

Recommandation UIT-R P.531-16 (09/2025)

Série P: Propagation des ondes radioélectriques

Données de propagation ionosphérique et méthodes de prévision requises pour la conception de réseaux à satellite et de systèmes à satellites

Avant-propos

Le rôle du Secteur des radiocommunications est d'assurer l'utilisation rationnelle, équitable, efficace et économique du spectre radioélectrique par tous les services de radiocommunication, y compris les services par satellite, et de procéder à des études pour toutes les gammes de fréquences, à partir desquelles les Recommandations seront élaborées et adoptées.

Les fonctions réglementaires et politiques du Secteur des radiocommunications sont remplies par les Conférences mondiales et régionales des radiocommunications et par les Assemblées des radiocommunications assistées par les Commissions d'études.

Politique en matière de droits de propriété intellectuelle (IPR)

La politique de l'UIT-R en matière de droits de propriété intellectuelle est décrite dans la «Politique commune de l'UIT-T, l'UIT-R, l'ISO et la CEI en matière de brevets», dont il est question dans la Résolution UIT-R 1. Les formulaires que les titulaires de brevets doivent utiliser pour soumettre les déclarations de brevet et d'octroi de licence sont accessibles à l'adresse https://www.itu.int/ITU-R/go/patents/en, où l'on trouvera également les Lignes directrices pour la mise en oeuvre de la politique commune en matière de brevets de l'UIT-R, l'ISO et la CEI et la base de données en matière de brevets de l'UIT-R.

Séries des Recommandations UIT-R					
	(Également disponible en ligne: https://www.itu.int/publ/R-REC/en)				
Séries	Titre				
ВО	Diffusion par satellite				
BR	Enregistrement pour la production, l'archivage et la diffusion; films pour la télévision				
BS	Service de radiodiffusion sonore				
BT	Service de radiodiffusion télévisuelle				
F	Service fixe				
M	Services mobile, de radiorepérage et d'amateur y compris les services par satellite associés				
P	Propagation des ondes radioélectriques				
RA	Radio astronomie				
RS	Systèmes de télédétection				
S	Service fixe par satellite				
SA	Applications spatiales et météorologie				
SF	Partage des fréquences et coordination entre les systèmes du service fixe par satellite et du service fixe				
SM	Gestion du spectre				
SNG	Reportage d'actualités par satellite				
TF	Emissions de fréquences étalon et de signaux horaires				
V	Vocabulaire et sujets associés				

Note: Cette Recommandation UIT-R a été approuvée en anglais aux termes de la procédure détaillée dans la Résolution UIT-R 1.

Publication électronique Genève, 2025

© UIT 2025

Tous droits réservés. Aucune partie de cette publication ne peut être reproduite, par quelque procédé que ce soit, sans l'accord écrit préalable de l'UIT.

RECOMMANDATION UIT-R P.531-16

Données de propagation ionosphérique et méthodes de prévision requises pour la conception de réseaux à satellite et de systèmes à satellites

(Question UIT-R 218/3)

(1978-1990-1992-1994-1997-1999-2001-2003-2005-2007-2009-2012-2013-2016-2019-2023-2025)

Domaine d'application

La Recommandation UIT-R P.531 décrit une méthode d'évaluation des effets de propagation ionosphérique sur les trajets entre la Terre et l'espace (à des fréquences de 0,1 à 12 GHz) «OU» (à des fréquences supérieures à la fréquence critique de l'ionosphère, à laquelle l'ionosphère devient transparente pour les ondes radioélectriques, jusqu'à plusieurs dizaines de gigahertz). Les effets ci-après peuvent se produire sur les trajets entre la Terre et l'espace lorsque le signal traverse l'ionosphère:

- rotation du plan de polarisation (rotation de Faraday) provoquée par l'interaction entre l'onde électromagnétique et le milieu ionisé dans le champ magnétique terrestre le long du trajet;
- temps de propagation de groupe et avance de phase du signal dus au contenu électronique total (CET) accumulé le long du trajet;
- fluctuation rapide d'amplitude et de phase (scintillations) du signal due à de petites structures irrégulières dans l'ionosphère;
- modification de l'angle d'arrivée apparent due à la réfraction;
- effets Doppler dus à la non-linéarité des rotations du plan de polarisation et des retards.

Les données et les méthodes décrites dans la présente Recommandation s'appliquent à la planification des systèmes à satellites, dans les gammes de validité respectives indiquées dans l'Annexe.

Mots clés

Propagation transionosphérique, scintillation, temps de propagation de groupe.

Abréviations/Glossaire

CET contenu électronique total

MUF fréquence maximale utilisable (maximum usable frequency)

XPD discrimination par polarisations croisées (cross-polarisation discrimination)

Recommandations et Rapports connexes de l'UIT

Recommandation UIT-R P.618 – Données de propagation et méthodes de prévision nécessaires pour la conception de systèmes de télécommunication Terre-espace

Recommandation UIT-R P.844 – Facteurs ionosphériques qui affectent le partage des fréquences dans les bandes des ondes métriques et décimétriques (30 MHz – 3 GHz)

Recommandation UIT-R P.1239 - Caractéristiques ioniques de référence de l'UIT-R

Rapport UIT-R P.2097 – Propagation transionosphérique des ondes radioélectriques – Le modèle mondial de scintillation ionosphérique (GISM)

Rapport UIT-R P.2297 – Modèles et données relatifs à la densité électronique pour la propagation transionosphérique des ondes radioélectriques

NOTE – Il convient d'utiliser l'édition la plus récente de la Recommandation/du Rapport en vigueur.

L'Assemblée des radiocommunications de l'UIT,

considérant

- a) que l'ionosphère exerce des effets notables sur la propagation, à des fréquences allant au moins jusqu'à 12 GHz;
- b) que ces effets peuvent être particulièrement importants pour les services utilisant des satellites non géostationnaires au-dessous de 3 GHz;
- c) que des données expérimentales ont été présentées et/ou que des méthodes de modélisation ont été mises au point qui permettent de prévoir les paramètres de propagation ionosphérique nécessaires pour la planification des systèmes à satellites;
- d) que les effets ionosphériques peuvent avoir une influence sur la conception et la qualité de fonctionnement des systèmes de radiocommunication comportant des engins spatiaux;
- e) que ces données et méthodes ont été jugées applicables, compte tenu de la variabilité naturelle des phénomènes de propagation, à la planification de tout réseau à satellite ou système à satellites,

recommande

d'utiliser, pour la planification des systèmes à satellites, les données préparées et les méthodes mises au point qui sont présentées dans l'Annexe, dans les gammes de validité respectives indiquées dans l'Annexe.

Annexe

1 Introduction

La présente Annexe traite des effets de propagation ionosphérique sur les trajets entre la Terre et l'espace.

Selon l'application, les effets ionosphériques peuvent être négligeables aux fréquences supérieures à environ 12 GHz. La fréquence à partir de laquelle les informations données ici s'appliquent sera légèrement supérieure à la fréquence critique de l'onde ordinaire, pour laquelle des estimations des valeurs mensuelles de la médiane et des déciles figurent dans la Recommandation UIT-R P.1239, en fonction de la géométrie du trajet. La propagation transionosphérique dans les bandes d'ondes kilométriques et aux fréquences plus basses a été examinée dans le Rapport 262-7 du CCIR (1990) et n'est pas abordée ici.

