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RECOMMENDATION ITU-R P.526-16"

Propagation by diffraction
(Question ITU-R 202-5/3)
(1978-1982-1992-1994-1995-1997-1999-2001-2003-2005-2007-2009-2012-2013-2018-2019-2025)

Scope

This Recommendation presents several models to enable the reader to evaluate the effect of diffraction on the
received field strength. The models are applicable to different obstacle types and to various path geometries.

Keywords

Diffraction, irregular terrain, obstacles, knife-edge, aperture, screen

Related ITU Recommendations

Recommendation ITU-R P.310 — Definitions of terms relating to propagation in non-ionized media

Recommendation ITU-R P.368 — Ground-wave propagation prediction method for frequencies between
10 kHz and 30 MHz

Recommendation ITU-R P.834 — Effects of tropospheric refraction on radiowave propagation

Recommendation ITU-R P.1546 — Method for point-to-area predictions for terrestrial services in the frequency
range 30 MHz to 4 000 MHz

NOTE — The latest edition of the Recommendation in force should be used.

The ITU Radiocommunication Assembly,

considering

that there is a need to provide engineering information for the calculation of field strengths over
diffraction paths,

recommends

that the methods described in Annex 1 should be used for the calculation of field strengths over
diffraction paths, which may include a spherical earth surface, or irregular terrain with different kinds
of obstacles.

* Recommendation ITU-R P.526-15 is incorporated by reference in the Radio Regulations, Edition of 2024,
Volume 4.
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1 Introduction

Although diffraction is produced only by the surface of the ground or other obstacles, account must
be taken of the mean atmospheric refraction on the transmission path to evaluate the geometrical
parameters situated in the vertical plane of the path (angle of diffraction, radius of curvature, height
of obstacle). For this purpose, the path profile has to be traced with the appropriate equivalent Earth
radius (Recommendation ITU-R P.834). If no other information is available, an equivalent Earth
radius of 8 500 km may be taken as a basis.

2 Basic concepts

Diffraction of radio-waves over the Earth’s surface is affected by terrain irregularities. In this context,
before going further into the prediction methods for this propagation mechanism, a few basic concepts
are given in this section.

2.1 Fresnel ellipsoids and Fresnel zones

In studying radio-wave propagation between two points A and B, the intervening space can be
subdivided by a family of ellipsoids, known as Fresnel ellipsoids, all having their focal points at A and
B such that any point M on one ellipsoid satisfies the relation:

AM + MB = AB + n% (1)
where n is a whole number characterizing the ellipsoid and » = 1 corresponds to the first Fresnel

ellipsoid, etc., and A is the wavelength.

As a practical rule, propagation is assumed to occur in line-of-sight (LoS), i.e. with negligible
diffraction phenomena if there is no obstacle within the first Fresnel ellipsoid.

The radius of an ellipsoid at a point between the transmitter and the receiver can be approximated in
self-consistent units by:

1/2
" d, + d,
or, in practical units:
d d 1/2
R, = 550 — 9% (3)
d, + dy) f

where fis the frequency (MHz) and d1 and d> are the distances (km) between transmitter and receiver
at the point where the ellipsoid radius (m) is calculated.


https://www.itu.int/rec/R-REC-P.834/en
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Some problems require consideration of Fresnel zones which are the zones obtained by taking the
intersection of a family of ellipsoids by a plane. The zone of order # is the part between the curves
obtained from ellipsoids n and n — 1, respectively.

2.2 Penumbra width

The transition from light to shadow defines the penumbra region. This transition takes place along
a narrow strip (penumbra width) in the boundary of geometric shadow. Figure 1 shows the penumbra
width (W) in the case of a transmitter located a height, 4, above a smooth spherical earth, which is

given by:
1/3
ra’
w = £ m (4)
T
where:
A wavelength (m)
a.: effective Earth radius (m).
FIGURE 1
Definition of penumbra width
Transmitter
horizon
P.0526-01
23 Diffraction zone

The diffraction zone of a transmitter extends from the LoS distance where the path clearance is equal
to 60% of the first Fresnel zone radius, (R1), up to a distance well beyond the transmitter horizon
where the mechanism of troposcatter becomes predominant.

24 Obstacle surface smoothness criterion
If the surface of the obstacle has irregularities not exceeding A#,

where:
AR = 0.04[R22]" m 5)
where:
R : obstacle curvature radius (m)
A :  wavelength (m);

then the obstacle may be considered smooth and the methods described in §§ 3 and 4.2 may be used
to calculate the attenuation.
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2.5 Isolated obstacle

An obstacle can be considered isolated if there is no interaction between the obstacle itself and the
surrounding terrain. In other words, the path attenuation is only due to the obstacle alone without any
contribution from the remaining terrain. The following conditions must be satisfied:

— no overlapping between penumbra widths associated with each terminal and the obstacle top;

— the path clearance on both sides of the obstacles should be, at least, 0.6 of the first Fresnel
zone radius;

— no specular reflection on both sides of the obstacle.

2.6 Types of terrain

Depending on the numerical value of the parameter A% (see Recommendation ITU-R P.310) used to
define the degree of terrain irregularities, three types of terrain can be classified:

a) Smooth terrain

The surface of the Earth can be considered smooth if terrain irregularities are of the order or less than
0.1R, where R is the maximum value of the first Fresnel zone radius in the propagation path. In this
case, the prediction model is based on the diffraction over the spherical Earth (see § 3).

b) Isolated obstacles

The terrain profile of the propagation path consists of one or more isolated obstacles. In this case,
depending on the idealization used to characterize the obstacles encountered in the propagation path,
the prediction models described in § 4 should be used.

c) Rolling terrain

The profile consists of several small hills, none of which form a dominant obstruction. Within its
frequency range Recommendation ITU-R P.1546 is suitable for predicting field strength but it is not
a diffraction method.

