioportés utilisant la bande 40-50 MHz
UIT-R RS.2043	Caractéristiques des radars à ouverture synthétique fonctionnant dans le service d'exploration de la Terre par satellite (active) au voisinage de 9 600 MHz
UIT-R RS.2065	Protection des liaisons espace vers Terre du service de recherche spatiale dans les bandes 8 400-8 450 MHz et 8 450-8 500 MHz contre les rayonnements non désirés des radars à ouverture synthétique fonctionnant dans le service d'exploration de la Terre par satellite (active) au voisinage de 9 600 MHz
UIT-R RS.2066	Protection du service de radioastronomie dans la bande de fréquences 10,6-10,7 GHz contre les rayonnements non désirés des radars à synthèse d'ouverture fonctionnant dans le service d'exploration de la Terre par satellite (active) au voisinage de 9 600 MHz
	Rapports
UIT-R RS.2068	Utilisation de la bande au voisinage de 13,5 GHz par les capteurs actifs
UIT-R RS.2094	Études relatives à la compatibilité entre le service d'exploration de la Terre par satellite (actif) et le service de radiorepérage dans les bandes 9 300-9 500 MHz et 9 800-10 000 MHz, et entre le service d'exploration de la Terre par satellite (actif) et le service fixe dans la bande 9 800-10 000 MHz
UIT-R RS.2165	Évaluation du brouillage par impulsions susceptible d'être causé par les capteurs radar à ouverture synthétique spatioportés existants ou futurs du service d'exploration de la Terre par satellite (active) aux récepteurs du service de radionavigation par satellite dans la bande de fréquences 1 215-1 300 MHz
UIT-R RS.2178	Rôle essentiel et importance à l'échelle mondiale de l'utilisation du spectre des fréquences radioélectriques pour les observations de la Terre et les applications connexes
UIT-R RS.2273	Brouillages éventuels causés par les diffusiomètres du SETS (active) aux systèmes du SRNA dans la bande de fréquences 1 215-1 300 MHz
UIT-R RS.2274	Besoins de spectre pour les applications des radars spatioportés à synthèse d'ouverture que l'on envisage d'exploiter dans une attribution élargie au service d'exploration de la Terre par satellite au voisinage de 9 600 MHz

TABLEAU 2 (fin)

	Rapports
UIT-R RS.2310	Niveaux de brouillage dans le cas le plus défavorable causés par le couplage d'antenne lobe principal à lobe principal des systèmes du service de radiolocalisation aux récepteurs des capteurs actifs du service d'exploration de la Terre par satellite (active) dans la bande 35,5-36,0 GHz
UIT-R RS.2311	Mesures de l'incidence des signaux radiofréquences pulsés et techniques possibles d'atténuation des brouillages entre les systèmes du service d'exploration de la Terre par satellite (active) et les systèmes et réseaux du SRNS dans la bande 1 215-1 300 MHz
UIT-R RS.2313	Analyses relatives au partage entre les transmissions large bande des radars du service d'exploitation de la Terre par satellite (active) et les stations du service de radiorepérage fonctionnant dans les bandes de fréquences 8 700-9 300 MHz et 9 900-10 500 MHz
UIT-R RS.2314	Analyses relatives au partage entre les transmissions large bande des radars SAR du SETS et les stations des services fixe, mobile, d'amateur et d'amateur par satellite fonctionnant dans les bandes de fréquences 8 700-9 300 MHz et 9 900-10 500 MHz
UIT-R RS.2536	Études de partage et de compatibilité concernant les sondeurs radar spatioportés dans la bande de fréquences 40-50 MHz
UIT-R RS.2537	Caractéristiques techniques représentatives des capteurs radar à ouverture synthétique spatioportés du service d'exploration de la Terre par satellite (active) et des stations terriennes de réception du service de radionavigation par satellite (SRNS) et méthode d'analyse générale utilisée pour évaluer le brouillage par impulsions susceptible d'être causé aux stations terriennes de réception du SRNS dans la bande de fréquences 1 215-1 300 MHz

5.2 Niveaux de puissance surfacique causés par des capteurs actifs spatioportés

Les caractéristiques des divers types de capteurs actifs spatioportés données dans le Tableau 1 indiquent que la puissance de crête de l'émetteur et, par conséquent, les niveaux de puissance reçus à la surface de la Terre varient beaucoup. Le Tableau 3 montre les niveaux de puissance surfacique à la surface de la Terre pour certaines configurations types de capteurs actifs.

TABLEAU 3 Niveaux de puissance surfacique types à la surface de la Terre

	Type de capteur					
Paramètre	Sondeur radar	Système d'imagerie RSO	Altimètre	Diffusiomètre	Radar de mesure des précipitations	Radar profileur de nuages
Puissance de crête émise (W)	100	1 500	20	100	578	630
Gain d'antenne (dBi)	10	36,4	43,3	34	47,7	63,4
Altitude (km)	400	695	1 344	1 145	350	400
pfd (dB(W/m ²))	-93,03	-59,67	-77,25	-78,17	-46,55	-31,64

5.3 Comportement dynamique du couplage d'antenne avec des systèmes d'autres services

La géométrie de visée et l'empreinte/la dynamique des capteurs actifs sont présentées au Tableau 1. Les six types de capteurs actifs sont installés dans un engin spatial et ils sont orientés vers la surface de la Terre.

Les radars RSO présentent un angle d'ouverture (angle entre le nadir et le centre du faisceau) compris entre 10 degrés et 55 degrés. Les diffusiomètres présentent un angle d'ouverture d'environ 40 degrés par rapport au nadir.

Les sondeurs radar, les altimètres, les radars de mesure des précipitations et les radars profileurs de nuages sont orientés dans la direction du nadir. En général, les radars de veille de Terre couvrent des angles d'élévation peu importants; ils ne produisent donc pas de couplage de lobe principal à lobe principal avec les sondeurs radar, les altimètres, les radars de mesure des précipitations et les radars profileurs de nuages.

Le capteur spatioporté balaye les systèmes de Terre lorsque l'engin spatial avance sur son orbite. Dans le cas d'une ouverture de faisceau de capteur égale à 2 degrés, le faisceau balaye le système de Terre pendant 2 à 3 secondes environ. En règle générale, les radars RSO sont orientés sur un côté de la trace du nadir selon un angle de visée imposé ou selon divers angles de visée dans le cas des modes ScanSAR. Les diffusiomètres sont fixes, à divers angles d'azimut, ou effectuent un balayage conique autour du nadir au moyen d'un ou plusieurs faisceaux. Dans le cas d'une ouverture de faisceau de capteur égale à 2 degrés, le faisceau à balayage conique balaye le système de Terre pendant moins de 25 millisecondes pour une vitesse de balayage de 15 tpm. En règle générale, les radars de veille de Terre effectuent également un balayage de 360 degrés en azimut à une vitesse comprise entre 5 et 10 tpm, de sorte que le faisceau d'un tel radar de 1 degré d'ouverture balaye le capteur spatioporté pendant 30 à 60 millisecondes seulement. Les radars de mesure des précipitations sont généralement orientés dans la direction du nadir et balayent en travers de la trace du nadir. Dans le cas d'un capteur présentant une ouverture de faisceau de 0,7 degré, le faisceau à balayage transversal du radar de mesure des précipitations balaye le système de Terre pendant 12,5 millisecondes seulement à une vitesse de balayage de 57 degrés/seconde environ. Les sondeurs radar, les altimètres et les radars profileurs de nuages sont généralement orientés dans la direction du nadir.

6 Définition des paramètres

Cette section fournit la définition des paramètres utilisés pour caractériser les opérations des capteurs actifs dont il est question dans la présente Recommandation.

TABLEAU 4 **Définition des paramètres**

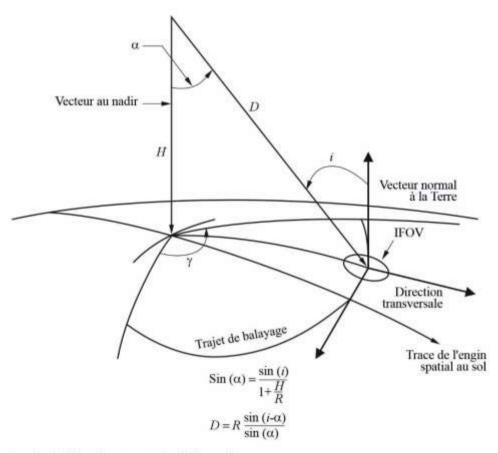
Paramètre	Définition
Type de capteur	L'un des six types décrits au § 1 de la présente Recommandation
Paramètres d'orbite	
Type d'orbite	Par exemple: circulaire ou elliptique, héliosynchrone ou non héliosynchrone
Altitude (km)	Hauteur par rapport au niveau moyen de la mer
Inclinaison (degrés)	Angle entre l'équateur et le plan de l'orbite
Nœud ascendant (heure solaire locale)	L'heure solaire locale du nœud ascendant est l'heure solaire locale à laquelle l'orbite ascendante de l'engin spatial croise l'équateur

TABLEAU 4 (suite)