Du point de vue de la conception d'un système, on peut résumer comme suit les conséquences des effets ionosphériques:

- a) le contenu électronique total (CET) accumulé le long d'un trajet de transmission d'un service par satellite pénétrant dans l'ionosphère provoque une rotation du plan de polarisation de l'onde (ou rotation de Faraday), un retard du signal et une modification de l'angle d'arrivée apparent, due à la réfraction;
- b) des taches ionosphériques à localisation aléatoire, communément appelées irrégularités ionosphériques, provoquent également des rotations et des retards supplémentaires et aléatoires, que l'on ne peut décrire qu'en termes stochastiques;

- c) du fait que les rotations et retards dus à la densité électronique ne dépendent pas linéairement de la fréquence, les phénomènes décrits en a) et b) se traduisent également par une dispersion ou par une distorsion de la vitesse de groupe;
- d) par ailleurs, les irrégularités ionosphériques localisées agissent aussi comme des lentilles convergentes et divergentes qui focalisent et défocalisent les ondes radioélectriques. Ces effets sont communément appelés scintillations. Ils affectent l'amplitude, la phase et l'angle d'arrivée du signal.

En raison de la complexité de la physique de l'ionosphère, il n'est pas toujours possible de résumer rapidement, en simples formules analytiques, les paramètres système affectés par les effets ionosphériques indiqués ci-dessus. La présentation des données correspondantes sous forme de tableaux et/ou de graphes complétés par d'autres descriptions ou spécifications constitue la meilleure façon d'aborder ces effets, à toutes fins utiles.

Si l'on considère les effets de propagation entre la Terre et l'espace aux fréquences inférieures à 3 GHz, l'on doit reconnaître:

- e) que les effets de propagation entre la Terre et l'espace causés par les hydrométéores, qui sont en principe connus, ne sont pas significatifs par rapport aux effets indiqués au point f);
- f) que les effets liés à la propagation par trajets multiples à proximité de la surface de la Terre, en présence d'obstacles naturels ou artificiels à de faibles angles d'élévation, sont toujours critiques;
- g) que les effets liés à la propagation par trajets multiples à proximité de la surface de la Terre varient d'un lieu à un autre et qu'ils ne sont donc pas prédominants dans la propagation globale entre la Terre et l'espace lorsqu'on examine les facteurs de propagation à l'échelle planétaire.

2 Rappel

Due au rayonnement solaire, l'ionosphère de la Terre se compose de plusieurs régions d'ionisation. À toutes fins utiles de radiocommunication, on a distingué dans l'ionosphère les régions D, E et F ainsi que l'ionisation supérieure. Ces régions apportent une contribution au CET qui est réparti entre un satellite et les stations terminales au sol.

Dans chaque région, le milieu ionisé n'est ni homogène dans l'espace ni stationnaire dans le temps. Grosso modo, le bruit de fond ionique présente des variations relativement régulières (cycles journalier, saisonnier et solaire undécennal). Ce bruit est très dépendant des lieux géographiques et de l'activité géomagnétique. Le bruit de fond ionique est toujours complété par des structures non stationnaires, hautement dynamiques et à petite échelle, appelées irrégularités. Aussi bien le bruit de fond ionique que les irrégularités dégradent les ondes radioélectriques. Par ailleurs, l'indice de réfraction dépend de la fréquence, c'est-à-dire que le milieu est dispersif.

3 Considérations relatives à la propagation des ondes métriques et décamétriques

S'agissant des signaux dans les bandes d'ondes métriques qui se propagent dans et à travers l'ionosphère, à mesure que la fréquence de fonctionnement diminue, la distorsion et la dégradation du signal s'aggravent jusqu'au point où le signal ne peut plus pénétrer dans l'ionosphère et où les émissions des stations spatiales sont réfractées vers le haut ou les émissions des stations terriennes sont réfractées vers le sol. Étant donné que la structure et la densité de l'ionosphère sont très variables, la fréquence à laquelle cela se produit varie également et dépend aussi de la géométrie du trajet.

Pour une station spatiale dont l'antenne illumine des trajets qui deviendraient géométriquement tangentiels à l'ionosphère à des altitudes d'environ 200 à 300 km, cette fréquence de pénétration correspondrait approximativement à la MUF(4000)F2 donnée par (1,1 × M(3000) F2 × foF2). Les

estimations des valeurs mensuelles de la médiane et des déciles de M(3000)F2 et de foF2 figurent dans la Recommandation UIT-R P.1239. On trouvera les valeurs de la MUF pour 1% du temps et pour une distance de 4 000 km sur des cartes figurant dans la Recommandation UIT-R P.844. On ne sait pas exactement à quoi la valeur de 1% se réfère, mais il est possible que ce soit à toutes les heures des mois de l'année 1958, année d'activité solaire maximale. L'activité solaire maximale a alors été la plus extrême jamais observée. Toutefois, ces considérations géométriques peuvent être trop simplistes. La propagation dans l'ionosphère à des angles proches de la tangente peut se faire à l'intérieur d'un conduit donnant lieu à une propagation à plus longue distance et qui est soumise à des effets liés aux irrégularités ionosphériques.

À l'autre extrême, pour les antennes dirigées vers le nadir, la fréquence de pénétration sera la fréquence maximale du plasma, foF2.

En conclusion, pour les effets ionosphériques énumérés dans le Tableau 3, la dépendance vis-à-vis de la fréquence s'appliquera aux fréquences à partir de 100 MHz, sauf éventuellement aux moments et aux endroits où les perturbations ionosphériques sont très sévères. Aux fréquences plus basses, jusqu'à la fréquence maximale du plasma (foF2) pour la propagation à incidence verticale, la propagation entre la Terre et l'espace devrait toujours avoir lieu, mais la possibilité de mettre en œuvre un service de radiocommunication dépendra de la conception du système considéré, de son application et de la fiabilité requise.

4 Principales dégradations dues aux bruits de fond ioniques

Certains effets ionosphériques, comme la réfraction, la dispersion et le temps de propagation de groupe, sont, par leur ampleur, directement proportionnels au CET; la rotation de Faraday lui est, elle aussi, sensiblement proportionnelle, l'effet des contributions de différentes portions du trajet étant pondéré par la composante longitudinale du champ magnétique. Une connaissance du CET permet donc de faire une estimation quantitative de nombreux et importants effets de l'ionosphère.

4.1 CET

Désigné par N_T , le CET peut être évalué par la formule suivante:

$$N_T = \int_{S} n_e(s) \, \mathrm{d}s \tag{1}$$

où:

s: trajet de propagation (m)

 n_e : concentration des électrons (él/m³).

Même lorsque l'on connaît précisément le trajet de propagation, l'évaluation du contenu N_T est difficile parce que le terme n_e est soumis aux variations journalières, saisonnières et undécennales.

Aux fins de modélisation, la valeur du CET est habituellement rapportée à un trajet zénithal ayant une section droite de 1 m². Le CET de cette colonne verticale peut varier entre 10¹⁶ et 10¹⁸ él/m², la valeur de crête apparaissant dans la partie d'éclairement solaire journalier.

