إن جمعية الاتصالات الراديوية التابعة لقطاع الاتصالات الراديوية، إذ تضع في اعتبارها أن هناك حاجة إلى حساب التوهين الناتج عن المطر يقوم على معرفة معدلات المطر، توصي بالاستعمال نماذج التوهين الخاصة التي يمكن الحصول على التوهين الخاص $\gamma (dB/km)$ من معدل المطر $R (mm/h)$:

\\(\gamma_R = kR^\alpha \)\\

(1)

يحدد المعاملان k و α بدلالة التردد (GHz) f وعاه α و k من خلال المعادلات التالية التي تستخرج عن طريق مواجهة المعادلات القانوني المسماة من حسابات التتأثر:

\\(\log_{10} k = \sum_{j=1}^{4} a_j \exp \left[-\left(\frac{\log_{10} f - b_j}{c_j} \right)^2 \right] + m_1 \log_{10} f + c_k \)\\

(2)

\\(\alpha = \sum_{j=1}^{5} a_j \exp \left[-\left(\frac{\log_{10} f - b_j}{c_j} \right)^2 \right] + m_2 \log_{10} f + c_\alpha \)\\

(3)

حيث:

(1) التردد (GHz): f

(2) k_V أو k_H: k

(3) a_V أو a_H: α

يعطي الجدول 1 القيم الثابتة للمعامل k_V للاستقطاب الأفقي، ويعطي الجدول 2 القيم الثابتة للمعامل k_H للاستقطاب العمودي.

يعطي الجدول 3 القيم الثابتة للمعامل α_V للاستقطاب الأفقي، ويعطي الجدول 4 القيم الثابتة للمعامل α_H للاستقطاب العمودي.
الجدول 1

المعاملات من أجل k_{II}

<table>
<thead>
<tr>
<th>c_k</th>
<th>m_k</th>
<th>c_j</th>
<th>b_j</th>
<th>a_j</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,71147</td>
<td>0,18961</td>
<td>1,13098</td>
<td>0,10008</td>
<td>5,33980</td>
<td>1</td>
</tr>
<tr>
<td>0,45400</td>
<td>1,26970</td>
<td>0,35351</td>
<td>0,10008</td>
<td>5,33980</td>
<td>2</td>
</tr>
<tr>
<td>0,15354</td>
<td>0,86036</td>
<td>0,23789</td>
<td>0,10008</td>
<td>5,33980</td>
<td>3</td>
</tr>
<tr>
<td>0,16817</td>
<td>0,64552</td>
<td>0,94158</td>
<td>0,10008</td>
<td>5,33980</td>
<td>4</td>
</tr>
</tbody>
</table>

الجدول 2

المعاملات من أجل k_{IV}

<table>
<thead>
<tr>
<th>c_k</th>
<th>m_k</th>
<th>c_j</th>
<th>b_j</th>
<th>a_j</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,63297</td>
<td>0,16398</td>
<td>0,81061</td>
<td>0,56934</td>
<td>3,80595</td>
<td>1</td>
</tr>
<tr>
<td>0,51059</td>
<td>0,22911</td>
<td>0,22911</td>
<td>0,45400</td>
<td>1,26970</td>
<td>2</td>
</tr>
<tr>
<td>0,11899</td>
<td>0,73042</td>
<td>0,39902</td>
<td>0,10008</td>
<td>5,33914</td>
<td>3</td>
</tr>
<tr>
<td>0,27195</td>
<td>1,07319</td>
<td>0,50167</td>
<td>0,10008</td>
<td>5,33914</td>
<td>4</td>
</tr>
</tbody>
</table>

الجدول 3

المعاملات من أجل α_{II}

<table>
<thead>
<tr>
<th>c_α</th>
<th>m_α</th>
<th>c_j</th>
<th>b_j</th>
<th>a_j</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,95537</td>
<td>0,67849</td>
<td>0,55187</td>
<td>1,82442</td>
<td>0,14318</td>
<td>1</td>
</tr>
<tr>
<td>0,19822</td>
<td>0,77564</td>
<td>0,29591</td>
<td>0,14318</td>
<td>1,82442</td>
<td>2</td>
</tr>
<tr>
<td>0,13164</td>
<td>0,53719</td>
<td>0,32177</td>
<td>0,14318</td>
<td>1,82442</td>
<td>3</td>
</tr>
<tr>
<td>1,47828</td>
<td>0,96230</td>
<td>0,26809</td>
<td>0,14318</td>
<td>1,82442</td>
<td>4</td>
</tr>
<tr>
<td>3,43900</td>
<td>3,29980</td>
<td>16,1721</td>
<td>0,14318</td>
<td>1,82442</td>
<td>5</td>
</tr>
</tbody>
</table>