Paramètre	Définition
Excentricité	Rapport de la distance entre le foyer de l'orbite (elliptique) et la longueur du grand axe
Période de répétition (jours)	Temps mis par l'empreinte du faisceau de l'antenne pour revenir (approximativement) au même lieu géographique
Paramètres de l'antenne d	lu capteur
Les caractéristiques de l'ant	enne varient selon les capteurs.
Type d'antenne	Par exemple: antenne parabolique à alimentation excentrée vers réseau actif à commande de phase, guide d'ondes passif vers réseau actif à commande de phase, réseau de guides d'ondes à fentes plan
Nombre de faisceaux	Nombre d'emplacements sur la Terre depuis lesquels les données sont recueillies en même temps
Diamètre de l'antenne (m) ou taille de l'antenne ou taille/diamètre de l'antenne	Diamètre du réflecteur de l'antenne (le cas échéant), ou longueur et largeur du réseau d'éléments plan (le cas échéant)
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi) et/ou Valeur de crête du gain d'antenne à l'émission (dBi) et/ou Valeur de crête du gain d'antenne à la réception (dBi)	La valeur de crête du gain d'antenne à l'émission/à la réception désigne le rapport de la puissance émise/reçue/reçue par une antenne isotrope, respectivement. Le gain d'antenne maximal (valeur de crête) est égal à la valeur mesurée ou à la valeur calculée (si la valeur mesurée n'est pas connue). Dans le cas des réflecteurs paraboliques, le gain d'antenne maximal peut être calculé à partir du rendement η de l'antenne, du diamètre D du réflecteur (le cas échéant) et de la longueur d'ondes λ des rayonnements émis/reçus (D et λ étant exprimés dans la même unité): $Gain\ d'antenne\ maximal = \eta\left(\pi\frac{D}{\lambda}\right)^2$ Dans le cas des antennes réseaux à éléments plan, le gain maximal peut être calculé à partir du rendement η de l'antenne, de la longueur l et de la largeur l 0 du réseau à éléments plan (le cas échéant) et de la longueur d'ondes l 1 des rayonnements émis/reçus (où l 1, l 2 et l 3 sont exprimés dans la même unité) au moyen de la formule suivante:
	Gain d'antenne maximal = $\eta 4\pi lw/\lambda^2$
Polarisation	Plan décrivant la direction d'oscillation de toutes les ondes du rayonnement entrant/sortant. Pour la polarisation circulaire, ce plan tourne autour de la direction de propagation. Indication de la polarisation rectiligne (horizontal (H) ou vertical (V)) ou circulaire (polarisation circulaire dextrogyre (RHCP) ou polarisation circulaire lévogyre (LHCP)). NOTE – La polarisation «HV» signifie que la polarisation «H» est utilisée en émission et «V» en réception, et inversement pour la polarisation «VH».
Ouverture de faisceau à -3 dB (degrés)	L'ouverture de faisceau à -3 dB, θ_{3dB} , (également appelée ouverture de faisceau à mi-puissance (HPBW)) est définie comme étant l'angle entre les deux directions dans lesquelles l'intensité rayonnée est égale à la moitié de la valeur maximale.

TABLEAU 4 (suite)

Paramètre	Définition
Champ IFOV	Le champ de vision instantané (IFOV) est la zone au-dessus de laquelle le détecteur effectue sa mesure. Connaissant l'altitude du satellite, on peut calculer le champ IFOV à la surface de la Terre au point du nadir: ce champ est généralement exprimé en km × km. L'IFOV est une mesure de la taille de l'élément de résolution.
	 Dans un système d'exploration, l'IFOV désigne l'angle solide sous-tendu par le détecteur lorsque le mouvement d'exploration est arrêté. Dans le cas des radars à balayage conique, on calcule en général deux valeurs: dans la direction de la trace: dans la direction du déplacement de la plate-forme (le long de la direction de la trace); dans la direction transversale: dans la direction perpendiculaire au déplacement de la plate-forme du capteur. Dans le cas des radars à balayage dans la direction du nadir, tels que celui illustré à la Fig. 1, IFOV au nadir = Hθ_{3dB}, où H est l'altitude du satellite et θ_{3dB}, l'ouverture du faisceau à mi-puissance.
Angle d'incidence de l'antenne au niveau de la Terre (degrés)	Angle entre la direction de pointage et la normale par rapport à la surface de la Terre. Il s'agit de l'angle <i>i</i> de la Fig. 1 (dans certains cas, l'angle par rapport au nadir est donné).
Vitesse de balayage en azimut (tpm)	La vitesse de balayage en azimut désigne le nombre de révolutions de 360 degrés par minute effectuées par l'antenne en azimut.
Angle de visée du faisceau de l'antenne (degrés)	L'angle de visée du faisceau de l'antenne, α , désigne l'angle entre l'axe de visée de l'antenne et le nadir; il est parfois appelé angle de pointage par rapport au nadir. Certains systèmes fournissent l'angle incident, i , à la place de l'angle α . Il s'agit des angles α et i de la Fig. 1.
Angle d'azimut du faisceau de l'antenne (degrés)	L'angle d'azimut du faisceau de l'antenne désigne l'angle formé par l'axe de visée de l'antenne et le vecteur vitesse dans le plan défini par le vecteur vitesse et le vecteur normal à l'orbite négatif (voir la Fig. 2).
Ouverture de faisceau en élévation (degrés)	L'ouverture de faisceau en élévation désigne l'angle formé par les points à -3 dB du faisceau, dans la direction de l'élévation ou dans la direction transversale.
Ouverture de faisceau en azimut (degrés)	L'ouverture de faisceau en azimut désigne l'angle formé par les points à -3 dB du faisceau, dans la direction de l'azimut ou dans le sens de la trace.
Largeur de fauchée (km)	La largeur de fauchée désigne la distance linéaire au sol couverte dans la direction transversale.
Efficacité du faisceau principal (%)	La zone couverte par le faisceau principal est définie comme étant la dimension angulaire d'un cône dont l'angle ouvert est égal à 2,5 fois l'ouverture de faisceau à -3 dB mesurée. L'efficacité du faisceau principal est définie comme étant le rapport entre l'énergie reçue dans le faisceau principal et l'énergie reçue dans le diagramme complet de rayonnement de l'antenne.
Dynamique du faisceau	La dynamique du faisceau est définie comme suit: – pour l'exploration conique, il s'agit de la vitesse de rotation du faisceau; – pour l'exploration au nadir, il s'agit du nombre d'explorations par seconde.
Diagramme d'antenne du capteur	Gain de l'antenne en fonction de l'angle hors axe


TABLEAU 4 (suite)

Paramètre	Définition
Caractéristiques de l'éme	etteur
Fréquence centrale RF (MHz)	La fréquence centrale RF désigne la fréquence autour de laquelle la largeur de bande du signal émis est centrée.
Largeur de bande RF (MHz)	La largeur de bande RF désigne la largeur de bande à -3 dB du signal émis. En règle générale, dans les analyses de compatibilité, il s'agit également de la valeur utilisée comme largeur de bande du récepteur.
Puissance de crête d'émission (W)	La puissance de crête d'émission désigne la puissance de crête de l'enveloppe de la forme d'onde à l'émission.
Puissance moyenne d'émission (W)	La puissance moyenne d'émission désigne le produit de la puissance de crête de l'enveloppe de la forme d'onde à l'émission par le facteur d'utilisation de l'émetteur.
Largeur d'impulsion (μs)	La largeur d'impulsion désigne la durée à mi-puissance de l'impulsion émise.
Fréquence FRI (Hz)	La fréquence de répétition des impulsions (FRI) désigne la fréquence des signaux d'impulsion émis.
Taux de fluctuation (MHz/μs)	Le taux de fluctuation d'une impulsion MF linéaire désigne le rapport entre la largeur de bande RF en MHz et la largeur d'impulsion en μs.
Facteur d'utilisation de l'émetteur (%)	Le facteur d'utilisation de l'émetteur désigne le produit de la largeur d'impulsion de l'émetteur par la fréquence de répétition des impulsions.
Facteur d'utilisation opérationnel (%)	Pourcentage de temps pendant lequel l'émetteur est actif par orbite (ce paramètre peut varier selon le mode opérationnel)
p.i.r.e. de crête (dBW)	La puissance isotrope rayonnée équivalente (p.i.r.e.) de crête désigne la quantité de puissance qu'une antenne isotrope théorique rayonnerait pour produire la densité de puissance de crête observée dans la direction de gain d'antenne maximal; la p.i.r.e. de crête est le produit de la puissance de crête à l'émission et de la valeur de crête du gain d'antenne en dBW.
p.i.r.e. moyenne (dBW)	La puissance isotrope rayonnée équivalente (p.i.r.e.) moyenne désigne la quantité de puissance qu'une antenne isotrope théorique rayonnerait pour produire la densité de puissance moyenne observée dans la direction de gain d'antenne maximal; la p.i.r.e. est le produit de la puissance moyenne à l'émission et de la valeur de crête du gain d'antenne en dBW.
Paramètres du récepteur	du capteur
Temps d'illumination du capteur	Le <i>temps d'illumination du capteur</i> désigne la période de temps attribuée pour la mesure, par le détecteur du capteur, de l'écho émis par la zone d'observation instantanée ou le champ de vision.
Sensibilité (dBZ)	La sensibilité d'un radar de mesure des précipitations ou d'un radar profileur de nuages désigne la réflectivité <i>minimale</i> détectable Z (mm ⁶ /m ³) du radar en dBZ.
Facteur de bruit du système (dB) ou	Le facteur de bruit du système désigne le rapport entre le rapport signal/bruit des puissances à l'entrée $(S/N)_i$ et le rapport signal/bruit des puissances à la sortie $(S/N)_o$.
Température de bruit du système (K)	La température de bruit est une mesure exprimant la puissance de bruit disponible introduite par un composant ou une source. La température de bruit du système désigne la température de bruit de l'antenne plus la température de bruit du premier étage du récepteur; les autres contributions à la température de bruit du système sont en général négligeables lorsque le gain du premier étage du récepteur est supérieur à 16 dB.

TABLEAU 4 (fin)

Paramètre	Définition					
Résolution spatiale de mesure						
Résolution en portée (m)	La résolution spatiale est souvent définie comme étant la capacité à					
Résolution en azimut (m)	distinguer deux objets étroitement espacés sur une image. Elle est généralement exprimée à la fois en résolution horizontale ou en portée (habituellement transversale) et en résolution verticale ou en azimut (le long de la trace) (à noter que «vertical» dans ce sens ne se rapporte pas à l'altitude.)					