2.7 Fresnel integrals

The complex Fresnel integral is given by:
v 2
ANE exp(j%j ds = C(v)+j5(v) (6)
0

where j is the complex operator equal to V-1, and C(v) and S(v) are the Fresnel cosine and sine
integrals defined by:

Cc(v) =I cos [m;j ds (7a)
S(v) = ]‘ sin [%SZ] ds (7b)

The complex Fresnel integral Fc(v) can be evaluated by numerical integration, or with sufficient
accuracy for most purposes for positive v using:

n=0

F) = exp(jx) % i {(an— jbn)(ijn] for 0< x<4 (8a)


https://www.itu.int/rec/R-REC-P.310/en
https://www.itu.int/rec/R-REC-P.1546/en
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F(v) = (H—j)-i—exp(jx) 4 i {(cn —jdn)(ﬂ) } for x>4 (8b)
2 b Al x
where:
x=0.51 Vv’ 9)

and a,, b, ¢, and d, are the Boersma coefficients given below:
ap = +1.595769140 by = —0.000000033 co = +0.000000000 do = +0.199471140
ar = —0.000001702 b1 = +4.255387524 ¢ = —0.024933975 di = +0.000000023
a = —6.808568854 b, = —0.000092810 c; = +0.000003936 d» = —0.009351341
az = —0.000576361 by = —7.780020400 c3 = +0.005770956 d; = +0.000023006
as = +6.920691902 bs = —0.009520895 cs = +0.000689892 ds = +0.004851466
as = —0.016898657 bs = +5.075161298 cs = —0.009497136 ds = +0.001903218
as = —3.050485660 be = —0.138341947 ce = 10.011948809 de = —0.017122914
a; = —0.075752419 b; = —1.363729124 c7 = —0.006748873 d; = +0.029064067
ag = +0.850663781 bs = —0.403349276 cs = 10.000246420 ds = —0.027928955
as = —0.025639041 by = +0.702222016 co = +0.002102967 dy = +0.016497308
aio = —0.150230960 by = —0.216195929 cio = —0.001217930 dio = —0.005598515
ann = +0.034404779 b1y = +0.019547031 ci1 = +0.000233939 din = +0.000838386

C(v) and S(v) may be evaluated for negative values of v by noting that:

C(—v)=-CW) (10a)
S(—v) =-5() (10b)
3 Diffraction over a spherical Earth

The additional transmission loss due to diffraction over a spherical Earth can be computed by the
classical residue series formula. The computer program “LFMF-SmoothEarth” in Recommendation
ITU-R P.368 provides the complete method. A subset of the outputs from this program (for antennas
close to the ground and at lower frequencies) is presented in Recommendation ITU-R P.368.

The following subsections describe numerical and nomogram methods which may be used for
frequencies 10 MHz and above. For frequencies below 10 MHz, “LFMF-SmoothEarth” should
always be used. Section 3.1 gives methods for over-the-horizon paths. Section 3.1.1 is a numerical
method. Section 3.1.2 is a nomogram method. Section 3.2 is a method applicable for the smooth earth
case for any distance and for frequencies 10 MHz and above. This utilizes the numerical method
in § 3.1.1.

3.1 Diffraction loss for over-the-horizon paths

At long distances over the horizon, only the first term of the residue series is important. Even near or
at the horizon this approximation can be used with a maximum error around 2 dB in most cases.

This first term can be written as the product of a distance term, F, and two height gain terms, Gr and
Gr. Sections 3.1.1 and 3.1.2 describe how these terms can be obtained from simple formula or from
nomograms.


https://www.itu.int/rec/R-REC-P.368/en
https://www.itu.int/rec/R-REC-P.368/en
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3.1.1 Numerical calculation

3.1.1.1 Influence of the electrical characteristics of the surface of the Earth

The extent to which the electrical characteristics of the surface of the Earth influence the diffraction
loss can be determined by calculating a normalized factor for surface admittance, K, given by the
formulae:

in self-consistent units:;

Ky = (2“;3)_1/3 [(e—1)% + (60 A 0)?]~1/* for horizontal polarization (11)
and
K, = Ky[e? + (60 A 6)?]%/? for vertical polarization (12)
or, in practical units:
Ky = 0.36(a, £)~Y3 [(e —1)2 4+ (18000 6/f)?]"V/* (11a)
Ky = Ky [€% + (18 000 o /f)?]"/? (12a)

where:
a.: effective radius of the Earth (km)
g: effective relative permittivity
c: effective conductivity (S/m)
f: frequency (MHz).

Typical values of K are shown in Fig. 2.
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FIGURE 2
Calculation of K
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If K is less than 0.001, the electrical characteristics of the Earth are not important. For values of K
greater than 0.001 and less than 1, the appropriate formulae given in § 3.1.1.2 can be used. When K
has a value greater than about 1, the diffraction field strength calculated using the method of § 3.1.1.2
differs from the results given by the “LFMF-SmoothEarth”, and the difference increases rapidly as K
increases. “LFMF-SmoothEarth™ should be used for K greater than 1. This only occurs for vertical
polarization, at frequencies below 10 MHz over sea, or below 200 kHz over land. In all other cases
the method of § 3.1.1.2 is valid.
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3.1.1.2 Diffraction field strength formulae
The diffraction field strength, E, relative to the free-space field strength, Eo, is given by the equation:

20log10— = F(X) + G(¥y) + G(¥) dB (13)

where X is the normalized length of the path between the antennas at normalized heights Y1 and >
(and where 20 log;, E£ is generally negative).
0

In self-consistent units:

1/3
X = B()\Zg) d (14)
2 \1/3
Y =28 (Xfae) h (15)
or, in practical units:
X =2188B f3 ;% d (14a)
Y =9.575 x 1073B f2/3 o3 b (15a)

where:
d: path length (km)
a.: equivalent Earth’s radius (km)
h: antenna height (m)
f+ frequency (MHz).