Pour estimer la valeur du CET, une procédure fondée sur le § 4.1.1 est décrite ci-dessous. Elle convient également pour le CET pour les trajets obliques.

4.1.1 Méthode NeQuick2

La distribution de la densité électronique donnée par le modèle est représentée par une fonction continue, qui est également continue au niveau de toutes les dérivées premières de l'espace. Elle se décompose en deux parties: la partie basse (au-dessous du maximum de la couche F2) et la partie haute (au-dessus du maximum de la couche F2). L'altitude du maximum de la couche F2 se calcule à partir des valeurs de M(3000)F2 et du ratio foF2/foE (voir la Recommandation UIT-R P.1239).

La partie basse est décrite par des couches semi-Epstein représentant E, F1 et F2. La partie haute de la couche F est également une couche de type semi-Epstein avec un paramètre d'épaisseur dépendant de l'altitude. Le modèle NeQuick2 v.P531-12 donne la densité électronique et le CET le long de trajets arbitraires sol-satellite ou satellite-satellite.

Le programme informatique et les fichiers de données associés sont des produits numériques qui font partie intégrante de la présente Recommandation et qui sont disponibles dans le fichier supplément R-REC-P.531-16-202509-I!!ZIP-E.zip (Partie 1).

4.2 Indice de réfraction ionosphérique

Il peut être nécessaire, pour certaines applications, de calculer différents paramètres par la méthode du tracé de rayons, en se fondant sur le profil donné de l'indice de réfraction ionosphérique. On doit alors utiliser la formule de calcul de l'indice de réfraction soit pour l'avance de phase, soit pour le temps de propagation de groupe induits par l'ionosphère.

4.2.1 Indice de réfraction de phase ionosphérique

Si l'on considère que la fréquence gyromagnétique, f_H , et la fréquence de collision, v, sont toutes deux inférieures à la fréquence des ondes, f, l'indice de réfraction de phase ionosphérique (n_p) peut être exprimé comme suit:

$$n_p = \sqrt{1 - \frac{e^2 n_e}{\varepsilon_0 m_e \omega^2}} = \sqrt{1 - \frac{80,616 \times 10^{-12} n_e}{f^2}}$$
 (2)

où:

e: valeur absolue de la charge élémentaire, $e = 1,60217733 \times 10^{-19}$ (C)

 m_e : masse de l'électron, $m_e = 9,1093897 \times 10^{-31}$ (kg)

 ε_0 : permittivité du vide, $\varepsilon_0 = 8,854187818 \times 10^{-12}$ (F/m)

 n_e concentration des électrons dans le milieu ionisé (é1/m³)

ω: pulsation (fréquence angulaire) des ondes radioélectriques (rad/s)

f: fréquence des ondes radioélectriques (MHz)

4.2.2 Indice de réfraction de groupe ionosphérique

Si l'on considère que la fréquence gyromagnétique, f_H , et la fréquence de collision, v, sont toutes deux inférieures à la fréquence des ondes, f, l'indice de réfraction de groupe ionosphérique (n_g) peut être exprimé comme suit:

$$n_g \approx n_p + \omega \cdot \frac{dn_p}{d\omega} = \frac{1}{n_p}$$
 (3)

4.3 Rotation de Faraday

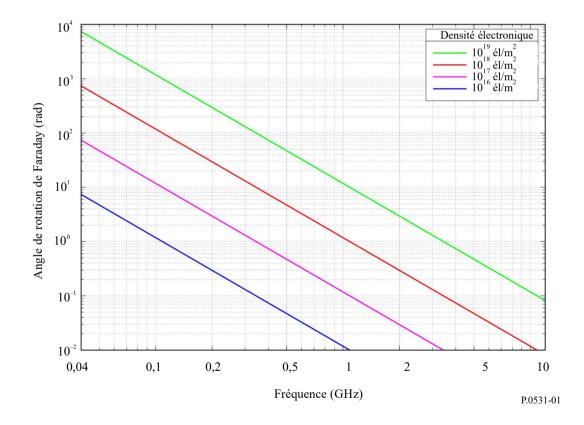
Lors de sa propagation dans l'ionosphère, une onde à polarisation rectiligne subit une rotation graduelle de son plan de polarisation à cause de la présence du champ géomagnétique et de l'anisotropie du plasma ambiant. L'ordre de grandeur de la rotation de Faraday, θ , dépend de la fréquence de l'onde radioélectrique, de l'intensité du champ magnétique et de la densité électronique du plasma, selon la formule suivante:

$$\theta = 2,36 \times 10^{-14} \frac{B_{av} N_T}{f^2} \tag{4}$$

où:

 θ : angle de rotation (rad)

 B_{av} : intensité moyenne du champ magnétique terrestre (Wb · m⁻² ou T)


f: fréquence (GHz)

 N_T : CET (él · m⁻²).

On trouvera dans la Fig. 1 des exemples de valeurs de θ pour une valeur moyenne du champ magnétique terrestre, B_{av} , de 50 μ T.

FIGURE 1

Rotation de Faraday en fonction du CET et de la fréquence

La rotation de Faraday est ainsi inversement proportionnelle au carré de la fréquence et proportionnelle à l'intégrale du produit de la densité électronique par la composante du champ magnétique terrestre le long du trajet de propagation. Sa valeur médiane, pour une fréquence donnée, a un comportement journalier, saisonnier et undécennal très régulier et prévisible. Cette composante régulière de la rotation de Faraday peut donc être compensée par un réglage manuel de l'angle d'inclinaison du plan de polarisation, à l'antenne de la station terrienne. Cependant, de grands écarts

peuvent se produire par rapport à ce comportement régulier pour de faibles pourcentages du temps à la suite d'orages géomagnétiques et, dans une moindre mesure, de perturbations ionosphériques itinérantes à grande échelle. Ces écarts ne peuvent être prévus à l'avance. Des fluctuations intenses et rapides de la rotation de Faraday affectant des signaux émis en ondes métriques ont été associées à des scintillations respectivement fortes et rapides, en des emplacements situés au voisinage des crêtes de l'anomalie équatoriale.

La discrimination par polarisations croisées (XPD) (dB), pour des antennes alignées, est liée à l'angle de rotation de Faraday, θ , par la relation suivante:

$$XPD = -20 \log (tg \theta) \tag{5}$$

4.4 Temps de propagation de groupe

La présence de particules chargées dans l'ionosphère ralentit la propagation des signaux radioélectriques sur leur trajet. Le retard par rapport au temps de propagation en espace libre, t, est appelé temps de propagation de groupe. C'est un facteur important à prendre en compte pour tout réseau à satellite ou système à satellites. Par ailleurs, la phase est avancée du même temps t. On peut calculer cette grandeur comme suit:

$$t = 1,345 N_T / f^2 \times 10^{-7} \tag{6}$$

où:

t: retard par rapport à la propagation dans le vide (s)

f: fréquence de propagation (Hz)

 N_T : déterminé le long du trajet de propagation oblique (él/m²).

La Figure 2 représente graphiquement le retard *t* en fonction de la fréquence *f* pour plusieurs valeurs du contenu électronique le long du trajet.