FIGURE 1 Configuration de balayage type d'un diffusiomètre à exploration conique

- i: Angle d'incidence au centre de l'empreinte
- α: Angle par rapport au nadir
- γ: Angle de balayage total
- H: Altitude au-dessus du niveau moyen de la mer
 D: Distance au centre du champs de vision
- R: Rayon de la Terre (non représenté)

RS.2105-01

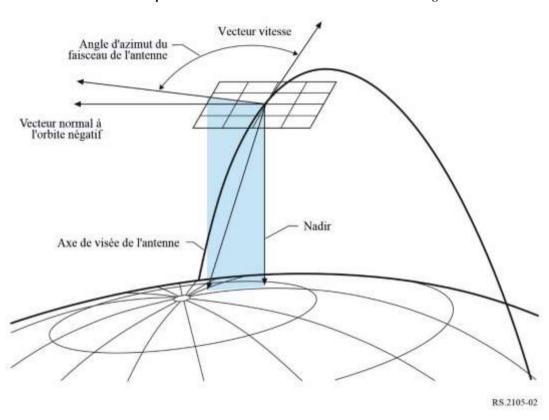


FIGURE 2
Plan défini par le vecteur vitesse et le vecteur normal à l'orbite négatif

7 Paramètres des systèmes types

La présente section spécifie des paramètres types de capteurs actifs pour les bandes attribuées au SETS (active) entre 40 MHz et 238 GHz. Un ensemble cohérent de paramètres est utilisé pour chaque bande en vue des analyses statiques et dynamiques dans les cas les plus défavorables.

7.1 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 40-50 MHz

Les sondeurs radar fonctionnant à 45 MHz sont des capteurs hyperfréquences actifs qui utilisent la bande de fréquences 40-50 MHz pour parvenir à un compromis entre la profondeur de la pénétration et la résolution. Ils peuvent être utilisés pour établir une cartographie détaillée de la distribution spatiale des aquifères peu profonds (de l'ordre de 10 à 100 m de profondeur) dans les régions arides, ainsi que pour réaliser la topographie de l'interface basale et déterminer l'épaisseur des inlandsis (de l'ordre de 5 km). Les caractéristiques types des sondeurs radar fonctionnant à 45 MHz sont indiquées dans le Tableau 5. On trouvera des informations supplémentaires dans la Recommandation UIT-R RS.2042-2.

TABLEAU 5

Caractéristiques des missions du SETS (active) dans la bande de fréquences 40-50 MHz

Paramètre	SNDR-AA1			
Type de capteur	Sondeur radar			
Type d'orbite	Circulaire, héliosynchrone			
Altitude (km)	400			
Inclinaison (degrés)	97			
Noeud ascendant (heure solaire locale)	04 h 00			
Période de répétition (jours)	548			
Type d'antenne	Yagi croisée à neuf éléments			
Nombre de faisceaux	1			
Gain de crête de l'antenne à l'émission/à la réception (dBi)	10			
Polarisation	Circulaire			
Vitesse de balayage en azimut (tpm)	0			
Angle de visée du faisceau de l'antenne (degrés)	0			
Angle d'azimut du faisceau de l'antenne (degrés)	0			
Ouverture du faisceau en élévation (degrés)	40			
Ouverture du faisceau en azimut (degrés)	40			
Fréquence centrale RF (MHz)	45			
Largeur de bande RF (MHz)	10			
Puissance de crête d'émission (W)	100			
Puissance moyenne d'émission (W)	10,2			
Largeur d'impulsion (μs)	85			
Fréquence FRI (Hz)	1 200			
Taux de fluctuation (MHz/μs)	0,1176			
Facteur d'utilisation de l'émetteur (%)	10,2			
Facteur d'utilisation opérationnel (%)	6,25			
p.i.r.e. de crête (dBW)	30,0			
p.i.r.e. moyenne (dBW)	20,1			
Facteur de bruit du système (dB)	5			

7.2 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 432-438 MHz

Les radars RSO à 435 MHz sont des capteurs hyperfréquences actifs qui utilisent la bande de fréquences 432-438 MHz pour effectuer des observations de la Terre indépendantes des conditions météorologiques, de jour comme de nuit. Les fréquences basses permettent de pénétrer dans les couvertures végétales afin d'élaborer des modèles de végétation à l'échelle du globe pour améliorer la quantification du cycle planétaire du carbone. Les caractéristiques types des radars RSO à 435 MHz sont présentées dans le Tableau 6.

TABLEAU 6

Caractéristiques des missions du SETS (active) dans la bande de fréquences 432-438 MHz

Paramètre	RSO-A1
Type de capteur	RSO
Type d'orbite	Héliosynchrone
Altitude (km)	665
Inclinaison (degrés)	98,1
Noeud ascendant (heure solaire locale)	06 h 00
Période de répétition (jours)	17
Nombre de faisceaux	1
Diamètre de l'antenne (m)	12
Gain de crête de l'antenne à l'émission (dBi)	33,6
Gain de crête de l'antenne à la réception (dBi)	33,6
Polarisation	Rectiligne H, V
Vitesse de balayage en azimut (tpm)	0
Angle de visée du faisceau de l'antenne (degrés)	22,7; 25,9; 28,2
Angle d'azimut du faisceau de l'antenne (degrés)	86,2-93,8
Ouverture du faisceau en élévation (degrés)	4,8
Ouverture du faisceau en azimut (degrés)	3,2
Fréquence centrale RF (MHz)	435
Largeur de bande RF (MHz)	6
Puissance de crête d'émission (W)	170
Puissance moyenne d'émission (W)	10
Largeur d'impulsion (µs)	38
Fréquence FRI (Hz)	1 550 (maximum)
Taux de fluctuation (MHz/μs)	0,200; 0,182; 0,1861
Facteur d'utilisation de l'émetteur (%)	5,9
p.i.r.e. de crête (dBW)	55,9
p.i.r.e. moyenne (dBW)	43,6
Facteur de bruit du système (dB)	3

7.3 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 1 215-1 300 MHz

Les radars RSO à 1,25 GHz sont des capteurs hyperfréquences actifs qui utilisent la bande de fréquences 1 215-1 300 MHz pour effectuer des observations de la Terre indépendantes des conditions météorologiques, de jour comme de nuit. Les radars RSO peuvent disposer de plusieurs modes, parmi lesquels les modes de cartographie à résolution élevée, les modes de cartographie à résolution moyenne et les modes scanSAR. Les caractéristiques types des radars RSO exploités dans la bande de fréquences 1 215-1 300 MHz sont présentées dans le Tableau 7.

Le Tableau 7 donne les caractéristiques des diffusiomètres terrestres types fonctionnant dans la bande de fréquences 1 215-1 300 MHz.

TABLEAU 7
Caractéristiques des missions du SETS (active) dans la bande de fréquences 1 215-1 300 MHz

Paramètre	DIFF-B1	DIFF-B2	RSO-B1	RSO-B2	RSO-B3	RSO-B4
Type de capteur	Diffusiomètre	Diffusiomètre	RSO	RSO	RSO	RSO
Type d'orbite	Circulaire, héliosynchrone	Circulaire, héliosynchrone	Circulaire, héliosynchrone	Circulaire, héliosynchrone	Quasi circulaire, héliosynchrone	Circulaire, héliosynchrone
Altitude (km)	670	657	747	628	693	628
Inclinaison (degrés)	98	98	98,4	97,9	98,18	97,9
Noeud ascendant (heure solaire locale)	18 h 00	18 h 00	06 h 00	00 h 00	18 h 00	00 h 00
Période de répétition (jours)	3	7	12	14	12	14
Type d'antenne	Réflecteur parabolique excentré	Réflecteur parabolique excentré à trois alimentations	Réflecteur maillé déployable	Antenne réseau à commande de phase	Antenne réseau à commande de phase	Antenne réseau à commande de phase
Nombre de faisceaux	1	3	1	1	1	1
Taille/diamètre d'antenne	6 m	2,5 m	12 m	9,9 m × 2,9 m	11 m × 3,6 m	9,9 × 3,9 m
Valeur de crête du gain d'antenne à l'émission (dBi)	36	28,1	35	34,7	33,5 (double pol), 34,6 (quad pol), 39,5 (mode onde) ⁽¹⁾	35,2
Valeur de crête du gain d'antenne à la réception (dBi)	36	28,1	45	36,6	25,4	33,4
Polarisation	Double, rectiligne H, V	Double, rectiligne H, V	Double/quad, circulaire, rectiligne H, V	Double/quad, circulaire, rectiligne H, V	Simple/double/ quad, rectiligne H, V	Double/quad, rectiligne H, V
Vitesse de balayage en azimut (tpm)	13,0-14,6	0	0	0	0	0
Angle de visée du faisceau de l'antenne (degrés)	34	25,9/33,9/40,3	37 (émission), 20-40 (réception)	7,2-59	25,2-38,7	7,2-59
Angle d'azimut du faisceau de l'antenne (degrés)	0-360	99,7/74,8/96,5	90	±90/±3,5	90	±90/±3,5
Ouverture du faisceau en élévation (degrés)	2,5	6,5/6,7/7,1	11,5	De 4,3 à 4,6	3,36 (émission), 13,45 (réception)	3,5
Ouverture du faisceau en azimut (degrés)	2,5	6,5/6,7/7,1	0,9	De 1,3 à 2,1	1,1 (émission), 5,5 (réception)	1,2-2,1
Fréquence centrale RF (MHz)	1 215-1 300	1 260	1 215-1 300	1 236,5/ 1 257,5	1 215-1 300	1 236,5/ 1 257,5/ 1 278,5

TABLEAU 7 (fin)

Paramètre	DIFF-B1	DIFF-B2	RSO-B1	RSO-B2	RSO-B3	RSO-B4
Largeur de bande RF (MHz)	1	4	5, 20, 40, 77	14-84	40-85	28-84
Puissance de crête d'émission (W)	200	200	1 334	3 944-6 120	9 000	5 390-8 680
Puissance moyenne d'émission (W)	28	_	9,7-102,2	453-454	600 (double pol), 720 (quad pol)	490-960
Largeur d'impulsion (μs)	15	1 000	4,4-40	18-71	10-80	21-67
Fréquence FRI (Hz)	3 500	100	1 543,2-3 086,4	1 050-3 640	1 300-3 800	1 100-3 955(2)
Taux de fluctuation (MHz/μs)	0,067	0,004	0,20-2,00	0,21-1,95	0,15-0,93	0,42-3,68
Facteur d'utilisation de l'émetteur (%)	5,25	10	0,7-7,7	6,8-11,5	6,7-8 (2% pour le mode onde) ⁽¹⁾	6,4-9,1(2)
p.i.r.e. de crête (dBW)	60	51,1	66,3	70,7-74,5	78	74,5
Facteur de bruit du système (dB)	4,0	7,0	3,9	4,9	3,3	2,6

⁽¹⁾ Le mode onde est utilisé uniquement au-dessus des océans.