[ is a parameter allowing for the type of ground and for polarization. It is related to K by the following
semi-empirical formula:

1+ 16K + 067K*

b= 1+ 45K> + 153K*

(16)

For horizontal polarization at all frequencies, and for vertical polarization above 20 MHz over land
or 300 MHz over sea, 3 may be taken as equal to 1.

For vertical polarization below 20 MHz over land or 300 MHz over sea, 3 must be calculated as
a function of K. However, it is then possible to disregard € and write:

K?> ~ 689 —— (16a)

where o is expressed in S/m, f(MHz) and £ is the multiplying factor of the Earth’s radius.

The distance term is given by the formula:
F(X)=11+101logio (X) - 17.6 X for X>1.6 (17a)

F(X) =20 logio (X) — 5.6488.1425 for X< 1.6 (17b)
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The height gain term, G(Y) is given by the following formulae:
G(Y) =17.6(B—1.1)"2 —5log,,(B—1.1) — 8 for B > 2 (18)
G(Y) = 20log,o(B + 0.1B3) forB <2 (18a)

IfG(Y) < 2+ 20logq, K, set G(Y) to the value 2 + 20 log;, K.

In the above:
B =Y (18b)
The accuracy of the diffracted field strength given by equation (13) is limited by the approximation

inherent in only using the first term of the residue series. Equation (13) is accurate to better than 2 dB
for values of X, Y1 and Y- that are constrained by the formula:

X — (BY)Y2A(Y, K) — (BY2)Y2A(Y5, K) > Xyim (19)

where:
Xyim = 1.096 — 1.280(1 — B) (19a)
A(Y,K) = A(Y,0) + 1.779(1 — B) [A(Y, ®) — A(Y, 0)] (19b)

A(Y,0) and A(Y,) are given by:

A(Y,0) = 0.5{1 + tanh(o's logm(ﬁo? — 0.259 H (19¢)
A(Y,00) = 0.5{1 + tanh[o's 1ogm(§§ )5 + 0.255 ﬂ (19d)

Consequently, the minimum distance dy.;» for which equation (13) is valid is given by:

Xm Xl

im

+ (BY)°AY.K) + (BY,)"*A(%,,K) (1%)

in

and dmin 1s obtained from Xyi» using equation (14a).

3.1.2 Calculation by nomograms

Under the same approximation condition (the first term of the residue series is dominant),
the calculation may also be made using the following formula:

20 log,, E£ = F(d) + H(h) + H(h) dB (20)

0

where:

E: received field strength
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Eo: field strength in free space at the same distance
d: distance between the extremities of the path
hiand h2:  heights of the antennas above the spherical earth.

The function F (influence of the distance) and H (height-gain) are given by the nomograms in Figs 3,
4,5 and 6.

These nomograms (Figs 3 to 6) give directly the received level relative to free space, for k=1 and
k = 4/3, and for frequencies greater than approximately 30 MHz. k is the effective Earth radius factor,
defined in Recommendation ITU-R P.310. However, the received level for other values of k£ may be
calculated by using the frequency scale for k=1, but replacing the frequency in question by a
hypothetical frequency equal to f/k* for Figs 3 and 5, and f//k for Figs 4 and 6.

Very close to the ground the field strength is practically independent of the height. This phenomenon
is particularly important for vertical polarization over the sea. For this reason, Fig. 6 includes a heavy
black vertical line AB. If the straight line should intersect this heavy line AB, the real height should
be replaced by a larger value, so that the straight line just touches the top of the limit line at A.

NOTE 1 — Attenuation relative to free space is given by the negative of the values given by equation (20). If
equation (20) gives a value above the free-space field, the method is invalid.

NOTE 2 — The effect of line AB is included in the numerical method given in § 3.1.1.


https://www.itu.int/rec/R-REC-P.310/en
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FIGURE 3

Diffraction by a spherical Earth — effect of distance
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FIGURE 4
Diffraction by a spherical Earth — height-gain

Height of antenna

Frequency for above ground (m)
k=1 k=4/3 2000 -
15 R
15 1500 —
GHz 10 ]
. 10 Gtz Height-gain (dB) A
7 8 H(k) 800 =
6 7 180 700 =
6 100 600 E
5 140 3
. 5 120 500
4 100 400 —
3 o E
3 80 3 300 =
70 E =
2 60 = E
2 50 = 200
15 ]
L3 R 150
30 3 ]
GHz 1 3 ]
900 1 GHz E 100 —=
800 900 20 E 90
700 800 3 80 =
600 700 0 B 70 —i
500 600 ] 60 3
500 4 50 _:
400 ] 3
400 0 B 40 -
300 ] 3
300 ] 30
200 . 3
200 ~10 20
150 1 ]
150 b 15 .
MHz 100 . ]
90 100 MHz -20 — 10 —
80 90 ] 9 =
70 80 1 8
60 70 N 7 4
50 60 ] 6 =
50 30 5 3
40 ] I
40 ] 4 -
30 7 3
30 - 3 3

Horizontal polarization — land and sea
Vertical polarization — land
P.0526-04



14

GHz

[ -

GHz 1
900
800

700
600

500

400

Frequency for k=1

300

200

150

MHz 100

90
80

70
60

50

40

30

Rec. ITU-R P.526-16

FIGURE 5

Diffraction by a spherical Earth — effect of distance
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FIGURE 6