Dans une bande de fréquences située autour de 1 600 MHz, le temps de propagation de groupe varie entre environ 0,5 et 500 ns pour un CET compris entre 10^{16} et 10^{19} él/m². La Figure 3 donne le pourcentage annuel d'heures diurnes au cours desquelles le temps de propagation de groupe dépassera 20 ns au cours d'une période d'activité solaire relativement intense.

L'équation (6) donne l'avance de phase mais avec le signe opposé.

4.5 Dispersion

Lorsque des signaux transionosphériques occupent une large bande de fréquences, la variation du temps de propagation, qui est fonction de la fréquence, se traduit par une dispersion. Ce temps de propagation différentiel dans la largeur de bande est proportionnel à la densité électronique intégrée le long du trajet. Pour une largeur de bande fixe, la dispersion relative est inversement proportionnelle au cube de la fréquence. Il faut donc tenir compte de cet effet dans les systèmes à large bande fonctionnant en ondes métriques et éventuellement en ondes décimétriques. Exemple: pour un contenu électronique de 5×10^{17} él/m², un signal avec une longueur d'impulsion de 1 µs aura un temps de propagation différentiel de 0,02 µs à 200 MHz, tandis que ce temps de propagation ne serait que de 0,00074 µs à 600 MHz (voir la Fig. 4).

4.6 Taux de variation du CET

Pour un satellite sur orbite, le taux de variation observé du CET est attribuable en partie au changement de direction du trajet et en partie à une variation de l'ionosphère elle-même. Pour un satellite sur orbite à une altitude de $22\,000$ km traversant la zone aurorale, on a observé un taux de variation maximal de 0.7×10^{16} él/m²/s. Pour la navigation, un tel taux de variation correspond à une vitesse apparente de 0.11 m/s.

FIGURE 2

Temps de propagation de groupe dans l'ionosphère en fonction de la fréquence, pour diverses valeurs du contenu électronique

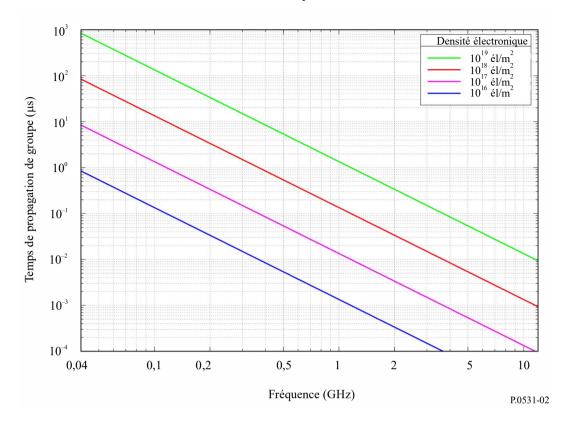


FIGURE 3

Contours du pourcentage du nombre annuel moyen des heures de jour au cours desquelles le temps de propagation à 1,6 GHz sous incidence verticale dépasse 20 ns (nombre de taches solaires = 140)

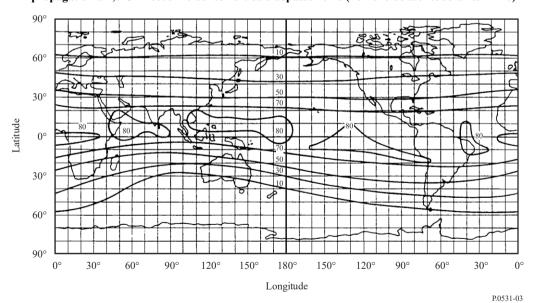
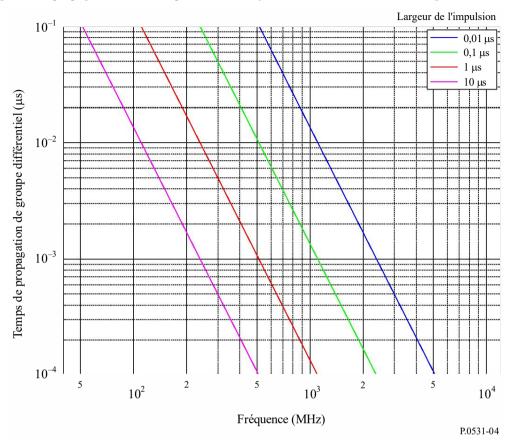



FIGURE 4

Différence de temps de propagation de groupe entre les fréquences inférieure et supérieure du spectre d'une impulsion de largeur, τ , se propageant dans l'ionosphère sur un trajet unidirectionnel, avec un CET égal à 5×10^{17} él/m²

5 Principales dégradations dues aux irrégularités

5.1 Scintillation

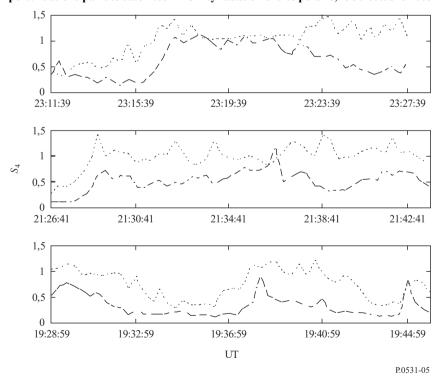
La scintillation ionosphérique provoque une des plus sévères interruptions le long d'un trajet de propagation transionosphérique pour des signaux de fréquence inférieurs à 3 GHz. On peut également observer les effets de la scintillation ionosphérique jusqu'à 10 GHz. Les scintillations sont par moments dues à des fluctuations de l'indice de réfraction, elles-mêmes causées par des hétérogénéités du milieu. Le signal parvenant au récepteur présente des fluctuations rapides d'amplitude et de phase et subit des modifications de ses propriétés de cohérence temporelle. C'est surtout par les mécanismes de rétrodiffusion et de diffraction que les petites structures irrégulières dans la densité ionique provoquent des phénomènes de scintillation par lesquels le signal stable parvenant au récepteur est remplacé par un signal présentant une fluctuation d'amplitude, de phase et d'angle d'arrivée apparent. Selon la modulation du système, divers modes de scintillation exercent diverses influences sur la qualité de fonctionnement du système. Le paramètre utilisé le plus couramment pour caractériser les fluctuations d'intensité est l'indice de scintillation S_4 , défini par la formule (7):

$$S_4 = \left(\frac{\langle I^2 \rangle - \langle I \rangle^2}{\langle I \rangle^2}\right)^{1/2} \tag{7}$$

où I est l'intensité du signal (proportionnelle au carré de l'amplitude de celui-ci) et $\langle \ \rangle$ indique la moyenne.

L'indice de scintillation S_4 dépend des fluctuations crête-à-crête de l'intensité. La relation exacte entre l'indice de scintillation S_4 et les fluctuations crête-à-crête de l'intensité dépend de la distribution de l'intensité et de l'algorithme de décomposition de l'intensité lié à la procédure de calcul de l'indice de scintillation S_4 . La courbe de Nakagami décrit le mieux la répartition de l'intensité pour une large gamme de valeurs S_4 .

Pour des raisons de commodité, l'intensité de la scintillation peut être classée en trois catégories: faible, modérée et forte. Les valeurs faibles correspondent à $S_4 < 0.3$, les valeurs modérées sont comprises entre 0,3 et 0,6 et les scintillations fortes correspondent à $S_4 > 0.6$.