7.4 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 3 100-3 300 MHz

Les caractéristiques types des radars RSO à 3,1 GHz sont présentées dans le Tableau 8.

TABLEAU 8
Caractéristiques des missions du SETS (active)
dans la bande 3 100-3 300 MHz

Paramètre	RSO-C1	RSO-C2	RSO-C3	RSO-C4
Type de capteur	RSO	RSO	RSO	RSO
Type d'orbite	Circulaire, héliosynchrone	Circulaire	Circulaire	Circulaire, héliosynchrone
Altitude (km)	500	503-536	503-536	747
Inclinaison (degrés)	97,3	97,4	97,4	98,4
Noeud ascendant (heure solaire locale)	06 h 00	9 h 00 ± 01 h 00	10 h 00 ± 01 h 00	06 h 00
Période de répétition (jours)	31	16	16	12
Type d'antenne	_	Antenne parabolique	Antenne parabolique	Réflecteur maillé déployable
Nombre de faisceaux	9	_	-	24

⁽²⁾ Dans certains modes d'observation, le fonctionnement à fréquence de répétition des impulsions (FRI) non constante se fera dans cette plage de fréquence FRI.

TABLEAU 8 (fin)

Paramètre	RSO-C1	RSO-C2	RSO-C3	RSO-C4
Diamètre de l'antenne (m)	_	6	6	12
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	37,6	42	44	38
Polarisation	VV	H, V	H, V	Double/quad, circulaire, rectiligne H, V
Vitesse de balayage en azimut (tpm)	0	0	0	0
Angle de visée du faisceau de l'antenne (degrés)	25-47	25-55	20-55	37
Angle d'azimut du faisceau de l'antenne (degrés)	90	90/-90	90/-90	-90 (alimentation décalée à -3,5 par rapport au nadir)
Ouverture du faisceau en élévation (degrés)	2,5	1	1	11
Ouverture du faisceau en azimut (degrés)	1	1	1	0,5
Fréquence centrale RF (MHz)	3 200	3 200	3 200	3 200
Largeur de bande RF (MHz)	60	50/200	50/200	10/25/37,5/75
Puissance de crête d'émission (W)	3 000	5 000	11 220	37 857
Puissance moyenne d'émission (W)	300	_	_	2 082
Largeur d'impulsion (µs)	27	10	1-16	10-25
Taux de fluctuation (MHz/μs)	2,22	5/20	5/20	1-3
Facteur d'utilisation de l'émetteur (%)	10	Variable, max 20%	Variable, max 20%	5,50
Facteur de bruit du système (dB)	2	3	3	5

7.5 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 5 250-5 570 MHz

Les caractéristiques types de plusieurs types de capteurs RSO, altimètres et diffusiomètres exploités dans la bande 5 250-5 570 MHz sont présentées dans les Tableaux 9, 10 et 11.

Il convient de noter que la zone de service de la plupart de ces capteurs actifs est planétaire, comme c'est le cas pour RSO-D4, RSO-D5, RSO-D6 et RSO-D1 (constellation de deux satellites).

TABLEAU 9
Caractéristiques des capteurs RSO dans la bande de fréquences 5 250-5 570 MHz

Mission	RSO-D1	RSO-D2	RSO-D3	RSO-D4	RSO-D5	RSO-D6	RSO-D7	RSO-D8
Type de capteur	RSO	RSO	RSO	RSO	RSO	RSO	RSO	RSO
Type d'orbite	Circulaire, héliosynchrone	Circulaire, héliosynchrone	Héliosynchrone	Quasi circulaire	Quasi circulaire	Quasi circulaire	Quasi circulaire	Quasi circulaire
Altitude (km)	693	764	536	792-813	586,9-615,2	586,9-615,2	755	410-420
Inclinaison (degrés)	98,18	98,6	97	98,6	97,74	97,74	98,4	51,6
Noeud ascendant (heure solaire locale)	18 h 00/ 06 h 00 ⁽¹⁾	10 h 30	06 h 00	06 h 00	06 h 00	06 h 00 (à confirmer)	18 h 00	ND
Période de répétition (jours)	12	35	13	24	12	12 (à confirmer)	29	-
Type d'antenne	Réseau d'éléments en phase	Réseau d'éléments en phase	Réseau plan d'éléments en phase	Réseau plan d'éléments en phase	Réseau plan d'éléments en phase	Réseau plan d'éléments en phase	Réseau plan d'éléments en phase	Réseau d'éléments en phase
Nombre de faisceaux	1	1	1	1	1	1	1	1
Taille d'antenne	12,3 m × 0,8 m	10 m × 1,3 m	10 m × 3 m	15 m × 1,5 m	6,88 m × 1,37 m	6,88 m × 1,37 m	15 m × 1 232 m	2,5 m × 1,2 m
Gain de crête de l'antenne à l'émission (dBi)	De 43,5 à 45,3	De 40 à 45	35	49 ⁽²⁾	45 ⁽³⁾	45(3)	48	38,7
Gain de crête de l'antenne à la réception (dBi)	De 43,5 à 44,8	De 40 à 45	35	49 ⁽³⁾	45 ⁽³⁾	45(3)	48	38,7
Polarisation	V, H	H, V	Rectiligne H, V	HH, HV, VH, VV	HH, VV, HV, VH, CH, CV	HH, VV, HV, VH, CH, CV	HH, HV, VH, VV	H, V
Angle de visée du faisceau de l'antenne (degrés)	20-47 ⁽³⁾	15-45	10-45	9-50	16-51	16-53	10-60	15-40
Angle d'azimut du faisceau de l'antenne (degrés)	90	90	90	0	0	0	0	0/180
Ouverture du faisceau en élévation (degrés)	De 6 à 8	2,5	4,6	1,88 (pour le faisceau focalisé)	2,05 (pour le faisceau focalisé)	2,05 (pour le faisceau focalisé)	2,288	3,15

TABLEAU 9 (fin)

Mission	RSO-D1	RSO-D2	RSO-D3	RSO-D4	RSO-D5	RSO-D6	RSO-D7	RSO-D8
Ouverture du faisceau en azimut (degrés)	0,3	0,3	1,4	0,19	0,42 (pour le faisceau focalisé)	0,42 (pour le faisceau focalisé)	0,188	1,6
Largeur de fauchée (km)	20-410	10-405	10-225	18-500	20-500	20-500	10-650	40-400
Fréquence centrale RF (MHz)	5 405	5 331	5 350	5 405	5 405	5 405	5 400	5 350
Largeur de bande RF (MHz)	100	16	18,75-75	11,6; 17,3; 30; 50; 100	14-100	14-300	2-240	36,3
Puissance de crête d'émission (W)	4 140	2 500	4 000	2 400 ou 3 700	1 490	1 990	15 360	5 000
Puissance moyenne d'émission (W)	370	200	260	300	180	240	1 900	750
Largeur d'impulsion (µs)	De 5 à 53	De 16 à 41	20	21, 42	De 10 à 50	De 10 à 50	De 15 à 50	De 17,5 à 25,5
Fréquence FRI (Hz)	1 450-2 000	1 600-2 100	3 250	1 000-2 800	2 000-7 000	2 000-7 000	1 100-4 500	6 000-8 560
Taux de fluctuation (MHz/μs)	0,34-3,75	0,39	0,937-3,75	De 0,27 à 2,38	De 0,14 à 10	De 0,14 à 10	De 0,13 à 6,85	De 1,41 à 2,05
Facteur d'utilisation de l'émetteur (%)	0,5-9,0 selon le mode opérationnel	8,61	6,5	Variable, max 8%	Variable, max 12%	Variable, max 12%	Variable, max 20%	Variable max 15%
p.i.r.e. de crête (dBW)	80	78,0	71,0	83,5(4)	76,7	78,0	89,8	75,7
p.i.r.e. moyenne (dBW)	70 (pour un facteur d'utilisation de 9%)	68,0	68	Approx. 73 ⁽⁵⁾	67,67	69,0	Approx. 80,7	67,5
Facteur de bruit du système (dB)	3,2	4,5	5,8	6	6	6	4	4/6

⁽¹⁾ Ce système consiste en une constellation de deux satellites.
(2) Un gain inférieur peut être utilisé pour les faisceaux plus larges.

^{(3) «}Angles incidents» du faisceau de l'antenne.

p.i.r.e. maximale pendant l'émission des impulsions.
 p.i.r.e. moyenne sur un intervalle de répétition des impulsions.