Diffraction by a spherical Earth — height-gain
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The following step-by-step procedure should be used for a spherical-earth path of any length at
frequencies of 10 MHz and above, for effective Earth radius a. > 0. The method uses the calculation
in § 3.1.1 for over-the-horizon cases, and otherwise an interpolation procedure based on a notional

effective-earth radius.
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The procedure uses self-consistent units and proceeds as follows:

Calculate the marginal LoS distance given by:

d,, =\2a, (i +h,) 1)

If d > djos calculate diffraction loss using the method in § 3.1.1. No further calculation is necessary.
Otherwise continue:

Calculate the smallest clearance height between the curved-earth path and the ray between the
antennas, /4 (see Fig. 7), given by:

2 2

(- e (- £ )
ho= a y Ze (22)
d - % A + b (22a)
d,=d-d (22b)
b=2 n;;l cos {g + % arccos (% ﬁ}} (22¢)

hl B hz
¢ = Y (22d)

2
m = d—2 (22e)

" 4a,(h+hy)

Calculate the required clearance for zero diffraction loss, /e, given by:

d, d, \

h,, = 0.552 (23)
If & > hyeq the diffraction loss for the path is zero. No further calculation is required.
Otherwise continue:

Calculate the modified effective earth radius, a.m, which gives marginal LoS at distance d given by:

= 0.5 (24)

- {5E)
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Use the method in § 3.1.1 to calculate the diffraction field strength relative to free-space for the path
using the modified effective earth radius aen in place of the effective earth radius a., and calculate

loss A;, given by A, = —201og;, EE
0

If 4; s negative, the diffraction loss for the path is zero, and no further calculation is necessary.

Otherwise calculate the interpolated diffraction loss, 4 (dB), given by:

A=t — n/n (25)

req h

4 Diffraction over isolated obstacles or a general terrestrial or Earth — space path

Many propagation paths encounter one obstacle or several separate obstacles and it is useful to
estimate the losses caused by such obstacles. To make such calculations, it is necessary to idealize
the form of the obstacles, either assuming a knife-edge of negligible thickness or a thick smooth
obstacle with a well-defined radius of curvature at the top. Real obstacles have, of course, more
complex forms, so that the indications provided in this Recommendation should be regarded only as
an approximation. These models do not take into account the profile transverse to the direction of the
radio link, which may have a significant effect on diffraction loss.

In those cases where the direct path between the terminals is much shorter than the diffraction path,
it is necessary to calculate the additional transmission loss due to the longer path.

The data given below apply when the wavelength is fairly small in relation to the size of the obstacles,
i.e. mainly to VHF and shorter waves (/> 30 MHz).

FIGURE 7

Path clearance

P: Reflection point P.0526-07

4.1 Single knife-edge obstacle

In this extremely idealized case (see Figs 8a) and 8b)), all the geometrical parameters are combined
together in a single dimensionless parameter normally denoted by v which may assume a variety of
equivalent forms according to the geometrical parameters selected:

von [ 26
ad o d,
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v =20 (27)
vV = % (v has the sign of 4 and 0) (28)
2d :
vV = - o, 0, (vhasthesign of o, and a.,) (29)

where:

h: height of the top of the obstacle above the straight line joining the two ends of
the path. If the height is below this line, % is negative

diand d>: distances of the two ends of the path from the top of the obstacle
d: length of the path

0 : angle of diffraction (rad); its sign is the same as that of 4. The angle 0 is assumed
to be less than about 0.2 rad, or roughly 12°

arand o2: angles in radians between the top of the obstacle and one end as seen from the
other end. The signs of a1 and a; are the same sign of /4 in the above equations.

NOTE 1 — In equations (26) to (29) inclusive 4, d, di, d> and A should be in self-consistent units.
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FIGURE 8

Geometrical elements

(For definitions of 6, o, o, d, d, d, and R, see § 4.1 and 4.2)

Figure 9 gives, as a function of v, the loss J(v) (dB).

P.0526-08
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J(v) is given by:

Jt = cw) - SJ + [cov) - smF (30)

J(v) = -20 log 5

where C(v) and S(v) are the real and imaginary parts respectively of the complex Fresnel integral
F(v) defined in § 2.7.

For v greater than —0.78 an approximate value can be obtained from the expression:

J(v) = 6.9 + 201log (\/(v 012 41+ v 0.1) dB 31)

FIGURE 9

Knife-edge diffraction loss
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4.2 Single rounded obstacle

The geometry of a rounded obstacle of radius R is illustrated in Fig. 8c). Note that the distances di
and d>, and the height / above the baseline, are all measured to the vertex where the projected rays
intersect above the obstacle. The diffraction loss for this geometry may be calculated as:

A = JW) + T(m,n) dB (32)
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where:
a) J(v) is the Fresnel-Kirchoff loss due to an equivalent knife-edge placed with its peak at the
vertex point. The dimensionless parameter v may be evaluated from any of equations (26) to
(29) inclusive. For example, in practical units equation (26) may be written:
2 d d 172
v = 00316n| 2+ 4) (33)
}\“ 1 d2
where 4 and A are in metres, and d; and d> are in kilometres.
J(v) may be obtained from Fig. 9 or from equation (31). Note that for an obstruction to LoS
propagation, v is positive and equation (31) is valid.
b) T(m,n) is the additional attenuation due to the curvature of the obstacle:
T(m,n) = 7.2m"% = (2 = 12.50)m + 3.6m>'> — 0.8m> dB for mn<4 (34a)
_ 1/2 3/2 2
T(m,n) =—-6—-20log(mn) +72m" '~ — (2 —17n)m + 3.6m>"~— 0.8m~dB formn >4 (34b)
and

d +d, =R 1/3

m = R{—dldz }/{ J (35)
~ ﬂ 2/3

n = ;{ - } /R (36)

and R, di1, d>, h and A are in self-consistent units.