Pour les scintillations faibles et modérées, S_4 présente systématiquement une dépendance à la fréquence de type $f^{-\upsilon}$, υ étant égal à 1,5 pour la plupart des observations effectuées à plusieurs fréquences. En outre, pour les scintillations faibles, l'amplitude suit une distribution log-normale.

Pour les scintillations fortes, une décroissance du facteur υ a été observée. Ce phénomène est dû à la saturation de la scintillation sous la forte influence de la diffusion multiple. Lorsque S_4 approche de 1,0, l'intensité suit une distribution de Rayleigh. Par moments, S_4 peut dépasser 1 et atteindre des valeurs telles que 1,5. La Figure 5 montre, par le biais de mesures effectuées par trois stations aurorales, un exemple de dépendance de S_4 à la fréquence dans les bandes métriques et décimétriques pour des scintillations faibles, modérées et fortes.

Les scintillations de phase suivent une distribution gaussienne à moyenne nulle. L'écart type est utilisé pour caractériser les scintillations de phase (σ_{φ}) . Pour les scintillations faibles et modérées, la plupart des observations effectuées dans les régions équatoriales indiquent que les scintillations de phase et d'intensité sont fortement corrélées, S_4 et σ_{φ} (exprimé en radians) ayant des valeurs similaires.

FIGURE 5

Indices de scintillation mesurés à Kiruna (a), Lulea (b) et Kokkola (c) à des fréquences de 150 MHz (ligne en pointillé) et de 400 MHz (ligne en tireté), enregistrés dans des conditions de perturbations par des satellites LEO Tsykadas en orbite polaire, le 30 octobre 2003

Empiriquement, le Tableau 1 présente une conversion approximative pratique entre les valeurs de S_4 et les fluctuations crête-à-crête P_{fluc} (dB), lorsque la valeur de l'indice S_4 est inférieure à 1,0. Cette relation peut être rendue de manière approchée par:

$$P_{fluc} = 27.5 \ S_4^{1.26} \tag{8}$$

où $0.0 \le S_4 \le 1.0$.

TABLEAU 1

Table de conversion empirique pour les indices de scintillation

S ₄	<i>P</i> _{fluc} (dB)
0,1	1,5
0,2	3,5
0,3	6
0,4	8,5
0,5	11
0,6	14
0,7	17
0,8	20
0,9	24
1,0	27,5

De prochaines études pourraient modifier la validité et la portée de la formule (8).

5.2 Dépendance géographique, équinoxiale, horaire et solaire des scintillations

5.2.1 Dépendance géographique des scintillations

Géographiquement, il existe deux zones de scintillation intense: l'une aux latitudes élevées, l'autre centrée à ±20° de l'équateur magnétique, comme représenté sur la Fig. 6. Une scintillation intense a été observée dans ces deux secteurs jusqu'aux fréquences gigahertziennes, tandis qu'aux latitudes moyennes la scintillation ne se produit qu'exceptionnellement, notamment lors d'orages géomagnétiques. Dans le secteur équatorial, il existe un net maximum d'activité en période nocturne, qui ressort également dans les Figs 6 et 7. Pour la scintillation équatoriale aux fréquences gigahertziennes, on a observé un pic d'activité autour de l'équinoxe de printemps et une haute activité à l'équinoxe automnal.

5.2.2 Dépendance équinoxiale, horaire et solaire des scintillations

Un événement de scintillation typique prend naissance après le coucher ionosphérique local et peut durer entre 30 minutes et plusieurs heures. Pour les stations équatoriales dans les années d'activité solaire maximale, la scintillation ionosphérique apparaît presque chaque soir après le coucher du soleil. À ce moment-là, les fluctuations crête-à-crête du niveau du signal à 4 GHz dépassent 10 dB.

5.3 Modèle de scintillation ionosphérique

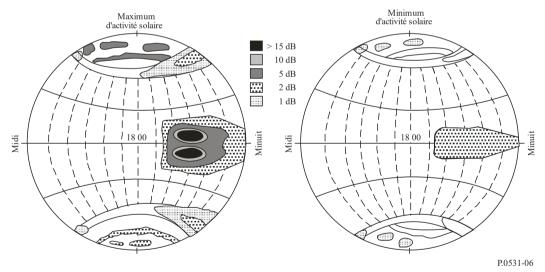
Pour prévoir l'intensité de la scintillation ionosphérique sur les trajets entre la Terre et l'espace, il est recommandé d'utiliser le modèle mondial de scintillation ionosphérique (GISM, *global ionospheric scintillation model*). Ce modèle permet de prévoir la valeur de l'indice S_4 , la profondeur de l'évanouissement d'amplitude ainsi que les valeurs quadratiques moyennes du déphasage et de l'écart

angulaire dus à la scintillation, en fonction de l'emplacement du satellite et des stations au sol, de la date, de l'heure et de la fréquence d'exploitation. Il est fondé sur la méthode de filtrage à phases multiples. On attribue aux principaux paramètres internes du modèle les valeurs par défaut suivantes:

- pente du spectre d'intensité p = 3
- taille moyenne des irrégularités $L_0 = 500 \text{ km}$
- écart type des fluctuations de la densité électronique $\sigma_{Ne} = 0,2$.

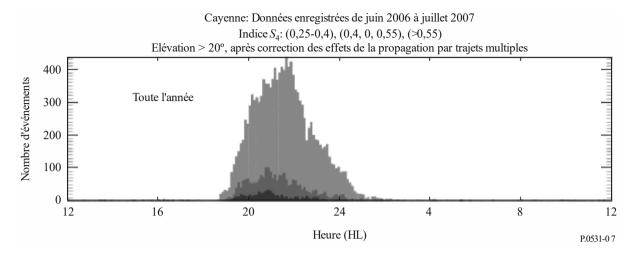
La courbure des rayons est prise en compte et les caractéristiques de l'ionosphère lointaine sont calculées dans un sous-programme qui utilise le modèle ionosphérique NeQuick2. Le code source et le programme du modèle GISM constituent des produits numériques qui font partie intégrante de la présente Recommandation et qui sont disponibles dans le fichier supplément R-REC-P.531-16-202509-I!!ZIP-E.zip (Partie 2).

5.4 Paramètres statistiques instantanés et comportement du spectre


5.4.1 Paramètres statistiques instantanés

La fonction de densité de probabilité de Nakagami est considérée comme décrivant de façon satisfaisante les paramètres statistiques de la variation instantanée de l'amplitude, pendant un phénomène de scintillation ionosphérique. La fonction de densité pour l'intensité du signal est représentée par:

$$p(I) = \frac{m^m}{\Gamma(m)} I^{m-1} \exp(-mI)$$
(9)


FIGURE 6

Profondeur d'évanouissement dû à la scintillation (proportionnelle à la densité des pointillés) à 1,5 MHz au cours d'années de maximum et de minimum d'activité solaire

FIGURE 7

Distribution des phénomènes de scintillation survenus à Cayenne sur une année, de juin 2006 à juillet 2007, avec un indice S4 faible (haut), modéré (milieu) et fort (bas), pour des angles d'élévation supérieurs à 20°

où le «coefficient m» de Nakagami est lié à l'indice de scintillation S₄ par la relation:

$$m = \exp(5.69 * \exp(-3.055 * S_4) + 0.292 * \exp(0.344 * S_4))$$
 (10)

où $0,1 \le S_4 \le 1,0$.