الجدول 4

المعاملات من أجل α_{IV}

<table>
<thead>
<tr>
<th>c_α</th>
<th>m_α</th>
<th>c_j</th>
<th>b_j</th>
<th>a_j</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,83433</td>
<td>0,053739</td>
<td>0,76284</td>
<td>2,33840</td>
<td>0,77711</td>
<td>1</td>
</tr>
<tr>
<td>0,54039</td>
<td>0,95545</td>
<td>0,56727</td>
<td>0,77711</td>
<td>2,33840</td>
<td>2</td>
</tr>
<tr>
<td>0,26809</td>
<td>1,14520</td>
<td>0,20238</td>
<td>0,77711</td>
<td>2,33840</td>
<td>3</td>
</tr>
<tr>
<td>0,116226</td>
<td>0,791669</td>
<td>48,2991</td>
<td>0,77711</td>
<td>2,33840</td>
<td>4</td>
</tr>
<tr>
<td>0,116479</td>
<td>0,791459</td>
<td>48,5833</td>
<td>0,77711</td>
<td>2,33840</td>
<td>5</td>
</tr>
</tbody>
</table>

بالنسبة لاستقطاب خطي واستقطاب دائري، ولأي هندسة مسير، يمكن حساب معاملاً α من المعادلة (1) انطلاقاً من قيم المعادلة (2) و(3) بتطبيق المعادلتين التاليتين:
حيث θ زاوية ارتفاع المسير و τ زاوية ميل الاستقطاب على المستوى الأفقي (لاستقطاب الدائري، $\tau = 45^\circ$).

تيسيراً للاطلاع، يرد المعاملان k و α في شكل بيازي في الأشكال 1 إلى 4. ويدرج الجدول 5 القيم العددية للمعاملات عند ترددات معينة.

الشكل 1
المعامل k للاستقطاب الأفقي

\[
k = \frac{[k_H + k_V + (k_H - k_V) \cos^2 \theta \cos 2\tau]}{2}
\]

\[
\alpha = \frac{[k_H \alpha_H + k_V \alpha_V + (k_H \alpha_H - k_V \alpha_V) \cos^2 \theta \cos 2\tau]}{2k}
\]
الشكل 2
المعامل α للاستقطاب الأفقي

المعامل $H\alpha$ التردد, GHz

المعامل $V\alpha$ التردد, GHz

الشكل 3
المعامل k للاستقطاب العمودي

المعامل k_{\parallel} التردد, GHz
الشكل 4
المعامل α للاستقطاب الأفقي
الجدول 5
معاملات مرتبطة بالتردد لتقييم التوهين بالمطر الخاص
باستعمال المعادلات (4) و (5) (1)