Note that as R tends to zero, T(m,n) also tend to zero. Thus, equation (32) reduces to knife-edge
diffraction for a cylinder of zero radius.

The obstacle radius of curvature corresponds to the radius of curvature at the apex of a parabola fitted
to the obstacle profile in the vicinity of the top. When fitting the parabola, the maximum vertical
distance from the apex to be used in this procedure should be of the order of the first Fresnel zone
radius where the obstacle is located. An example of this procedure is shown in Fig. 10, where:

2

X.
. 37
Y 2 (37)

and r; is the radius of curvature corresponding to the sample i of the vertical profile of the ridge. In the
case of N samples, the median radius of curvature of the obstacle is given by:

1
r=—
N

N 2
3 X (38)
T 2y
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FIGURE 10
Vertical profile of the obstacle

P.0526-10

4.3 Double isolated edges

This method consists of applying single knife-edge diffraction theory successively to the two
obstacles, with the top of the first obstacle acting as a source for diffraction over the second obstacle
(see Fig. 11). The first diffraction path, defined by the distances @ and b and the height 4}, gives a loss

L1 (dB). The second diffraction path, defined by the distances b and ¢ and the height #’, gives a loss

L> (dB). L1 and L» are calculated using formulae of § 4.1. A correction term L. (dB) must be added to
take into account the separation b between the edges. L. may be estimated by the following formula:

a+b) (b+c)

(
Lc =10logso [ b(a+b+c) (39)

which is valid when each of L; and L, exceeds about 15 dB. The total diffraction loss is then given
by:

L=L+L,+L, (40)

The above method is particularly useful when the two edges give similar losses.

FIGURE 11
Method for double isolated edges

P.0526-11

If one edge is predominant (see Fig. 12), the first diffraction path is defined by the distances a and
b + ¢ and the height #;. The second diffraction path is defined by the distances b and ¢ and the
height /.
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FIGURE 12

Figure showing the main and the second obstacle

P.0526-12

The method consists of applying single knife-edge diffraction theory successively to the two
obstacles. First, the higher //r ratio determines the main obstacle, M, where / is the edge height from
the direct path TxRx as shown in Fig. 12, and r is the first Fresnel ellipsoid radius given by equation
(2). Then &%, the height of the secondary obstacle from the sub-path MR, is used to calculate the loss
caused by this secondary obstacle. A correction term 7. (dB) must be subtracted, in order to take into
account the separation between the two edges as well as their height. 7, (dB) may be estimated by the
following formula:

2p
2 q
T =|12-201log, 1—@ [?J (41)
T
with:
q1/2
_|2(@+b+0) h (42a)
A (b+c)a |
2 b /2
g=|= (a+b+c) h, (42b)
A (a+b) |
1/2
tan o = [ M} (42¢)
ac
h1 and A2 are the edge heights from the direct path transmitter-receiver.
The total diffraction loss is given by:
L=Li+L,—T, (43)

The same method may be applied to the case of rounded obstacles using § 4.3.

In cases where the diffracting obstacle may be clearly identified as a flat-roofed building a single
knife-edge approximation is not sufficient. It is necessary to calculate the phasor sum of two
components: one undergoing a double knife-edge diffraction and the other subject to an additional
reflection from the roof surface. It has been shown that, where the reflectivity of the roof surface and
any difference in height between the roof surface and the side walls are not accurately known, then a
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double knife-edge model produces a good prediction of the diffracted field strength, ignoring the
reflected component.

4.4 Multiple isolated cylinders

This method is recommended for diffraction over irregular terrain which forms one or more obstacles
to LoS propagation where each obstacle can be represented by a cylinder with a radius equal to the
radius of curvature at the obstacle top, being advisable when detailed vertical profile through the ridge
is available.

The terrain height profile should be available as a set of samples of ground height above sea level,
the first and last being the heights of the transmitter and receiver above sea level. Atmospheric
refractivity gradient should be taken into account via the concept of effective Earth radius. Distance
and height values are described as though stored in arrays indexed from 1 to N, where N equals
the number of profile samples.

In the following a systematic use of suffices is made:
h;: height above sea level of the i-th point
d;:  distance from the transmitter to the i-th point
d.

;: distance from the i-th to the j-th points.

The first step is to perform a “stretched string” analysis of the profile. This identifies the sample
points which would be touched by a string stretched over the profile from transmitter to receiver. This
may be done by the following procedure, in which all values of height and distance are in
self-consistent units, and all angles are in radians. The method includes approximations which are
valid for radio paths making small angles to the horizontal. If a path has ray gradients exceeding about

5° more exact geometry may be justified.

Each string point is identified as the profile point with the highest angular elevation above the local
horizontal as viewed from the previous string point, starting at one end of the profile and finishing at
the other. Viewed from point s, the elevation of the i-th profile sample (i > s) is given by:

e = [(hi - hs)/dsi] - [dsi/zae] (44)
where:
a,. effective Earth radius, given by:
= kx6371 (km)
and

k: effective Earth-radius factor.

A test is now applied to determine whether any group of two or more string points should represent
the same terrain obstruction. For samples at spacings of 250 m or less any group of string points
which are consecutive profile samples, other than the transmitter or receiver, should be treated as one
obstruction.

Each obstruction is now modelled as a cylinder, as illustrated in Fig. 13. The geometry of each
individual cylinder corresponds with Fig. 8c). Note that in Fig. 13 the distances s1, 52 for each cylinder
are shown as measured horizontally between the vertex points, and that for near-horizontal rays these
distances approximate to the slope distances ¢, and d, in Fig. 8c). For ray angles to the horizontal

greater than about 5° it may be necessary to set s, and s, to the inter-vertex slope distances di and da.
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FIGURE 13
The cascaded cylinder model a), overall problem b), details
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Similarly in Fig. 13, the height / of each cylinder is shown as measured vertically from its vertex
down to the straight line joining the adjacent vertex or terminal points. The value of 4 for each
cylinder corresponds to 4 in Fig. 8c). Again, for near-horizontal rays the cylinder heights may be
computed as though vertical, but for steeper ray angles it may be necessary to compute % at right
angles to the baseline of its cylinder.