Dans la formulation de l'équation (9), le niveau moyen de l'intensité de *I* est normalisé à 1,0. Le calcul de la fraction du temps pendant laquelle le niveau du signal est au-dessus ou au-dessous d'un seuil donné est grandement facilité par le fait que la fonction de distribution correspondant à la densité de Nakagami s'exprime sous forme d'une intégrale bornée, donnée par:

$$P(I) = \int_{0}^{I} p(x) dx = \frac{\Gamma(m, mI)}{\Gamma(m)}$$
(11)

où $\Gamma(m, mI)$ et $\Gamma(m)$ sont respectivement la fonction gamma incomplète et la fonction gamma. Il est possible, à l'aide de l'équation (1), de calculer la fraction du temps pendant laquelle le signal est au-dessus ou au-dessous d'un seuil donné pendant un événement ionosphérique. Par exemple, la fraction du temps pendant laquelle le signal est inférieur de plus X dB à la moyenne est donnée par $P(10^{-X/10})$ et la fraction du temps pendant laquelle le signal est supérieur de plus de Y dB à la moyenne, est donnée par $1 - P(10^{-Y/10})$.

5.4.2 Comportement du spectre

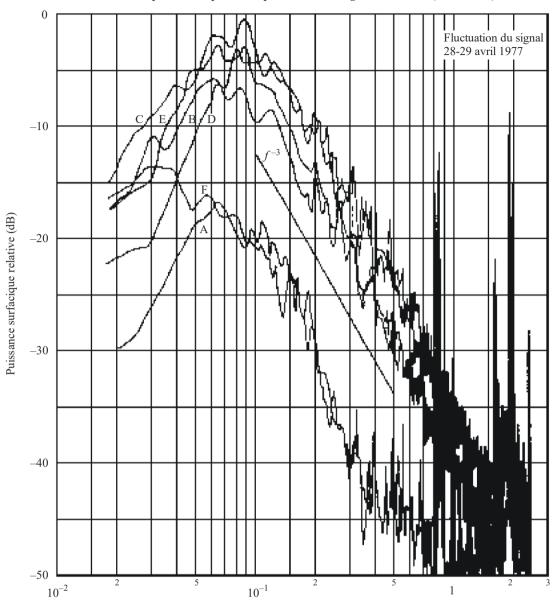
En termes de caractéristiques temporelles, la fréquence d'évanouissement de la scintillation ionosphérique est d'environ 0,1 à 1 Hz. Les spectres spatiaux et temporels de puissance présentent une large gamme de pentes, de f^{-1} à f^{-6} , selon différentes observations. Un comportement typique de spectre est présenté à la Fig. 8. La pente en f^{-3} indiquée sur la figure est conseillée pour les applications à des systèmes lorsqu'on ne dispose pas de résultats obtenus par des mesures directes. Cette pente est représentative de phénomènes de scintillation faibles à modérés.

Comme le montre la Fig. 9, les scintillations d'amplitude et les scintillations de phase ont des fréquences de diminution différentes. Les scintillations de phase présentent des composantes de basse fréquence plus importantes que les scintillations d'amplitude.

5.5 Considérations géométriques

5.5.1 Relation avec l'angle zénithal

Dans la plupart des modèles, S_4^2 est proportionnel à la sécante de l'angle zénithal, i, du trajet de propagation. Cette relation est estimée valide tant que cet angle est inférieur à environ 70° pour des scintillations faibles et modérées. Pour des angles zénithaux plus grands, il est conseillé d'utiliser une relation faisant intervenir une puissance de sec i comprise entre 1/2 et 1.


5.5.2 Variation en fonction de la saison et de la longitude

La probabilité d'apparition de la scintillation et la grandeur de S_4 dépendent de la longitude et de la saison, et cette variation peut être paramétrée par l'angle β (voir la Fig. 11), qui est l'angle entre le terminateur du coucher du Soleil et le méridien magnétique à l'apex de la ligne de champ qui traverse la trajectoire à l'altitude de l'irrégularité. La fonction de pondération pour la variation en fonction de la saison et de la longitude est donnée par:

$$S_4 \propto \exp[-(\frac{\beta}{W})^2] \tag{12}$$

où W est une constante de pondération qui dépend de l'emplacement et du jour calendaire de l'année. Par exemple, la Fig. 12 montre comment a été modélisée la valeur numérique de la constante de pondération, en utilisant les données de Tangua, Hong Kong et Kwajalein.

FIGURE 8 Estimations de la densité spectrale de puissance pour un satellite géostationnaire (Intelsat-IV) à 4 GHz

Fréquence des fluctuations (Hz)

La scintillation a été observée dans les soirées des 28 et 29 avril 1977 à la station terrienne de Taipei

- A: 30 min avant le début de la scintillation
- B: au début
- C:
- 1 h après 2 h après 3 h après 4 h après D: E: F:

P.0531-08

FIGURE 9
Spectres d'intensité et de phase typiques

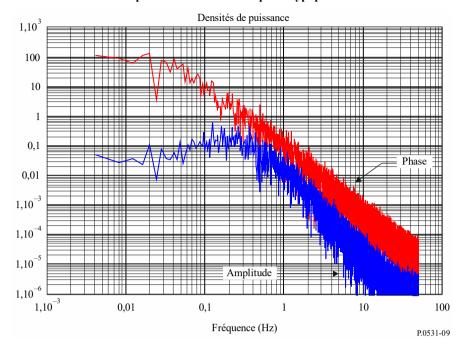


FIGURE 10 Intersection du trajet de propagation avec une ligne de champ magnétique à l'altitude de la région F

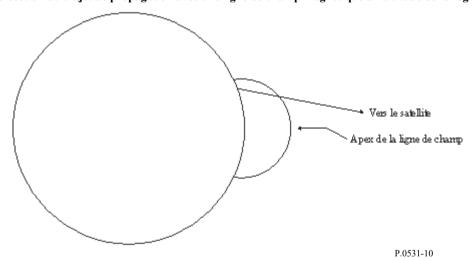


FIGURE 11

Angle entre le méridien magnétique local à l'apex de la ligne de champ présentée à la Fig. 10 et le terminateur du coucher du Soleil

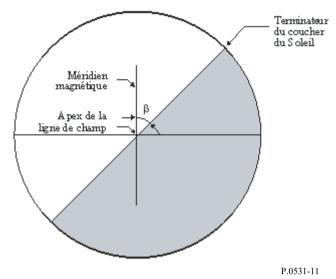
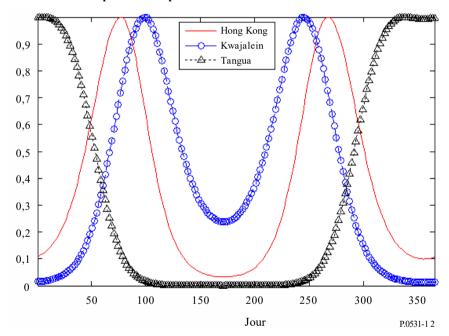



FIGURE 12

Fonctions saisonnières de pondération pour des stations situées dans différents secteurs de longitude

5.6 Statistiques cumulatives

Lors de la conception de systèmes de radiocommunication par satellite et de l'évaluation du partage des fréquences, les ingénieurs en télécommunication se préoccupent non seulement de la dégradation et du brouillage des systèmes lors d'événements mais aussi des statistiques d'occurrence cumulatives à long terme. Pour les systèmes de radiocommunication comportant un satellite géostationnaire, qui est la configuration la plus simple de système de radiocommunication, il est suggéré d'utiliser les Figs 13 et 14 pour l'évaluation et l'étalonnage des statistiques d'occurrence. Les nombres de taches solaires indiqués sont les moyennes sur 12 mois des nombres de taches solaires.