<table>
<thead>
<tr>
<th>α_V</th>
<th>k_V</th>
<th>α_H</th>
<th>k_H</th>
<th>التردد GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8592</td>
<td>0.0000308</td>
<td>0.9691</td>
<td>0.0000259</td>
<td>1</td>
</tr>
<tr>
<td>0.8957</td>
<td>0.0000574</td>
<td>1.0185</td>
<td>0.0000443</td>
<td>1.5</td>
</tr>
<tr>
<td>0.9490</td>
<td>0.0000998</td>
<td>1.0664</td>
<td>0.0000847</td>
<td>2</td>
</tr>
<tr>
<td>1.0085</td>
<td>0.0001464</td>
<td>1.1209</td>
<td>0.0001321</td>
<td>2.5</td>
</tr>
<tr>
<td>1.0688</td>
<td>0.0001942</td>
<td>1.2322</td>
<td>0.0001390</td>
<td>3</td>
</tr>
<tr>
<td>1.1387</td>
<td>0.0002346</td>
<td>1.4189</td>
<td>0.0001155</td>
<td>3.5</td>
</tr>
<tr>
<td>1.2476</td>
<td>0.0002461</td>
<td>1.6009</td>
<td>0.0001071</td>
<td>4</td>
</tr>
<tr>
<td>1.3987</td>
<td>0.0002347</td>
<td>1.6948</td>
<td>0.0001340</td>
<td>4.5</td>
</tr>
<tr>
<td>1.5317</td>
<td>0.0002428</td>
<td>1.6969</td>
<td>0.0002162</td>
<td>5</td>
</tr>
<tr>
<td>1.5882</td>
<td>0.0003115</td>
<td>1.6499</td>
<td>0.0003909</td>
<td>5.5</td>
</tr>
<tr>
<td>1.5728</td>
<td>0.0004878</td>
<td>1.5900</td>
<td>0.0007056</td>
<td>6</td>
</tr>
<tr>
<td>1.4745</td>
<td>0.001425</td>
<td>1.4810</td>
<td>0.001915</td>
<td>7</td>
</tr>
<tr>
<td>1.3797</td>
<td>0.003450</td>
<td>1.3905</td>
<td>0.004115</td>
<td>8</td>
</tr>
<tr>
<td>1.2895</td>
<td>0.006691</td>
<td>1.3155</td>
<td>0.007535</td>
<td>9</td>
</tr>
<tr>
<td>1.2156</td>
<td>0.01129</td>
<td>1.2571</td>
<td>0.01217</td>
<td>10</td>
</tr>
<tr>
<td>1.1617</td>
<td>0.01731</td>
<td>1.2140</td>
<td>0.01772</td>
<td>11</td>
</tr>
<tr>
<td>1.1216</td>
<td>0.02455</td>
<td>1.1825</td>
<td>0.02386</td>
<td>12</td>
</tr>
<tr>
<td>1.0901</td>
<td>0.03266</td>
<td>1.1586</td>
<td>0.03041</td>
<td>13</td>
</tr>
<tr>
<td>1.0646</td>
<td>0.04126</td>
<td>1.1396</td>
<td>0.03738</td>
<td>14</td>
</tr>
<tr>
<td>1.0440</td>
<td>0.05008</td>
<td>1.1233</td>
<td>0.04481</td>
<td>15</td>
</tr>
<tr>
<td>1.0273</td>
<td>0.05899</td>
<td>1.1086</td>
<td>0.05282</td>
<td>16</td>
</tr>
<tr>
<td>1.0137</td>
<td>0.06797</td>
<td>1.0949</td>
<td>0.06146</td>
<td>17</td>
</tr>
<tr>
<td>1.0025</td>
<td>0.07708</td>
<td>1.0818</td>
<td>0.07078</td>
<td>18</td>
</tr>
<tr>
<td>0.9930</td>
<td>0.08642</td>
<td>1.0691</td>
<td>0.08084</td>
<td>19</td>
</tr>
<tr>
<td>0.9847</td>
<td>0.09611</td>
<td>1.0568</td>
<td>0.09164</td>
<td>20</td>
</tr>
<tr>
<td>0.9771</td>
<td>0.1063</td>
<td>1.0447</td>
<td>0.1032</td>
<td>21</td>
</tr>
<tr>
<td>0.9700</td>
<td>0.1170</td>
<td>1.0329</td>
<td>0.1155</td>
<td>22</td>
</tr>
<tr>
<td>0.9630</td>
<td>0.1284</td>
<td>1.0214</td>
<td>0.1286</td>
<td>23</td>
</tr>
<tr>
<td>0.9561</td>
<td>0.1404</td>
<td>1.0101</td>
<td>0.1425</td>
<td>24</td>
</tr>
<tr>
<td>0.9491</td>
<td>0.1533</td>
<td>0.9991</td>
<td>0.1571</td>
<td>25</td>
</tr>
<tr>
<td>0.9421</td>
<td>0.1669</td>
<td>0.9884</td>
<td>0.1724</td>
<td>26</td>
</tr>
<tr>
<td>0.9349</td>
<td>0.1813</td>
<td>0.9780</td>
<td>0.1884</td>
<td>27</td>
</tr>
<tr>
<td>0.9277</td>
<td>0.1964</td>
<td>0.9679</td>
<td>0.2051</td>
<td>28</td>
</tr>
<tr>
<td>0.9203</td>
<td>0.2124</td>
<td>0.9580</td>
<td>0.2224</td>
<td>29</td>
</tr>
<tr>
<td>0.9129</td>
<td>0.2291</td>
<td>0.9485</td>
<td>0.2403</td>
<td>30</td>
</tr>
</tbody>
</table>
الجدول 5
معاملاً مرتبطة بالتردد لتقييم التوهين بالمطر الخاص
باستعمال المعادلات (4) و(5) و(1)