Figure 14 illustrates the geometry for an obstruction consisting of more than one string point.
The following points are indicated by:

w:  closest string point or terminal on the transmitter side of the obstruction which
is not part of the obstruction

string point forming part of the obstruction which is closest to the transmitter

y:  string point forming part of the obstruction which is closest to the receiver
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z:  closest string point or terminal on the receiver side of the obstruction which is
not part of the obstruction

v:  vertex point made by the intersection of incident rays above the obstruction.

FIGURE 14

Geometry of a multipoint obstacle

O: Profile samples i
P.0526-14

The letters w, x, y and z will also be indices to the arrays of profile distance and height samples. For an
obstruction consisting of an isolated string point, x and y will have the same value, and will refer to a
profile point which coincides with the vertex. Note that for cascaded cylinders, points y and z for one
cylinder are points w and x for the next, etc.

A step-by-step method for fitting cylinders to a general terrain profile is described in Attachment 1 to
Annex 1. Each obstruction is characterized by w, x, y and z. The method of Attachment 1 to Annex 1
is then used to obtain the cylinder parameters s1, s2, # and R. Having modelled the profile in this way,
the diffraction loss for the path is computed as the sum of three terms:

— the sum of diffraction losses over the cylinders;

— the sum of sub-path diffraction between cylinders (and between cylinders and adjacent
terminals);

— a correction term.

The total diffraction loss, in dB relative to free-space loss, may be written:

N N
L= L+L"(wx),+) L"(yz),-20logC, dB (45)
i=1 i=1

where:
L';:  diffraction loss over the i-th cylinder calculated by the method of § 4.2

L"(wx);: sub-path diffraction loss for the section of the path between points w and x for
the first cylinder
L"(yz);: sub-path diffraction loss for the section of the path between points y and z for all
cylinders
Cy: correction factor to account for spreading loss due to diffraction over successive
cylinders.

Attachment 2 to Annex 1 gives a method for calculating L" for each LoS section of the path between
obstructions.
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The correction factor, Cy, is calculated using:

Cy = (Pa/Pp)*® (46)

where:
F, =s H [(Sz)i](sl + Z [(Sz)_/]] (47)

N

P=(s), (s)y [ (s +(s0),] (48)

i=1
and the suffices to round brackets indicate individual cylinders.

4.5 Method for a general terrestrial path

This method is recommended for situations where an automatic process is required to predict
diffraction loss for any type of path as defined by a profile, whether LoS or trans-horizon, and whether
the terrain is rough or smooth. This model is based on the Bullington construction, but also makes
use of the spherical Earth diffraction model as described in § 3.2. These models are combined so that
for a completely smooth path, the result will be the same as the spherical Earth model.

The path must be described by a profile consisting of samples of terrain height in metres above sea
level for a succession of distances from one terminal to the other. Unlike the profile required in § 4.4,
the first and last points of this profile, (di, /1) and (ds, h,), must give terrain height underneath the
two antennas, and the antenna heights above ground must be supplied separately.

In this model, there is no requirement for the profile points to be equally spaced. However, it is
important that the maximum point spacing is not large compared to the sample spacing of the
topographic data from which it is extracted. It is particularly inadvisable to represent a section of
constant height profile, such as water, by a first and last point separated by the length of the flat
section of the path. The model performs no interpolation between profile points, and due to Earth
curvature a large distance between profile points, however flat the profile between, can lead to
significant errors.

Where urbanization or tree cover exists along the profile, it will normally improve accuracy to add
a representative clutter height to bare earth terrain heights. This should not be done for the terminal
locations (first and last profile points) and care is needed close to the terminals to ensure that the
addition of cover heights does not cause an unrealistic increase in the horizon elevation angles as seen
by each antenna. If a terminal is in an area with ground cover and below the representative cover
height, it may be preferable to raise the terminal to the cover height for the application of this model,
and to use a separate height-gain correction for the additional loss actually experienced by the
terminal in its actual (lower) position.

This method should be used when there is no a priori information as to the nature of the propagation
path or of possible terrain obstructions. This is typical of the case where a computer program is used
for profiles selected from a terrain height database on a fully automatic basis, with no individual
inspection of path characteristics. The method gives reliable results for all types of path, LoS or trans-
horizon, rough or smooth, or over the sea or large bodies of water.

The method contains two sub-models:

a) the Bullington diffraction method used with a tapered correction to provide a smooth
transition between LoS and trans-horizon;
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b) the spherical Earth method given in § 3.2.

The Bullington part of the method is used twice. The following subsection gives a general description
of the Bullington calculation.

4.5.1 Bullington model

In the following equations slopes are calculated in m/km relative to the baseline joining sea level at
the transmitter to sea level at the receiver. The distance and height of the i-th profile point are d; km
and &; m above sea level respectively, i takes values from 1 to » where n is the number of profile
points, and the complete path length is 4 km. For convenience the terminals at the start and end of the
profile are referred to as transmitter and receiver, with heights in m above sea level &, and /s,
respectively. Effective Earth curvature C. km™! is given by 1/r. where r. is effective Earth radius in
km. Wavelength in metres is represented by A.

Find the intermediate profile point with the highest slope of the line from the transmitter to the point.

S, =max [hi+500ng; .(d—d,- )=ty ] m/km (49)

where the profile index i takes values from 2 ton — 1.