La distribution cumulative à long terme P(I) de l'intensité du signal par rapport à sa valeur moyenne peut être calculée à partir des statistiques cumulatives à long terme $F(\xi)$ de la fluctuation crête-à-crête, ξ , du type de celles qui sont indiquées à la Fig. 14, comme suit:

$$P(I) = \sum_{i=0}^{n} f_i P_i(I)$$
 (13)

où:

$$f_0 = F \left(\xi < \xi_1 \right) \tag{13a}$$

$$f_i = F(\xi_i \le \xi < \xi_{i+1})$$
 $(i = 1, 2, ..., n-1)$ (13b)

$$f_n = F (\xi \ge \xi_n) \tag{13c}$$

et ξ_1 et ξ_n sont les valeurs de fluctuation crête-à-crête minimum et maximum respectivement, n étant le numéro d'intervalle de ξ qui présente un intérêt pour l'utilisateur:

$$P_i(I) = \Gamma (m_i, m_i I) / \Gamma(m_i)$$
(13d)

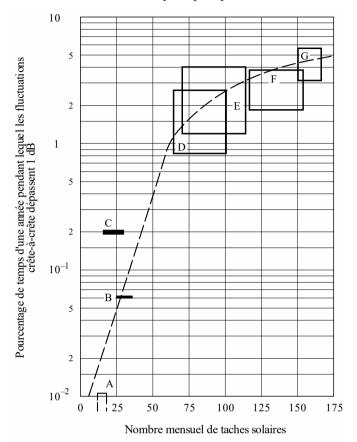
$$m_i = \exp(5.69 * \exp(-3.055 * S_{4i}) + 0.292 * \exp(0.344 * S_{4i}))$$
 (13e)

$$S_{40} = \left[\frac{1}{27.5} \cdot \frac{\xi_1}{2} \right]^{1/1,26} \tag{13f}$$

$$S_{4i} = \left[\frac{1}{27.5} \cdot \frac{\xi_i + \xi_{i+1}}{2} \right]^{1/1,26} \qquad (i = 1, 2, \dots n - 1)$$
 (13g)

$$S_{4n} = \left[\frac{1}{27.5} \cdot \frac{\xi_{n-1} + 3\,\xi_n}{4}\right]^{1/1,26} \tag{13h}$$

La Figure 15 donne un exemple de distribution cumulative à long terme de l'intensité du signal calculée d'après la courbe P6 de la Fig. 14.


5.7 Occurrence simultanée de scintillation ionosphérique et d'évanouissements dus à la pluie

La scintillation ionosphérique et les évanouissements dus à la pluie sont deux facteurs de dégradation dont l'origine physique est totalement différente. Pourtant, pendant des années de forte activité solaire, ils se produisent simultanément dans les régions équatoriales, pendant un pourcentage de temps annuel significatif pour la conception des systèmes. Le temps cumulatif d'occurrence simultanée était d'environ 0,06% par an, à 4 GHz, à la station terrienne de Djutiluhar en Indonésie.

La signature d'événements simultanés est souvent extrêmement différente de celle qui est observée lorsqu'un seul des facteurs de dégradation, soit scintillation, soit pluie, est présent. Alors que la scintillation ionosphérique seule n'est pas un facteur de dépolarisation et que les évanouissements dus à la pluie, seuls, ne sont pas un facteur de fluctuation du signal (encore qu'ils puissent entraîner de légères fluctuations de polarisation pour des scintillations modérées à fortes), les phénomènes simultanés produisent des fluctuations du signal en quantité significative dans les voies en polarisation croisée. Il faut tenir compte de ces phénomènes simultanés pour les applications sur tout réseau à satellite ou système à satellites exigeant une grande disponibilité.

Une méthode de prévision des évanouissements dus à la pluie est décrite dans la Recommandation UIT-R P.618.

FIGURE 13 Influence du nombre mensuel moven de taches solaires sur la scintillation ionosphérique équatoriale à 4 GHz

Les segments horizontaux et les rectangles font connaître le domaine des variations sur une année pour différentes porteuses

A: 1975-1976, Hong Konget Bahrein, 15 porteuses

1974, Longovilo, Iporteuse

1976-1977, Taipei, 2porteuses 1970-1971, 12 stations, > 50porteuses

1977-1978, Hong Kong, 12porteuses

1978-1979, Hong Kong, 10 porteuses 1979-1980, Hong Kong, Sporteuses

P.0531- 13

5.8 Modèle de scintillation aux gigahertz

Les étapes suivantes peuvent être suivies pour évaluer les effets de scintillation auxquels on peut s'attendre dans une situation donnée.

Étape 1: la Figure 14 donne des abaques d'apparition de la scintillation sur des trajets ionosphériques équatoriaux, en fonction d'une part des fluctuations d'amplitude crête-à-crête, P_{fluc} (dB), pour une réception de signal à 4 GHz issu de satellites situés à l'est à des angles d'élévation d'environ 20 degrés (courbes P en trait plein) et situés à l'ouest à des angles d'élévation d'environ 30 degrés (courbes I en trait tireté). Les données sont indiquées pour différents moments de l'année et différents nombres de taches solaires.

Étape 2: étant donné que la Fig. 14 se rapporte à une fréquence de 4 GHz, les valeurs qui se rapportent à d'autres fréquences s'obtiennent en les multipliant par $(f/4)^{-1,5}$, où f est la fréquence (GHz).

Étape 3: la variation de la fluctuation P_{fluc} en fonction de l'emplacement géographique et de l'apparition diurne peut être estimée qualitativement à partir de la Fig. 6.

Étape 4: terme élémentaire pour le calcul du budget de liaison, la variable P_{fluc} est fonction de l'affaiblissement du signal L_p selon la relation $L_p = P_{fluc}/\sqrt{2}$.

Étape 5: l'indice de scintillation, S_4 , qui est le paramètre utilisé le plus souvent pour décrire la scintillation, est défini au § 5.1 et peut être obtenu à partir de P_{fluc} selon la conversion indiquée dans le Tableau 1.