<table>
<thead>
<tr>
<th>𝛼 v</th>
<th>𝑘 v</th>
<th>𝛼 h</th>
<th>𝑘 h</th>
<th>التردد GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9055</td>
<td>0.2465</td>
<td>0.9392</td>
<td>0.2588</td>
<td>31</td>
</tr>
<tr>
<td>0.8981</td>
<td>0.2646</td>
<td>0.9302</td>
<td>0.2778</td>
<td>32</td>
</tr>
<tr>
<td>0.8907</td>
<td>0.2833</td>
<td>0.9214</td>
<td>0.2972</td>
<td>33</td>
</tr>
<tr>
<td>0.8834</td>
<td>0.3026</td>
<td>0.9129</td>
<td>0.3171</td>
<td>34</td>
</tr>
<tr>
<td>0.8761</td>
<td>0.3224</td>
<td>0.9047</td>
<td>0.3374</td>
<td>35</td>
</tr>
<tr>
<td>0.8690</td>
<td>0.3427</td>
<td>0.8967</td>
<td>0.3580</td>
<td>36</td>
</tr>
<tr>
<td>0.8621</td>
<td>0.3633</td>
<td>0.8890</td>
<td>0.3789</td>
<td>37</td>
</tr>
<tr>
<td>0.8552</td>
<td>0.3844</td>
<td>0.8816</td>
<td>0.4001</td>
<td>38</td>
</tr>
<tr>
<td>0.8486</td>
<td>0.4058</td>
<td>0.8743</td>
<td>0.4215</td>
<td>39</td>
</tr>
<tr>
<td>0.8421</td>
<td>0.4274</td>
<td>0.8673</td>
<td>0.4431</td>
<td>40</td>
</tr>
<tr>
<td>0.8357</td>
<td>0.4492</td>
<td>0.8605</td>
<td>0.4647</td>
<td>41</td>
</tr>
<tr>
<td>0.8296</td>
<td>0.4712</td>
<td>0.8539</td>
<td>0.4865</td>
<td>42</td>
</tr>
<tr>
<td>0.8236</td>
<td>0.4932</td>
<td>0.8476</td>
<td>0.5084</td>
<td>43</td>
</tr>
<tr>
<td>0.8179</td>
<td>0.5153</td>
<td>0.8414</td>
<td>0.5302</td>
<td>44</td>
</tr>
<tr>
<td>0.8123</td>
<td>0.5375</td>
<td>0.8355</td>
<td>0.5521</td>
<td>45</td>
</tr>
<tr>
<td>0.8069</td>
<td>0.5596</td>
<td>0.8297</td>
<td>0.5738</td>
<td>46</td>
</tr>
<tr>
<td>0.8017</td>
<td>0.5817</td>
<td>0.8241</td>
<td>0.5956</td>
<td>47</td>
</tr>
<tr>
<td>0.7967</td>
<td>0.6037</td>
<td>0.8187</td>
<td>0.6172</td>
<td>48</td>
</tr>
<tr>
<td>0.7918</td>
<td>0.6255</td>
<td>0.8134</td>
<td>0.6386</td>
<td>49</td>
</tr>
<tr>
<td>0.7871</td>
<td>0.6472</td>
<td>0.8084</td>
<td>0.6600</td>
<td>50</td>
</tr>
<tr>
<td>0.7826</td>
<td>0.6687</td>
<td>0.8034</td>
<td>0.6811</td>
<td>51</td>
</tr>
<tr>
<td>0.7783</td>
<td>0.6901</td>
<td>0.7987</td>
<td>0.7020</td>
<td>52</td>
</tr>
<tr>
<td>0.7741</td>
<td>0.7112</td>
<td>0.7941</td>
<td>0.7228</td>
<td>53</td>
</tr>
<tr>
<td>0.7700</td>
<td>0.7321</td>
<td>0.7896</td>
<td>0.7433</td>
<td>54</td>
</tr>
<tr>
<td>0.7661</td>
<td>0.7527</td>
<td>0.7853</td>
<td>0.7635</td>
<td>55</td>
</tr>
<tr>
<td>0.7623</td>
<td>0.7730</td>
<td>0.7811</td>
<td>0.7835</td>
<td>56</td>
</tr>
<tr>
<td>0.7587</td>
<td>0.7931</td>
<td>0.7771</td>
<td>0.8032</td>
<td>57</td>
</tr>
<tr>
<td>0.7552</td>
<td>0.8129</td>
<td>0.7731</td>
<td>0.8226</td>
<td>58</td>
</tr>
<tr>
<td>0.7518</td>
<td>0.8324</td>
<td>0.7693</td>
<td>0.8418</td>
<td>59</td>
</tr>
<tr>
<td>0.7486</td>
<td>0.8515</td>
<td>0.7656</td>
<td>0.8606</td>
<td>60</td>
</tr>
<tr>
<td>0.7454</td>
<td>0.8704</td>
<td>0.7621</td>
<td>0.8791</td>
<td>61</td>
</tr>
<tr>
<td>0.7424</td>
<td>0.8889</td>
<td>0.7586</td>
<td>0.8974</td>
<td>62</td>
</tr>
<tr>
<td>0.7395</td>
<td>0.9071</td>
<td>0.7552</td>
<td>0.9153</td>
<td>63</td>
</tr>
<tr>
<td>0.7366</td>
<td>0.9250</td>
<td>0.7520</td>
<td>0.9328</td>
<td>64</td>
</tr>
<tr>
<td>0.7339</td>
<td>0.9425</td>
<td>0.7488</td>
<td>0.9501</td>
<td>65</td>
</tr>
</tbody>
</table>
المعاملات المرتبطة بالتردد لتقييم التوهين بالمطر الخاص