Calculate the slope of the line from transmitter to receiver assuming an LoS path:

S, = tnths m/km (50)

tr d
Two cases must now be considered.
Case 1. Path is LoS
If Siim < Sir the path 1s LoS.

Find the intermediate profile point with the highest diffraction parameter v:

Vo = max i, +500C,d, (d —d, )~ 2el=tdhuts | [Cooes_| (1)

where the profile index i takes values from 2 ton — 1.
In this case, the knife-edge loss for the Bullington point is given by:
L,=JV) dB (52)
where the function J is given by equation (31) for v, greater than —0.78, and is zero otherwise.
Case 2. Path is trans-horizon
If Siim > Sir the path is trans-horizon.
Find the intermediate profile point with the highest slope of the line from the receiver to the point.

S, = max[Clay | ey (53)

d—d;

where the profile index i takes values from 2 ton — 1.

Calculate the distance of the Bullington point from the transmitter:

hr' —h /s +Sn'md
d,= 25" km (54)

tim rim
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Calculate the diffraction parameter, v, for the Bullington point:

Iy (d—dy, e hyyd ] 0.002d
db o Z : A, (d—dp) (55)

v, = [hts +S

tim

In this case, the knife-edge loss for the Bullington point is given by:

L.=J(v,) dB (56)

uc

For L, calculated using either equation (52) or (56), Bullington diffraction loss for the path is now
given by:

Ly, = Ly + [1 —exp(—L,./6)](10 + 0.02d) (57)
4.5.2 Complete method

Use the method in § 4.5.1 for the actual terrain profile and antenna heights. Set the resulting
Bullington diffraction loss for the actual path, Ls, dB, to L, as given by equation (57).

Find the effective transmitter and receiver heights relative to a smooth surface fitted to the profile.

Calculate initial provisional values for the heights of the smooth surface at the transmitter and receiver
ends of the path, as follows:

n

v, = ;(d,. —d,_)(h+h_,) (58)

v, = i(di —d,_ )| h(2d,+d,_)+h_(d+2d)] (59)
P

hy,, = [%j (602)

h,,, = [vz;—zvldj (60b)

Find the highest obstruction height above the straight-line path from transmitter to receiver /ops,
and the horizon elevation angles oo, dosr, all based on flat-Earth geometry, according to:

hyy, = maxi{h,, | m (61a)
a,, = max{h, /d} mrad (61b)
a,, = maxi{h, /(d—d)} mrad (61c)
where:
h, =h—[h(d-d)+hd]d m (61d)

and the profile index i takes values from 2 to (n — 1).

Calculate provisional values for the heights of the smooth surface at the transmitter and receiver ends
of the path:
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If hops 1s less than or equal to zero, then:

hstp = Rstip masl (62a)
hsrp = Asrip masl (62b)

otherwise:
hstp = Rstip — Rops9t masl (62¢)
hsrp = hsrip — hobs9r masl (62d)

where:

9t = Aope/ (Qope + Aopr) (62¢)
9r = Qopr/ (Qope + Xopr) (621)

Calculate final values for the heights of the smooth surface at the transmitter and receiver ends of the
path:

If hgyp is greater than 4 then:

h, = h, masl (63a)
otherwise:

h, = h,, masl (63b)
If hgypis greater than 4, then:

h,=h, masl (63¢)
otherwise:

h, = h masl (63d)

Use the method in § 4.5.1 for a smooth profile by setting all profile heights 4; to zero, and with
modified antenna heights:

h,= h —h, masl (64a)

h,= h,—h, masl (64b)
Set the resulting Bullington diffraction loss for the smooth path, L, dB, to L, as given by
equation (57).

Use the method for diffraction over spherical earth given in § 3.2 for the actual path length d km and
with:

h = h m (65a)
h=h m (65b)
Set the resulting spherical-earth diffraction loss, Lsyr dB, to 4 as given by equation (25).

The diffraction loss for the general path is now given by:

L=1I, +max{L,, —L, 0} dB (66)

'sph

4.6 Method for a general Earth — space slant path

This method is recommended to predict diffraction loss for any type of slant path as defined by a
profile in the region of the terrestrial portion of the path, whether LoS or trans-horizon, and whether
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the terrain is rough or smooth, and is preferred when the high end of the path is much further away
from the obstructing terrain than the low end of the path. This model is based on the knife-edge loss
of the Bullington construction, blended with a similar construction predicting plane-Earth loss for a
general path, referred to as the “effective plane-Earth model”. Care is needed close to the terminals
to ensure that the heights of local terrain do not cause unrealistic horizon elevation angles as seen by
each antenna.

This method has been found to be reasonably accurate for rough terrain up to 50 dB obstruction
relative to free-space and for smooth terrain up to 30 dB obstruction relative to free space, so is
suitable for all Earth-space paths where the elevation angle is between zero and 90 degrees. It may
under-estimate diffraction loss at negative elevation angles, especially in smooth terrain.

4.6.1 Bullington model for an Earth — space slant path

The Bullington triangle knife-edge construction may be applied to the terrain in the region of the
lower end of a slant path with the upper end at great distance, by assuming parallel rays to the upper
end, as shown in Fig. 15, with a ray leaving the antenna at the low end of the path, towards the antenna
at the high end, travelling through the terrain if the path is not line-of-sight. In this case, another ray
parallel to this one is drawn to be tangent to the terrain, and the perpendicular distance /4 between
these two parallel rays is used to calculate diffraction parameter v with equation (26), together with
d1 as shown in Fig. 15. The d> term in equation (26) may be omitted if it is extremely large; otherwise
d> is the length of the remainder of the direct path, and the two rays to the high end of the path
converge on the high-end antenna.