TABLEAU 10 Caractéristiques des altimètres dans la bande de fréquences 5 250-5 570 MHz

	_	,	•			•
Mission	ALT-D1	ALT-D2 ⁽¹⁾	ALT-D3	ALT-D4 ⁽¹⁾	ALT-D5	ALT-D6
Type de capteur	Altimètre	Altimètre	Altimètre	Altimètre	Altimètre	Altimètre
Type d'orbite	Non héliosynchrone	Circulaire, héliosynchrone	Héliosynchrone	Non héliosynchrone	Non héliosynchrone	Circulaire, héliosynchrone
Altitude (km)	1 336	814	963	1 336	890	1 000
Inclinaison (degrés)	66	98,65	99,3	66	78	99,4
Noeud ascendant (heure solaire locale)	Non héliosynchrone	22 h 00	06 h 00	Non héliosynchrone	Non héliosynchrone	_
Période de répétition (jours)	10	27	14	10	21	14
Type d'antenne	Réflecteur parabolique	Réflecteur parabolique	Réflecteur parabolique	Réflecteur parabolique	Réflecteur parabolique	Réflecteur parabolique
Nombre de faisceaux	1	1	1	1	1	1
Diamètre d'antenne (m)	1,2	1,2	1,4	1,2	1,2	1,5
Gain de crête de l'antenne à l'émission (dBi)	32	32	35	33,5	32,0	33,6
Gain de crête de l'antenne à la réception (dBi)	32	32	43	33,5	32,0	33,6
Polarisation	Rectiligne	Rectiligne	Rectiligne VV	Rectiligne	Rectiligne	Rectiligne
Vitesse de balayage en azimut (tpm)	0	0	0	0	0	0
Angle de visée du faisceau de l'antenne (degrés)	0	0	0	0	0	0
Angle d'azimut du faisceau de l'antenne (degrés)	0	0	0	0	0	0
Ouverture du faisceau en élévation (degrés)	3,4	3,4	2,3	3,4	3,4	3
Ouverture du faisceau en azimut (degrés)	3,4	3,4	2,3	3,4	3,4	3
Largeur de fauchée (km)	79,4	48,4	38,7	97	52,9	51,4
Fréquence centrale RF (MHz)	5 300	5 410	5 250	5 410	5 300	5 300
Largeur de bande RF (MHz)	100, 320	320	160	320	100, 320	100, 320
Puissance de crête d'émission (W)	17	32	20	25	17	15,8
Puissance moyenne d'émission (W)	0,51	0,4 (MBR), 0,25 (RSO)	8,2	< 2	0,51	0,51; 0,71
Largeur d'impulsion (μs)	106,0	49	102,4	32	106,0	110,5
Fréquence FRI (Hz)	300	275 (MBR), 157 (RSO)	670	2 060-9 280	300	294, 412
Taux de fluctuation (MHz/μs)	0,9, 3,0	6,5	1,56	9,69	0,9, 3,0	0,9; 2,9
Facteur d'utilisation de l'émetteur (%)	3,1	1,5 (MBR), 0,7 (RSO)	40,96	30	3,1	3,2; 4,5
p.i.r.e. de crête (dBW)	44,8	49,5	48	47,47	44,3	45,6

TABLE	ΑU	10	(fin)

Mission	ALT-D1	ALT-D2 ⁽¹⁾	ALT-D3	ALT-D4 ⁽¹⁾	ALT-D5	ALT-D6
p.i.r.e. moyenne (dBW)	29,5	30,8 (MBR), 28,4 (RSO)	44,1	36,51	29,2	30,7; 32,1
Facteur de bruit du système (dB)	4,45	3,8	3,5	3,5	4,45	5,75

⁽¹⁾ Altimètre radar à double fréquence (bandes C/Ku) qui effectue des mesures soit en mode à basse résolution (MBR) soit en mode radar à synthèse d'ouverture (Nadir-RSO). Le mode MBR correspond au mode limité à impulsions de l'altimètre conventionnel avec impulsions intercalées dans les bandes C/Ku, tandis que le mode Nadir-RSO correspond au mode à haute résolution dans le sens de la trace utilisant le traitement RSO. Le système consiste en une constellation de deux satellites.

TABLEAU 11
Caractéristiques des diffusiomètres dans la bande 5 250-5 570 MHz

Mission	DIFF-D1	DIFF-D2
Type de capteur	Diffusiomètre	Diffusiomètre
Type d'orbite	Héliosynchrone	Héliosynchrone
Altitude (km)	832	832
Inclinaison (degrés)	98,7	98,7
Noeud ascendant (heure solaire locale)	21 h 30	21 h 30
Période de répétition (jours)	29	29
Type d'antenne	Six antennes de type faisceau en éventail (réseaux de guides d'ondes à fentes)	Six antennes de type faisceau en éventail (réseaux de guides d'ondes à fentes)
Nombre de faisceaux	6	6
Taille d'antenne	2,251 m × 0,337 m (central), 3,003 m × 0,253 m (latéral)	2,757 m × 0,315 m (central), 3,02 m × 0,315 m (latéral)
Gain de crête de l'antenne à l'émission (dBi)	24-32	23-31 ⁽¹⁾
Gain de crête de l'antenne à la réception (dBi)	24-32	23-31
Polarisation	Rectiligne VV pour tous les faisceaux	Rectiligne VV pour les 6 faisceaux + VH/HV et rectiligne HH pour les 2 faisceaux centraux
Vitesse de balayage en azimut (tpm)	0	0
Angle de visée du faisceau de l'antenne (degrés)	22-45,6 (faisceaux centraux) 29,5-53,4 (faisceaux latéraux)	17,5-45,5 (faisceaux centraux) 24-54 (faisceaux latéraux)
Angle d'azimut du faisceau de l'antenne (degrés)	45, 90, 135, 225, 270, 315	45, 90, 135, 225, 270, 315
Ouverture du faisceau en élévation (degrés)	23,6 (faisceaux centraux) 23,9 (faisceaux latéraux)	28 (faisceaux centraux) 30 (faisceaux latéraux)
Ouverture du faisceau en azimut (degrés)	1,5 (faisceaux centraux) 1,2 (faisceaux latéraux)	1,3

TABLEAU 11 (fin)

Mission	DIFF-D1	DIFF-D2
Largeur de fauchée (km)	550 de chaque côté du plan orbital	665 de chaque côté du plan orbital
Fréquence centrale RF (MHz)	5 255	5 355
Largeur de bande RF (MHz)	0,5	2
Puissance de crête d'émission (W)	120	2 512
Puissance moyenne d'émission (W)	29 (faisceaux centraux) 36,5 (faisceaux latéraux)	92
Largeur d'impulsion (µs)	10 000	1 000
Fréquence FRI (Hz)	28,259	32
Taux de fluctuation (MHz/μs)	0,00002	0,00002
Facteur d'utilisation de l'émetteur (%)	28,29	3,68
p.i.r.e. de crête (dBW)	53	57-65
p.i.r.e. moyenne (dBW)	39-47	42-50
Facteur de bruit du système (dB)	3,0	3,5

⁽¹⁾ Le gain d'antenne varie selon l'emplacement de l'antenne (central ou latéral) et l'angle d'incidence.

7.6 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 8 550-8 650 MHz

Les caractéristiques types des radars RSO à 8,6 GHz sont présentées dans le Tableau 12.

TABLEAU 12
Caractéristiques des missions du SETS (active) dans la bande de fréquences 8 550-8 650 MHz

Paramètre	RSO-E1		
Type de capteur	RSO		
Type d'orbite	Circulaire, non héliosynchrone		
Altitude (km)	400		
Inclinaison (degrés)	57		
Période de répétition (jours)	3		
Nombre de faisceaux	1		
Type d'antenne	Guide d'ondes à fentes		
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	44,0		
Polarisation	Rectiligne H, V		
Vitesse de balayage en azimut (tpm)	0		
Angle de visée du faisceau de l'antenne (degrés)	20-55		
Angle d'azimut du faisceau de l'antenne (degrés)	90		
Ouverture du faisceau en élévation (degrés)	2,5		
Ouverture du faisceau en azimut (degrés)	0,4		

TABLEAU 12 (fin)

Paramètre	RSO-E1
Fréquence centrale RF (MHz)	8 600
Largeur de bande RF (MHz)	10, 20
Puissance de crête d'émission (W)	3 500
Puissance moyenne d'émission (W)	243
Largeur d'impulsion (µs)	40
Fréquence FRI (Hz)	1 395-1 736
Taux de fluctuation (MHz/μs)	1,0; 0,5
Facteur d'utilisation de l'émetteur (%)	7
Facteur de bruit du système (dB)	4,3

7.7 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 9 200-10 400 MHz

Les caractéristiques types des radars RSO fonctionnant dans la bande de fréquences 9 200-10 400 MHz sont présentées dans le Tableau 13. La Recommandation UIT-R RS.2043 contient des informations complémentaires.

TABLEAU 13
Caractéristiques des missions du SETS (active) dans la bande 9 200-10 400 MHz

Paramètre	RSO-F1	RSO-F2	RSO-F3	RSO-F4	RSO-F5	RSO-F6	RSO-F7	SCAT-F8
Type de capteur	RSO	RSO	RSO	RSO	RSO	RSO	RSO	Diffusiomètre
Type d'orbite	Circulaire, héliosynchrone	Circulaire, héliosynchrone	Héliosynchrone	Héliosynchrone	Héliosynchrone	Circulaire, héliosynchrone	Circulaire	Circulaire
Altitude (km)	514	620	512	620	514	514	650,850	835
Inclinaison (degrés)	97,4	97,8	97,9	97,8	97,44	97,4	97,99	98,85
Noeud ascendant (heure solaire locale)	18 h 00	06 h 00	06 h 00	06 h 00	18 h 00	18 h 00	ND	19 h 30
Période de répétition (jours)	11	16	5	16	11	11	_	_
Type d'antenne	Antenne réseau active à commande de phase	Réseau d'éléments plan	Réflecteur alimenté par réseau linéaire excentré	Réseau d'éléments plan	Antenne réseau active à commande de phase	Antenne réseau active à commande de phase	Antenne réseau à commande de phase	Antenne réseau à commande de phase
Nombre de faisceaux	1	1	1	1	1	1	1	1
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	45,5	45,5	46	46,8	43,4	47	45,6	39,5/38,5
Polarisation	Rectiligne VV	Rectiligne HH	Rectiligne VV, VH	Rectiligne HH	Rectiligne HH, VV	Rectiligne HH, VV	Rectiligne HH, VV	Rectiligne, VV
Vitesse de balayage en azimut (tpm)	0	0	0	0	0	0	0	0
Angle de visée du faisceau de l'antenne (degrés)	15-60	21-44	30-40	37,8	15-45	18-50	15-55	90
Angle d'azimut du faisceau de l'antenne (degrés)	90	90	90	90	90	90	90	ND
Ouverture du faisceau en élévation (degrés)	2,54	1,32	1,5	1,34	2,5	1,13	1-1,2	26
Ouverture du faisceau en azimut (degrés)	0,37	0,32	0,5	0,32	0,4	0,53	0,4-0,45	0,13

TABLEAU 13 (fin)

Paramètre	RSO-F1	RSO-F2	RSO-F3	RSO-F4	RSO-F5	RSO-F6	RSO-F7	SCAT-F8
Fréquence centrale RF (MHz)	9 650	9 600	9 600	9 500	9 650	9 800	9 600	9 623,275
Largeur de bande RF (MHz)	150, 300	41-118	10	40-300	5-300	1 200	600	0,5
Puissance de crête d'émission (W)	2 000	7 600	3 000	7 600	2 260	7 000	1 800	1 600
Puissance moyenne d'émission (W)	400	836	270	836	452	2 100	_	_
Largeur d'impulsion (μs)	47	18-31	20-30	18-31	47	50	36	2
Fréquence FRI (Hz)	2 000-6 500	2 850-3 230	1 000-3 000	1 000-3 000	3 000-6 500	6 000	_	_
Taux de fluctuation (MHz/μs)	3,2, 6,8	3,81	0,5-0,67	3,81-9,7	0,85-6,38	24	16,6	ND
Facteur d'utilisation de l'émetteur (%)	20	7-11	2-9	7-11	20	30	Variable, max 15%	Variable, max 15%
Facteur de bruit du système (dB)	2,9	1,0	3	1,0	5,0	3	4	4

7.8 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 13,25-13,75 GHz

Les caractéristiques types des altimètres à 13,5 GHz sont présentées dans le Tableau 14.