<table>
<thead>
<tr>
<th>αν</th>
<th>κν</th>
<th>αμ</th>
<th>κμ</th>
<th>التردد GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,7313</td>
<td>0,9598</td>
<td>0,7458</td>
<td>0,9670</td>
<td>66</td>
</tr>
<tr>
<td>0,7287</td>
<td>0,9767</td>
<td>0,7428</td>
<td>0,9836</td>
<td>67</td>
</tr>
<tr>
<td>0,7262</td>
<td>0,9932</td>
<td>0,7400</td>
<td>0,9999</td>
<td>68</td>
</tr>
<tr>
<td>0,7238</td>
<td>1,0094</td>
<td>0,7372</td>
<td>1,0159</td>
<td>69</td>
</tr>
<tr>
<td>0,7215</td>
<td>1,0253</td>
<td>0,7345</td>
<td>1,0315</td>
<td>70</td>
</tr>
<tr>
<td>0,7193</td>
<td>1,0409</td>
<td>0,7318</td>
<td>1,0468</td>
<td>71</td>
</tr>
<tr>
<td>0,7171</td>
<td>1,0561</td>
<td>0,7293</td>
<td>1,0618</td>
<td>72</td>
</tr>
<tr>
<td>0,7150</td>
<td>1,0711</td>
<td>0,7268</td>
<td>1,0764</td>
<td>73</td>
</tr>
<tr>
<td>0,7130</td>
<td>1,0857</td>
<td>0,7244</td>
<td>1,0908</td>
<td>74</td>
</tr>
<tr>
<td>0,7110</td>
<td>1,1000</td>
<td>0,7221</td>
<td>1,1048</td>
<td>75</td>
</tr>
<tr>
<td>0,7091</td>
<td>1,1139</td>
<td>0,7199</td>
<td>1,1185</td>
<td>76</td>
</tr>
<tr>
<td>0,7073</td>
<td>1,1276</td>
<td>0,7177</td>
<td>1,1320</td>
<td>77</td>
</tr>
<tr>
<td>0,7055</td>
<td>1,1410</td>
<td>0,7156</td>
<td>1,1451</td>
<td>78</td>
</tr>
<tr>
<td>0,7038</td>
<td>1,1541</td>
<td>0,7135</td>
<td>1,1579</td>
<td>79</td>
</tr>
<tr>
<td>0,7021</td>
<td>1,1668</td>
<td>0,7115</td>
<td>1,1704</td>
<td>80</td>
</tr>
<tr>
<td>0,7004</td>
<td>1,1793</td>
<td>0,7096</td>
<td>1,1827</td>
<td>81</td>
</tr>
<tr>
<td>0,6988</td>
<td>1,1915</td>
<td>0,7077</td>
<td>1,1946</td>
<td>82</td>
</tr>
<tr>
<td>0,6973</td>
<td>1,2034</td>
<td>0,7058</td>
<td>1,2063</td>
<td>83</td>
</tr>
<tr>
<td>0,6958</td>
<td>1,2151</td>
<td>0,7040</td>
<td>1,2177</td>
<td>84</td>
</tr>
<tr>
<td>0,6943</td>
<td>1,2265</td>
<td>0,7023</td>
<td>1,2289</td>
<td>85</td>
</tr>
<tr>
<td>0,6929</td>
<td>1,2376</td>
<td>0,7006</td>
<td>1,2398</td>
<td>86</td>
</tr>
<tr>
<td>0,6915</td>
<td>1,2484</td>
<td>0,6990</td>
<td>1,2504</td>
<td>87</td>
</tr>
<tr>
<td>0,6902</td>
<td>1,2590</td>
<td>0,6974</td>
<td>1,2607</td>
<td>88</td>
</tr>
<tr>
<td>0,6889</td>
<td>1,2694</td>
<td>0,6959</td>
<td>1,2708</td>
<td>89</td>
</tr>
<tr>
<td>0,6876</td>
<td>1,2795</td>
<td>0,6944</td>
<td>1,2807</td>
<td>90</td>
</tr>
<tr>
<td>0,6864</td>
<td>1,2893</td>
<td>0,6929</td>
<td>1,2903</td>
<td>91</td>
</tr>
<tr>
<td>0,6852</td>
<td>1,2989</td>
<td>0,6915</td>
<td>1,2997</td>
<td>92</td>
</tr>
<tr>
<td>0,6840</td>
<td>1,3083</td>
<td>0,6901</td>
<td>1,3089</td>
<td>93</td>
</tr>
<tr>
<td>0,6828</td>
<td>1,3175</td>
<td>0,6888</td>
<td>1,3179</td>
<td>94</td>
</tr>
<tr>
<td>0,6817</td>
<td>1,3265</td>
<td>0,6875</td>
<td>1,3266</td>
<td>95</td>
</tr>
<tr>
<td>0,6806</td>
<td>1,3352</td>
<td>0,6862</td>
<td>1,3351</td>
<td>96</td>
</tr>
<tr>
<td>0,6796</td>
<td>1,3437</td>
<td>0,6850</td>
<td>1,3434</td>
<td>97</td>
</tr>
<tr>
<td>0,6785</td>
<td>1,3520</td>
<td>0,6838</td>
<td>1,3515</td>
<td>98</td>
</tr>
<tr>
<td>0,6775</td>
<td>1,3601</td>
<td>0,6826</td>
<td>1,3594</td>
<td>99</td>
</tr>
<tr>
<td>0,6765</td>
<td>1,3680</td>
<td>0,6815</td>
<td>1,3671</td>
<td>100</td>
</tr>
</tbody>
</table>
الجدول 5
معادلات مربطة بالتردد لتقييم التوهين بالمطر الخاص
باستعمال المعادلات (4) و(5) و(1)

