

Рекомендация МСЭ-R RS.1813-1 (02/2011)

Эталонная диаграмма направленности антенны для пассивных датчиков, работающих в спутниковой службе исследования Земли (пассивной), для использования при анализе совместимости в полосе частот 1,4-100 ГГц

Серия RS

Системы дистанционного зондирования

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Приложении 1 к Резолюции 1 МСЭ-R. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: http://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

	Серии Рекомендаций МСЭ-R
	(Представлены также в онлайновой форме по адресу: http://www.itu.int/publ/R-REC/en .)
Серия	Название
ВО	Спутниковое радиовещание
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения
BS	Радиовещательная служба (звуковая)
BT	Радиовещательная служба (телевизионная)
F	Фиксированная служба
M	Подвижная спутниковая служба, спутниковая служба радиоопределения, любительская спутниковая служба и относящиеся к ним спутниковые службы
P	Распространение радиоволн
RA	Радиоастрономия
RS	Системы дистанционного зондирования
S	Фиксированная спутниковая служба
SA	Космические применения и метеорология
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы
SM	Управление использованием спектра
SNG	Спутниковый сбор новостей
TF	Передача сигналов времени и эталонных частот
V	Словарь и связанные с ним вопросы

Примечание. – Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции 1 МСЭ-R.

Электронная публикация Женева, 2011 г.

© ITU 2011

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ МСЭ-R RS.1813-1

Эталонная диаграмма направленности антенны для пассивных датчиков, работающих в спутниковой службе исследования Земли (пассивной), для использования при анализе совместимости в полосе частот 1,4–100 ГГц

(2009-2011)

Сфера применения

В настоящей Рекомендации приводится эталонная диаграмма направленности антенны для пассивных датчиков, работающих в спутниковой службе исследования Земли (ССИЗ), для использования при анализе совместимости в полосе частот 1,4–100 ГГц, когда отсутствует другая информация о реальных антеннах датчиков.

Ассамблея радиосвязи МСЭ,

учитывая,

- а) что при проведении исследований совместимости в случае суммарных помех со стороны нескольких источников желательно использовать эталонные диаграммы направленности спутниковых антенн, которые в максимально возможной степени отражают усиление реальных антенн;
- b) что антенны, используемые для бортовых пассивных датчиков в спутниковой службе исследования Земли (пассивной), обычно конструируются так, чтобы эффективность главного луча была максимальной, а энергия, принимаемая через боковые лепестки антенны, минимальной;
- с) что воздействие доминирующего источника помех на измерения одного пикселя или оценки пиковых помех может потребовать рассмотрения максимумов диаграммы направленности боковых лепестков антенны,

отмечая,

а) что характеристики пассивных датчиков, работающих в полосе 1,4–100 ГГц, были учтены при получении предлагаемой диаграммы направленности антенны,

рекомендует,

1 использовать при отсутствии реальной диаграммы направленности антенны следующие уравнения усредненной диаграммы направленности антенны бортового пассивного датчика для антенн, диаметр которых превышает длину волны более чем в 2 раза:

$$G(\phi) = G_{max} - 1.8 \times 10^{-3} \left(\frac{D}{\lambda} \, \phi\right)^2$$
 для $0^{\circ} \le \phi \le \phi_m$

$$G(\phi) = \max \left(G_{max} - 1.8 \times 10^{-3} \left(\frac{D}{\lambda} \phi \right)^2, 33 - 5 \log \left(\frac{D}{\lambda} \right) - 25 \log(\phi) \right)$$
 для $\phi_m < \phi \le 69^{\circ}$

$$G(\phi) = -13 - 5\log\left(\frac{D}{\lambda}\right)$$
 для $69^{\circ} < \phi \le 180^{\circ}$.

В случае $G(\phi) < -23$ дБи должно использоваться значение -23 дБи, где:

$$G_{max} = 10 \log \left(\eta \pi^2 \frac{D^2}{\lambda^2} \right)$$

$$\varphi_m = \frac{22\lambda}{D} \sqrt{5.5 + 5\log(\frac{D}{\lambda}\eta^2)}$$

 G_{max} : максимальное усиление антенны (дБи);

 $G(\phi)$: усиление (дБи) по отношению к изотропной антенне;

ф: угол внеосевого излучения (градусы);

D: диаметр антенны (м);

λ: длина волны (м);

 п: кпд антенны (если п не известен, то в качестве типичного значения можно предположить значение 60%);

2 использовать в случаях, когда доминируют несколько источников помех или когда для анализа требуются значения пиковых помех, следующие уравнения диаграммы направленности антенны бортовых пассивных датчиков для антенн, диаметр которых превышает длину волны более чем в 2 раза:

$$G(\phi) = G_{max} - 1.8 \times 10^{-3} \left(\frac{D}{\lambda} \phi\right)^2 \qquad \qquad \text{для} \qquad 0^\circ \le \phi \le \phi_m$$

$$G(\phi) = \max \left(G_{max} - 1.8 \times 10^{-3} \left(\frac{D}{\lambda} \phi\right)^2, 40 - 5 \log \left(\frac{D}{\lambda}\right) - 25 \log(\phi)\right) \qquad \qquad \text{для} \qquad \phi_m < \phi \le 69^\circ$$

$$G(\phi) = -6 - 5 \log \left(\frac{D}{\lambda}\right) \qquad \qquad \text{для} \qquad 69^\circ < \phi \le 180^\circ.$$

В случае $G(\phi) < -23$ дБи должно использоваться значение -23 дБи, где:

$$G_{max} = 10 \log \left(\eta \pi^2 \frac{D^2}{\lambda^2} \right)$$

$$\varphi_m = \frac{22\lambda}{D} \sqrt{5.5 + 5 \log\left(\frac{D}{\lambda} \eta^2\right)}.$$