Les diffusiomètres océaniques types, qui fonctionnent au voisinage de 13,5 GHz, déterminent la vitesse et la direction du vent à la surface des océans à partir de mesures du coefficient de rétrodiffusion de la surface océanique selon différents angles d'azimut obtenus par rotation des faisceaux autour du nadir. Le Tableau 15 présente les caractéristiques des diffusiomètres fonctionnant à 13,5 GHz.

Les caractéristiques types des radars de mesure des précipitations fonctionnant à 13,5 GHz sont présentées dans le Tableau 16.

Les radars d'extraction de l'équivalent en eau de la neige (SWE) sont des capteurs multifréquences de type système d'imagerie RSO qui sont orientés sur un côté de la trace du nadir et utilisent la sensibilité de la mesure de rétrodiffusion à l'équivalent SWE à travers les propriétés de diffusion volumique de la neige sèche, afin obtenir des informations sur la masse de la neige. Les caractéristiques types des radars d'extraction de l'équivalent SWE de type système d'imagerie RSO fonctionnant à 13,5 GHz sont indiquées dans le Tableau 17.

TABLEAU 14 Caractéristiques des altimètres dans la bande 13,25-13,75 GHz

Mission	ALT-G1	ALT-G3	ALT-G4	ALT-G5	ALT-G6 (Note 1)	ALT-G7 (Note 1)	ALT-G8	ALT-G9
Type de capteur	Altimètre	Altimètre	Altimètre	Altimètre	Altimètre	Altimètre	Altimètre	Altimètre
Type d'orbite	Héliosynchrone	Héliosynchrone	Non héliosynchrone	Non héliosynchrone	Héliosynchrone	Non héliosynchrone	Circulaire, héliosynchrone	Non héliosynchrone
Altitude (km)	764	963	1 336	717	814	1 336	1000	714
Inclinaison (degrés)	98,6	99,3	66	92	98,65	66	99,4	92
Noeud ascendant (heure solaire locale)*	10 h 30	06 h 00	ND	ND	22 h 00	ND	_	ND
Période de répétition (jours)	35	14	10	369(1)	27	10	14	367
Nombre de faisceaux	1	1	1	1	1	1	1	1
Diamètre/taille de l'antenne	1,2 m	1,4 m	1,2 m	2 réflecteurs 1,2 × 1,1 m	1,2 m	1,2 m	1,5 m	2 réflecteurs 1,4 m × 1,25 m
Gain de crête de l'antenne à l'émission (dBi)	41,2	43	43,2	42	42	42,1	42,2	42,3
Gain de crête de l'antenne à la réception (dBi)	41,2	43	43,2	42	42	42,1	42,2	42,3
Polarisation	Rectiligne	VV	Rectiligne	Rectiligne	Rectiligne	Rectiligne	Rectiligne	Rectiligne
Vitesse de balayage en azimut (tpm)	0	0	0	0	0	0	0	0
Angle de visée du faisceau de l'antenne (degrés)	0	0	0	0	0	0	0	0
Angle d'azimut du faisceau de l'antenne (degrés)	0	0	0	0	0	0	0	0

Rec. UIT-R RS.2105-3

TABLEAU 14 (fin)

Mission	ALT-G1	ALT-G3	ALT-G4	ALT-G5	ALT-G6 (Note 1)	ALT-G7 (Note 1)	ALT-G8	ALT-G9
Ouverture du faisceau en élévation (degrés)	1,2	0,9	1,27	1,2	1,27	1,35	1,5	1
Ouverture du faisceau en azimut (degrés)	1,2	0,9	1,27	1,1	1,27	1,35	1,5	1
Fréquence centrale RF (MHz)	13 575	13 580	13 575	13 575	13 575	13 575	13,575	13 500
Largeur de bande RF (MHz)	320, 80, 20	320	320	320	350	320	320	500
Puissance de crête d'émission (W)	60	20	25	25	7,1	8	5,6	21,7 ⁽²⁾ ; 24,4 ⁽³⁾
Puissance moyenne d'émission (W)	2,16	8,2	5,41	2,22	0,66	<4	1,27	19,1 ⁽²⁾ ; 7,1 ⁽³⁾
Largeur d'impulsion (μs)	20	102,4	106,0	50	49	32	110,5	49 ⁽²⁾ ; 18 ⁽³⁾
Fréquence FRI (Hz)	1 795,33	2 000	2 060	1 970 (MBR) 1818,1 (mode RSO)	1 924 (MBR) 1782,5 (mode RSO)	2 060-9 280	2 060	18 000 ⁽²⁾ ; de 15 500 à 16 800 ⁽³⁾
Taux de fluctuation (MHz/μs)	16, 4, 1	3,12	3,02	7,11	7,14	9,69	2,9	10,2 ⁽²⁾ ; 27,8 ⁽³⁾
Facteur d'utilisation de l'émetteur (%)	3,6	40,96	21,63	8,88	1,35-2,65, 9,31	30	22,7	88,2 ⁽²⁾ ; 29,1 ⁽³⁾
p.i.r.e. de crête (dBW)	59,0	56,0	56	60,0	50,5	51,03	49,7	55,7 ⁽²⁾ ; 56,2 ⁽³⁾
p.i.r.e. moyenne (dBW)	44,5	52,1	49,33	45,5	40,2	48,02	43,2	55,1(2); 50,8(3)
Facteur de bruit du système (dB)	2,5; 3,0	2,8	2,6	1,9 ⁽⁴⁾	3,1	2,5	5,75	2,8

⁽¹⁾ Sous-cycle de 30 jours.

⁽²⁾ Mode rafale fermé.

⁽³⁾ Mode rafale ouvert.

⁽⁴⁾ Facteur de bruit du récepteur.

NOTE 1 – Les altimètres ALT-G5 et ALT-G6 sont des altimètres radars à double fréquence (bandes C/Ku) qui effectuent des mesures soit en mode à basse résolution (MBR) soit en mode radar à synthèse d'ouverture (Nadir-RSO). Le mode MBR correspond au mode limité à impulsions de l'altimètre conventionnel avec impulsions intercalées dans les bandes C/Ku, tandis que le mode Nadir-RSO correspond au mode à haute résolution dans le sens de la trace utilisant le traitement RSO. Le système ALT-G6, en préparation, consistera en une constellation de deux satellites, les deux satellites évoluant sur la même orbite avec une différence de phase de 180 degrés.

TABLEAU 15 Caractéristiques des diffusiomètres dans la bande 13,25-13,75 GHz

Mission	DIFF-G1	DIFF-G2	DIFF-G3	DIFF-G4
Type de capteur	Diffusiomètre	Diffusiomètre	Diffusiomètre	Diffusiomètre
Type d'orbite	Héliosynchrone	Héliosynchrone	Héliosynchrone	Héliosynchrone
Altitude (km)	803	963	720	836
Inclinaison (degrés)	98,6	99,3	98,28	98,75
Noeud ascendant (heure solaire locale)	06 h 00	06 h 00	12 h 00 (nœud descendant)	06 h 00
Période de répétition (jours)	4	14	2	5,5
Nombre de faisceaux	2	2	2	4
Diamètre de l'antenne (m)	1	1,3	1	3
Gain de crête de l'antenne à l'émission (dBi)	41	42	39,5	48
Gain de crête de l'antenne à la réception (dBi)	41	42	39,5	48
Polarisation	H (intérieur), V (extérieur)	HH, VV	HH, VV	HH, VV
Vitesse de balayage en azimut (tpm)	18	19,0	21,14	15
Angle de visée du faisceau de l'antenne (degrés)	40, 46	35, 41	43,63 (HH), 49,09 (VV)	36, 40
Angle d'azimut du faisceau de l'antenne (degrés)	0-360	0-360	0-360	0-360
Ouverture du faisceau en élévation (degrés)	1,6	1	1,67	0,9
Ouverture du faisceau en azimut (degrés)	1,6	1	1,47	0,3
Fréquence centrale RF (MHz)	13 402	13 255,5	13 515	13 350
Largeur de bande RF (MHz)	0,53	3-6	0,4	2
Puissance de crête d'émission (W)	100	120	100	1 000
Puissance moyenne d'émission (W)	30,6	28,8	27	450
p.i.r.e. de crête (dBW)	61,0	62,8	20	78,0
Largeur d'impulsion (µs)	1 700	650-1 200	1 350	1 500
Fréquence FRI (Hz)	180	100-200	200	300
Taux de fluctuation (MHz/μs)	0,000311765	0,005	0,0003	0,0013
Facteur d'utilisation de l'émetteur (%)	30,6	24	27,0	45
p.i.r.e. de crête (dBW)	61,0	62,8	59,5	78,0
p.i.r.e. moyenne (dBW)	55,9	56,6	53,8	74,5
Facteur de bruit du système (dB)	3,4	4,2	3,0	3,5

TABLEAU 16 Caractéristiques des radars de mesure des précipitations dans la bande 13,25-13,75 GHz