<table>
<thead>
<tr>
<th>α_V</th>
<th>k_V</th>
<th>α_H</th>
<th>k_H</th>
<th>التردد GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6609</td>
<td>1.4911</td>
<td>0.6640</td>
<td>1.4866</td>
<td>120</td>
</tr>
<tr>
<td>0.6466</td>
<td>1.5896</td>
<td>0.6494</td>
<td>1.5823</td>
<td>150</td>
</tr>
<tr>
<td>0.6343</td>
<td>1.6443</td>
<td>0.6382</td>
<td>1.6378</td>
<td>200</td>
</tr>
<tr>
<td>0.6262</td>
<td>1.6286</td>
<td>0.6296</td>
<td>1.6286</td>
<td>300</td>
</tr>
<tr>
<td>0.6256</td>
<td>1.5820</td>
<td>0.6262</td>
<td>1.5860</td>
<td>400</td>
</tr>
<tr>
<td>0.6272</td>
<td>1.5366</td>
<td>0.6253</td>
<td>1.5418</td>
<td>500</td>
</tr>
<tr>
<td>0.6293</td>
<td>1.4967</td>
<td>0.6262</td>
<td>1.5013</td>
<td>600</td>
</tr>
<tr>
<td>0.6315</td>
<td>1.4622</td>
<td>0.6284</td>
<td>1.4654</td>
<td>700</td>
</tr>
<tr>
<td>0.6334</td>
<td>1.4321</td>
<td>0.6315</td>
<td>1.4335</td>
<td>800</td>
</tr>
<tr>
<td>0.6351</td>
<td>1.4056</td>
<td>0.6353</td>
<td>1.4050</td>
<td>900</td>
</tr>
<tr>
<td>0.6365</td>
<td>1.3822</td>
<td>0.6396</td>
<td>1.3795</td>
<td>1000</td>
</tr>
</tbody>
</table>