FIGURE 14

Statistique annuelle des fluctuations crête-à-crête observées à la station terrienne de Hong Kong (courbes I1, P1, I3-I6, P3-P6) et à la station terrienne de Taipei (courbes P2 et I2)

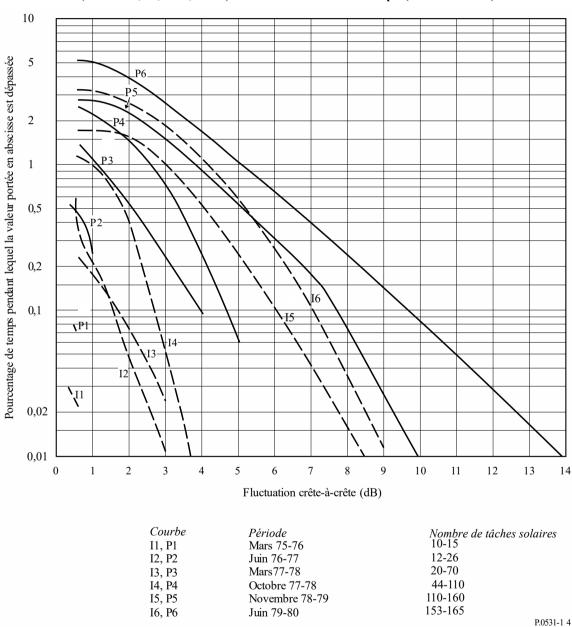


FIGURE 15

Exemple de statistiques cumulatives à long terme concernant l'intensité du signal (4 GHz, élévation de 20°)

P.0531-15

6 Absorption

Quand on ne dispose pas de renseignements concernant directement l'affaiblissement dû à l'absorption, on peut évaluer cet affaiblissement à partir des modèles disponibles en appliquant la relation ($\sec i$)/ f^2 , pour les fréquences supérieures à 30 MHz, i étant l'angle d'incidence sur l'ionosphère du trajet de propagation. Dans les régions équatoriales et de moyenne latitude, les ondes radioélectriques de fréquence supérieure à 70 MHz traversent l'ionosphère sans subir d'absorption notable.

Pourcentage de temps pendant lequel l'ordonnée n'est pas dépassée

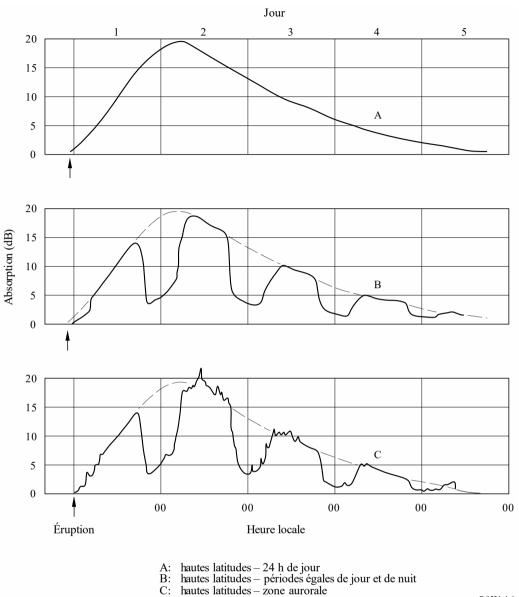
Des mesures effectuées aux latitudes moyennes indiquent que, sur un trajet transionosphérique unidirectionnel sous incidence verticale, l'absorption à la fréquence 30 MHz est en général de 0,2 à 0,5 dB dans des conditions normales. Pendant une éruption solaire, l'absorption augmente tout en restant inférieure à 5 dB. Aux latitudes élevées, les événements auroraux ou ceux de la calotte polaire peuvent provoquer un renforcement de l'absorption. L'occurrence de ces deux phénomènes est aléatoire, leur durée est variable et leurs effets dépendent de l'emplacement des stations terminales et de l'angle d'élévation du trajet. Pour la conception efficace des systèmes, on doit par conséquent tenir compte de ces phénomènes de façon statistique, en se rappelant que la durée de ces phénomènes est de quelques heures pour l'absorption aurorale et de quelques jours pour l'absorption dans la calotte polaire.

6.1 Absorption aurorale

L'absorption aurorale est due à un accroissement de la concentration électronique dans les Régions D et E produite par l'arrivée d'électrons énergétiques. On observe l'absorption sur une bande de latitude de 10° à 20° centrée au voisinage de la latitude d'occurrence maximale des aurores visuelles. Elle se produit sous forme d'une série d'augmentations discrètes de l'absorption, chacune d'une durée relativement courte, c'est-à-dire de quelques minutes à quelques heures, sa durée moyenne est

d'environ 30 minutes et elle présente généralement une structure irrégulière dans le temps. Les renforcements nocturnes ont tendance à présenter des augmentations rapides et régulières suivies de diminutions lentes. Des magnitudes typiques, à 127 MHz, sont présentées dans le Tableau 2.

TABLEAU 2
Absorption aurorale à 127 MHz (dB)


Pourcentage	Angle d'élévation		
du temps	20°	5°	
0,1	1,5	2,9	
1	0,9	1,7	
2	0,7	1,4	
5	0,6	1,1	
50	0,2	0,4	

6.2 Absorption dans la calotte polaire

L'absorption dans la calotte polaire qui peut se manifester en période de forte activité solaire apparaît à des latitudes géomagnétiques supérieures à 64 degrés. Elle est causée par de l'ionisation qui se produit à des altitudes supérieures à 30 km environ. Elle se manifeste sous forme de phénomènes discrets, bien que parfois imbriqués, presque toujours associés à des phénomènes solaires discrets. Cette absorption dure longtemps et se produit au-dessus des calottes polaires éclairées par le Soleil. Elle se produit généralement lors du maximum d'activité solaire où l'on observe jusqu'à 10 à 12 de ces phénomènes au cours d'une année. Le phénomène peut durer quelques jours, ce qui le différencie de l'absorption aurorale, souvent très localisée et dont les variations durent quelques minutes.

Une caractéristique remarquable du phénomène d'absorption dans la calotte polaire est sa réduction considérable pendant les heures d'obscurité pour un taux de production d'électrons donné. La Figure 16 présente un modèle théorique de la variation diurne de l'absorption dans la calotte polaire consécutive à une grande éruption solaire, fondé sur des observations effectuées par riomètres à diverses latitudes.

FIGURE 16 Modèle théorique d'absorption dans la calotte polaire consécutive à une grande éruption solaire, telle qu'on peut s'attendre à l'observer à l'aide de riomètres au voisinage de 30 MHz

P.0531-16

7 Résumé

Le Tableau 3 contient la liste des valeurs maximales auxquelles on peut s'attendre pour les effets ionosphériques, à la fréquence 1 GHz. On a supposé que le CET d'une colonne de l'ionosphère à la verticale était de l'ordre de 10^{18} él/m². On a également supposé un angle d'élévation d'environ 30 degrés. Les valeurs indiquées concernent la propagation des ondes dans un seul sens à travers l'ionosphère.

TABLEAU 3

Valeurs maximales estimées des effets ionosphériques à la fréquence 1 GHz pour un angle d'élévation d'environ 30 degrés dans le cas d'une propagation dans un seul sens

Effet	Grandeur	Dépendance vis-à-vis de la fréquence
Rotation de Faraday	108°	$1/f^2$
Temps de propagation	0,25 μs	$1/f^2$
Réfraction	< 0,17 mrad	$1/f^2$
Variation de la direction d'arrivée	0,2 min d'arc	$1/f^2$
Absorption (calotte polaire)	0,04 dB	$\sim 1/f^2$
Absorption (aurorale + calotte polaire)	0,05 dB	$\sim 1/f^2$
Absorption (latitudes moyennes)	< 0,01 dB	$1/f^2$
Dispersion	0 à 4 ns/MHz	$1/f^3$
Scintillation	Voir le § 5	Voir le § 5