Mission	RP-G1	RP-G2	RP-G3
Type de capteur	Radar de mesure des précipitations	Radar de mesure des précipitations	Radar de mesure des précipitations
Type d'orbite	Non héliosynchrone	Non héliosynchrone	Non héliosynchrone
Altitude (km)	410	407	400
Inclinaison (degrés)	50	65	50
Période de répétition (jours)	11	82	6
Nombre de faisceaux	2	1	4
Diamètre/taille de l'antenne	2 m	2,1 m × 2,1 m	5,3 m
Gain de crête de l'antenne à l'émission/la réception (dBi)	47	47,4	55
Polarisation	НН	Н	HH, HV
Vitesse de balayage en azimut (seconde/balayage)	0,7	0,7	0,42
Angle de visée du faisceau de l'antenne (degrés)	±20	±17	±31
Angle d'azimut du faisceau de l'antenne (degrés)	±90	±90	±90
Ouverture du faisceau en élévation (degrés)	0,7	0,7	0,28
Ouverture du faisceau en azimut (degrés)	0,7	0,7	0,28
Fréquence centrale RF (MHz)	13 647, 13 653	13 597, 13 603	13 626, 13 642, 13 658, 13 674
Nombre de faisceaux	2	49	4
Largeur de bande RF (MHz)	0,6 × 2	0,6 + 0,6	8 × 4
Puissance de crête d'émission (W)	1 000	1 000	2 000
Puissance moyenne d'émission (W)	7,2	12,1	360
Largeur d'impulsion (µs)	1,6	1,6	40
Fréquence FRI (Hz)	4 500	4 485	4 500
Taux de fluctuation (MHz/μs)	ND ⁽¹⁾	ND ⁽¹⁾	0,2
Facteur d'utilisation de l'émetteur (%)	0,72	1,21/0,67	18
p.i.r.e. de crête (dBW)	77,0	77,4	88,0
p.i.r.e. moyenne (dBW)	55,6	55,7	80,6
Facteur de bruit du système (dB)	5	5,1	3,5

⁽¹⁾ Impulsions non modulées.

TABLEAU 17
Caractéristiques des systèmes d'imagerie RSO dans la bande de fréquences 13,25-13,75 GHz

Paramètre	RSO-G1
Type de capteur	RSO (radar d'extraction de l'équivalent SWE)
Type d'orbite	Héliosynchrone
Altitude (km)	521-550
Inclinaison (degrés)	97,48
Noeud ascendant (heure solaire locale)	06 h 00
Période de répétition (jours)	27
Type d'antenne	Antenne réseau à commande de phase
Nombre de faisceaux	1
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	44-47
Polarisation	Réflecteur alimenté par réseau linéaire excentré
Vitesse de balayage en azimut (tpm)	0
Angle de visée du faisceau de l'antenne (degrés)	37
Angle d'azimut du faisceau de l'antenne (degrés)	90
Ouverture du faisceau en élévation (degrés)	1,4
Ouverture du faisceau en azimut (degrés)	0,2-0,5
Fréquence centrale RF (MHz)	13 500
Largeur de bande RF (MHz)	8
Puissance de crête d'émission (W)	≤ 2 000
Puissance moyenne d'émission (W)	≤ 358,8
Largeur d'impulsion (µs)	8-26
Fréquence FRI (Hz)	4 800-6 900
Taux de fluctuation (MHz/μs)	0,31-1,00
Facteur d'utilisation de l'émetteur (%)	≤ 17,94
Facteur d'utilisation opérationnel (%)	≤ 25
Facteur de bruit du système (dB)	5

7.9 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 17,2-17,3 GHz

Les caractéristiques types des radars RSO à 17,25 GHz sont présentées dans le Tableau 18, y compris les caractéristiques types des radars d'extraction de l'équivalent SWE à 17,25 GHz.

TABLEAU 18

Caractéristiques des missions du SETS (active) dans la bande de fréquences 17,2-17,3 GHz

Paramètre	RSO-H1	RSO-H2
Type de capteur	RSO	RSO (radar d'extraction de l'équivalent SWE)
Type d'orbite	Circulaire héliosynchrone	Héliosynchrone
Altitude (km)	512	521-550
Inclinaison (degrés)	97,9	97,48
Noeud ascendant (heure solaire locale)	06 h 00	06 h 00
Période de répétition (jours)	5	27
Type d'antenne	Réflecteur alimenté par réseau linéaire excentré	Antenne réseau à commande de phase
Nombre de faisceaux	1	1
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	49	46-49
Polarisation	Rectiligne VV, VH	Réflecteur alimenté par réseau linéaire excentré
Vitesse de balayage en azimut (tpm)	0	0
Angle de visée du faisceau de l'antenne (degrés)	30-40	37
Angle d'azimut du faisceau de l'antenne (degrés)	90	90
Ouverture du faisceau en élévation (degrés)	0,9	1,1
Ouverture du faisceau en azimut (degrés)	0,3	0,17-0,35
Fréquence centrale RF (MHz)	17 250	17 250
Largeur de bande RF (MHz)	10	8
Puissance de crête d'émission (W)	4 000	≤ 2 000
Puissance moyenne d'émission (W)	360	≤ 358,8
Largeur d'impulsion (μs)	20-30	8-26
Fréquence FRI (Hz)	1 000-3 000	4 800-6 900
Taux de fluctuation (MHz/µs)	0,5-0,67	0,31-1,00
Facteur d'utilisation de l'émetteur (%)	2-9	≤ 17,94
Facteur d'utilisation opérationnel (%)	_	≤ 25
Facteur de bruit du système (dB)	5	5

7.10 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 24,05-24,25 GHz

Les caractéristiques types des radars spatioportés fonctionnant dans la bande de fréquences 24,05-24,25 GHz sont présentées dans le Tableau 19, les valeurs types des paramètres incluant les caractéristiques du radar pris comme exemple. Il est prévu que le spectre soit utilisé par des radars de mesure des précipitations et des diffusiomètres.

TABLEAU 19
Caractéristiques des missions du SETS (active) dans la bande de fréquences 24,05-24,25 GHz

Paramètre	DIFF-I1	RP-I1
Type de capteur	Diffusiomètre	Radar de mesure des précipitations
Type d'orbite	Circulaire, non héliosynchrone	Circulaire, non héliosynchrone
Altitude (km)	803	350
Inclinaison (degrés)	98,6	35
Période de répétition (jours)	4	46
Type d'antenne	Réflecteur excentré de diamètre 0,56 m	Réseau de guides d'ondes à fentes de 1,18 m
Nombre de faisceaux	2	1
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	41	47,4
Polarisation	H (intérieur), V (extérieur)	Н
Vitesse de balayage en azimut (tpm ou seconde/balayage)	18	0,6 s/balayage
Angle de visée du faisceau de l'antenne (degrés)	40, 46	±17
Angle d'azimut du faisceau de l'antenne (degrés)	0-360	±90
Ouverture du faisceau en élévation (degrés)	1,6	0,71
Ouverture du faisceau en azimut (degrés)	1,6	0,71
Fréquence centrale RF (MHz)	24 150	24 150
Largeur de bande RF (MHz)	0,53	0,6
Puissance de crête d'émission (W)	100	578
Puissance moyenne d'émission (W)	30,6	2,57
Largeur d'impulsion (µs)	1 700	1,6
Fréquence FRI (Hz)	180	2 776
Taux de fluctuation (MHz/μs)	0,0003118	ND
Facteur d'utilisation de l'émetteur (%)	30,6	0,44
Facteur de bruit du système (dB)	5	7

7.11 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 35,5-36,0 GHz

Les caractéristiques types des radars RSO, altimètres radars et radars de mesure des précipitations exploités dans la bande de fréquences 35,5-36,0 GHz sont présentées dans le Tableau 20.

TABLEAU 20 Caractéristiques des missions du SETS (active) dans la bande de fréquences 35,5-36 GHz

		_		· · · · · · · · · · · · · · · · · · ·	_	1	T	1
Paramètre	ALT-J1	ALT-J2 (Note 1)	ALT-J3	RSO-J1 (Note 2)	RP-J1	RP-J2	RP-J3	RP-J4
Type de capteur	Altimètre	Altimètre	Altimètre	RSO	Radar de mesure des précipitations	Radar de mesure des précipitations	Radar de mesure des précipitations	Radar de mesure des précipitations
Type d'orbite	Héliosynchrone	Non héliosynchrone	Non héliosynchrone	Héliosynchrone	Héliosynchrone	Non héliosynchrone	Non héliosynchrone	Non héliosynchrone
Altitude (km)	800	891	714	780	650	407	410	600
Inclinaison (degrés)	98,53	77,6	92	98,6	98,2	65	50	50
Noeud ascendant (heure solaire locale)	18 h 00	ND	ND	18 h 00	13 h 00	ND	ND	ND
Période de répétition (jours)	35	22	367	11	53	82	11	6
Taille/diamètre d'antenne (m)	1,0	5 × 0,26	1,4 × 1,25	3 × 0,6 (transmission), 3 × 2 (réception)	2,5 × 5	0,8 × 0,81,6	1,2	2,1
Gain de crête de l'antenne à l'émission (dBi)	49,3	48,5	50,2	49,5	60,4	47,4	47	55
Gain de crête de l'antenne à la réception (dBi)	49,3	48,5	50,2	55,0	60,4	47,4	47	55
Polarisation	Circulaire	H, V	Rectiligne	H,V	H,V	Н	НН	HH, HV
Vitesse de balayage en azimut (tpm)	0	0	0	0	0	0,7 s/balayage ⁽²⁾	0,7 s/balayage	0,42 s/balayage
Angle de visée du faisceau de l'antenne (degrés)	0	0	0	30	±2,4	±17	±20	±31
Angle d'azimut du faisceau de l'antenne (degrés)	0	0	0	90	90	90	±90	±90
Ouverture du faisceau en élévation (degrés)	0,6	2,7	0,4	2,9	0,2	0,7	0,7	0,28
Ouverture du faisceau en azimut (degrés)	0,6	0,10	0,4	0,16	0,1	0,7	0,7	0,25
Fréquence centrale RF (MHz)	35 750	35 750	35 750	35 750	35 600	35 547, 35 553	35 547, 35 553	35 526, 35 542, 35 558, 35 574
Largeur de bande RF (MHz)	480	210	500	40	2,5	0,6 + 0,6; 0,3 + 0,3	0,6 × 2	8 × 4

TABLEAU 20 (fin)

Paramètre	ALT-J1	ALT-J2 (Note 1)	ALT-J3	RSO-J1 (Note 2)	RP-J1	RP-J2	RP-J3	RP-J4
Puissance de crête d'émission (W)	2	1 368	3,8 ⁽³⁾ ; 4,3 ⁽⁴⁾	3 000	1 500	140	150	300
Puissance moyenne d'émission (W)	0,856	40,51	3,4 ⁽³⁾ ; 1,3 ⁽⁴⁾	300	19,3	2,56	27	54
Largeur d'impulsion (μs)	107	6,7	49 ⁽³⁾ ; 18 ⁽⁴⁾	36,1	1,67	1,6; 3,2	1,6/10/20/40	40
Fréquence FRI (Hz)	4 000	4 420	18 000 ⁽³⁾ ; de 15 500 à 16 800 ⁽⁴⁾	2 770	7 700	4 485	4 500	4 500
Taux de fluctuation (MHz/µs)	4,49	31,34	10,2(3); 27,8(4)	1,108	1,54	ND ⁽¹⁾	0,015-0,375	0,2
Facteur d'utilisation de l'émetteur (%)	42,8	2,96	88,2 ⁽³⁾ ; 29,1 ⁽⁴⁾	10,0	1,28	1,83	0,7-18	18
p.i.r.e. de crête (dBW)	52,3	79,9	56(3); 56,6(4)	74,3	92,2	68,9	68,8	79,8
p.i.r.e. moyenne (dBW)	48,6	64,6	55,5 ⁽³⁾ ; 51,2 ⁽⁴⁾	84,3	73,3	47,1	61,4	72,4
Facteur de bruit du système (dB)	3,9	4	4,1	4,5	4	6,3	6	3,5

⁽¹⁾ Impulsion non modulée.

NOTE 1 – Ce système d'altimètre est un instrument à interféromètre radar qui contient deux antennes RSO en bande Ka de chaque côté d'un bras de 10 mètres, les deux antennes émettant et recevant les impulsions radars émises des deux côtés de la trajectoire orbitale. Les angles de visée sont inférieurs à 4,5 degrés, ce qui offre une fauchée de 120 km de large. La largeur de bande de 210 MHz fournit des résolutions au sol transversales à la trace qui varient de 10 m environ dans la fauchée lointaine à 60 m environ dans la fauchée proche. Une résolution de 2 m environ dans le sens de la trace est obtenue par traitement de type synthèse d'ouverture.

NOTE 2 – La mission RSO en bande Ka pour l'interférométrie en une seule passe est toujours en phase de conception. Il est envisagé d'utiliser un seul satellite doté de plusieurs antennes ou deux satellites en formation.

⁽²⁾ La vitesse de balayage en azimut exprimée en secondes par balayage correspond au temps nécessaire pour balayer d'un côté à l'autre (transversalement à la trace) pendant un cycle.

⁽³⁾ Mode rafale fermé.

⁽⁴⁾ Mode rafale ouvert.

7.12 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 78-79 GHz

Les caractéristiques types des radars spatioportés fonctionnant dans la bande de fréquences 78-79 GHz sont présentées dans le Tableau 21, les valeurs types des paramètres incluant les caractéristiques du radar pris comme exemple.

TABLEAU 21
Caractéristiques types des missions du SETS (active) dans la bande de fréquences 78-79 GHz

Paramètre	RP-K1
Type de capteur	Radar de mesure des précipitations
Type d'orbite	Circulaire, non héliosynchrone
Altitude (km)	400
Inclinaison (degrés)	60
Période de répétition (jours)	23
Type d'antenne	Réflecteur parabolique
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	61,7
Polarisation	Rectiligne H
Vitesse de balayage en azimut (tpm)	0,197
Angle de visée du faisceau de l'antenne (degrés)	0
Angle d'azimut du faisceau de l'antenne (degrés)	±17
Ouverture du faisceau en élévation (degrés)	0,71
Ouverture du faisceau en azimut (degrés)	0,71
Fréquence centrale RF (MHz)	78,500
Largeur de bande RF (MHz)	0,8
Puissance de crête d'émission (W)	1 000
Puissance moyenne d'émission (W)	14
Largeur d'impulsion (µs)	3,33
Fréquence FRI (Hz)	4 250
Taux de fluctuation (MHz/μs)	ND
Facteur d'utilisation de l'émetteur (%)	1,42
Facteur de bruit du système (dB)	3

7.13 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 94-94,1 GHz

Le Tableau 22 donne les caractéristiques types des radars profileurs de nuages (RPN) fonctionnant dans la bande de fréquences 94-94,1 GHz.

TABLEAU 22

Caractéristiques des missions du SETS (active) dans la bande de fréquences 94-94,1 GHz

Paramètre	RPN-L1	RPN-L2	
Type de capteur	Radar profileur de nuages	Radar profileur de nuages	
Type d'orbite	Héliosynchrone	Héliosynchrone	
Altitude (km)	705	393	
Inclinaison (degrés)	98,2	97	
Noeud ascendant (heure solaire locale)	13 h 30	02 h 00	
Période de répétition (jours)	16	25	
Type d'antenne	Réflecteur parabolique vers antenne Cassegrain à alimentation excentrée	Réflecteur parabolique	
Diamètre de l'antenne (m)	1,85-2,5	2,5	
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	63,1-65,2	66	
Polarisation	Rectiligne	LHC (émission), RHC (réception)	
Angle d'incidence au niveau de la Terre (degrés)	0	0	
Vitesse de balayage en azimut (tpm)	0	0	
Angle de visée du faisceau de l'antenne (degrés)	0	0	
Angle d'azimut du faisceau de l'antenne (degrés)	0	0	
Ouverture du faisceau en élévation (degrés)	0,12	0,095	
Ouverture du faisceau en azimut (degrés)	0,12	0,095	
Largeur de faisceau (degrés)	0,095-0,108	0,095	
Fréquence centrale RF (MHz)	94,050	94,050	
Largeur de bande RF (MHz)	0,36	7	
Puissance de crête d'émission (W)	1 000	2 200	
Puissance moyenne d'émission (W)	21,31	44	
Largeur d'impulsion (μs)	3,33	3,3	
Fréquence FRI (Hz)	4 300	1 800-7 500	
Taux de fluctuation (MHz/μs)	ND ⁽¹⁾	2,1	
Facteur d'utilisation de l'émetteur (%)	1,33	2	
Sensibilité minimale (dBZ)	De -30 à -35	De -30 à -35	
Résolution horizontale	0,7-1,9 km	800 m	
Résolution verticale (m)	250-500	500	
Intervalle Doppler (m/s)	±10	±10	
Précision Doppler (m/s)	1	1	
Facteur de bruit du système (dB)	7	7	

⁽¹⁾ Le capteur utilise une impulsion non modulée.

7.14 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 133,5-134 GHz

Le Tableau 23 donne les caractéristiques types des radars profileurs de nuages (RPN) de fréquence centrale 133,75 GHz. De très hautes fréquences sont nécessaires pour que le radar soit sensible aux petites particules de glace.

TABLEAU 23
Caractéristiques des missions du SETS (active) dans la bande de fréquences 133,5-134 GHz

Paramètre	RPN-M1
Type de capteur	Radar profileur de nuages
Type d'orbite	Héliosynchrone
Altitude (km)	705
Inclinaison (degrés)	98,2
Noeud ascendant (heure solaire locale)	13 h 30
Période de répétition (jours)	16
Diamètre de l'antenne (m)	3
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	75
Polarisation	Rectiligne
Vitesse de balayage en azimut (tpm)	0
Angle de visée du faisceau de l'antenne (degrés)	0
Angle d'azimut du faisceau de l'antenne (degrés)	0
Ouverture du faisceau en élévation (degrés)	0,043
Ouverture du faisceau en azimut (degrés)	0,043
Fréquence centrale RF (GHz)	133,75
Largeur de bande RF (MHz)	0,65
Puissance de crête en émission (W)	300
Largeur d'impulsion (µs)	1,6
Fréquence FRI (Hz)	4 000
Résolution en portée (m)	250
Résolution horizontale (km)	0,2 × 0,7
Facteur de bruit du système (dB)	8

7.15 Paramètres types des capteurs actifs fonctionnant dans la bande de fréquences 237,9-238 GHz

Le Tableau 24 donne les caractéristiques types des radars profileurs de nuages (RPN) de fréquence centrale 237,95 GHz. De très hautes fréquences sont nécessaires pour que le radar soit sensible aux petites particules de glace.

TABLEAU 24

Caractéristiques des missions du SETS (active) dans la bande de fréquences 237,9-238 GHz

Paramètre	RPN-N1
Type de capteur	Radar profileur de nuages
Type d'orbite	Héliosynchrone
Altitude (km)	705
Inclinaison de l'orbite (degrés)	98,2
Noeud ascendant (heure solaire locale)	13 h 30
Période de répétition (jours)	16
Diamètre de l'antenne (m)	3
Valeur de crête du gain d'antenne à l'émission/à la réception (dBi)	78
Polarisation	Rectiligne
Vitesse de balayage en azimut (tpm)	0
Angle de visée du faisceau de l'antenne (degrés)	0
Angle d'azimut du faisceau de l'antenne (degrés)	0
Ouverture du faisceau en élévation (degrés)	0,024
Ouverture du faisceau en azimut (degrés)	0,024
Fréquence centrale RF (GHz)	237,95
Largeur de bande RF (MHz)	0,65
Puissance de crête en émission (W)	80
Largeur d'impulsion (µs)	1,6
Fréquence FRI (Hz)	4 000
Résolution en portée (m)	250
Résolution horizontale (km)	0,1 × 0,7
Facteur de bruit du système (dB)	11