If the line-of-sight is unobstructed, / is negative, and evaluated at the point where Fresnel clearance
is @ minimum. The measurement of /4 is perpendicular to the line-of-sight ray. All quantities in
equation (26); h, di, d2, and A, are in the same units.

Having calculated v with equation (26), Bullington knife-edge loss J(v) is estimated with equation
(31), provided v exceeds —0.78; otherwise assume J(v) = 0, and assume diffraction loss is zero. If v
exceeds —0.78, proceed to §§ 4.6.2 and 4.6.3 to estimate terrain diffraction loss.
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FIGURE 15
Bullington geometry for a slant path

To Satellite
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4.6.2 Effective plane-Earth model

The Bullington triangle knife-edge loss method of § 4.6.1 is a simple diffraction loss estimation
method which may be applied to any arbitrary terrain but can only be assumed accurate for the case
of a true single knife-edge obstruction. For other obstructing terrain, Bullington knife-edge loss J(v)
is generally an under-estimate of diffraction loss. This deficiency is overcome in the following
method, especially for smooth terrain in the region of the low end of the path.

The effective plane-Earth model described here, is a simple diffraction loss estimation method which
may be applied to any arbitrary terrain, but can only be assumed accurate for the case of any plane-
Earth path with low enough clearance to cause diffraction loss. For irregular obstructing terrain, this
simple model has a tendency to over-estimate diffraction loss, in contrast to the Bullington knife-
edge loss equation (56), which tends to under-estimate loss.

The procedure for estimating effective plane-Earth loss is a triangle obstruction method, similar to
the Bullington construction, except that the terrain profile points are raised by first Fresnel radius
divided by 1//m, given as R, /m ¥ y/Ady /T in the satellite case with consistent units, in a direction

perpendicular to the direct rayline, before finding the tangent rays from each antenna. This
construction is shown in Fig. 16.
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FIGURE 16
Effective plane-Earth geometry for a slant path
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The angles of these tangent rays to the direct rayline are o1 and o> radians. If the total path length is
d and the wavelength is A, both in the same units, then the effective plane-earth obstruction loss
relative to free space is given by

Le = —40 loglo[\/ﬂalazd/)\+ 1 - w/ﬂalazd/}\] (67)

In the case of a slant path of great length, the height / of the obstruction triangle may be approximated
as h = oad, leading to the following expression:

L, ~ —40logyo[y/mayh/A + 1 — /mah/A ] (68)

Height / and angle oy are as shown in Fig. 16, with the terrain is here raised by 1/+/m of the first
Fresnel zone radius (R; /r). For convenience, distances such as di may be measured in the direction

of the direct ray to the satellite, and heights such as % or R, ; must be measured perpendicular to the
direct ray.
4.6.3 The complete slant-path model

The Bullington knife-edge loss J(v) from § 4.6.1, and the effective plane-Earth loss L. from § 4.6.2,
are blended to give the diffraction loss Ly as follows:

Lep = kpJ(v) + (1 — kp)Le (69)
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with

k, = max {%, 0} (70)

The blended loss Les has been found to provide reasonable accuracy in predicting terrain diffraction
losses up to 50 dB in excess of free space for irregular terrain. It may under-estimate the diffraction
loss in smooth terrain beyond line-of-sight, i.e. at negative elevation angles.

5 Diffraction by thin screens

The following methods assume that the obstruction is in the form of a thin screen. They can be applied
to propagation around an obstacle or through an aperture.

5.1 Finite-width screen

Interference suppression for a receiving site (e.g. a small earth station) may be obtained by an artificial
screen of finite width transverse to the direction of propagation. For this case the field in the shadow
of the screen may be calculated by considering three knife-edges, i.e. the top and the two sides of the
screen. Constructive and destructive interference of the three independent contributions will result in
rapid fluctuations of the field strength over distances of the order of a wavelength. The following
simplified model provides estimates for the average and minimum diffraction loss as a function of
location. It consists of adding the amplitudes of the individual contributions for an estimate of the
minimum diffraction loss and a power addition to obtain an estimate of the average diffraction loss.
The model has been tested against accurate calculations using the uniform theory of diffraction (UTD)
and high-precision measurements.

Step 1: Calculate the geometrical parameter v for each of the three knife-edges (top, left side and right
side) using any of equations (26) to (29).

Step 2: Calculate the loss factor j(v) = 10/"2% associated with each edge from equation (31).

Step 3: Calculate minimum diffraction loss Ju, from:

1 1 1
T () = 20 log,, | — , . dB 71
() o8 |:]1(V) " (V) ' /3(V):| 1)

or, alternatively,

Step 4: Calculate average diffraction loss J,» from:

Jov) = —1010gm{ L } dB (72)

! + +
B AW W)

5.2 Diffraction by rectangular apertures and composite apertures or screens

The method described below can be used to predict the diffraction loss due to a rectangular aperture
in an otherwise totally absorbing thin screen. The method can be extended to cover several rectangular
apertures or finite screens, and is thus an alternative method for the finite-width screen discussed in
§5.1.

5.2.1 Diffraction by a single rectangular aperture

Figure 17 shows the geometry used to represent a rectangular aperture in an infinite totally absorbing
thin screen.
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FIGURE 17

Geometry for a single rectangular aperture
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The positions of the aperture edges, x1, x2, y1 and y», are given in a Cartesian coordinate system with
origin at the point where the straight line from transmitter 7 at coordinates xi, yx, zt, to receiver R at
coordinates xr, yr, zr, passes through the screen in the X-Y plane, with propagation not necessarily
parallel to the Z axis. The origin is on the plane of the screen.

The angle 0, between the direction of propagation and the Z axis is:

8, = arctan (LEr=x%+0r=y)? rad (73)
p Zy—Z¢

The field strength, e,, at the receiver in linear units normalized to free space, and in complex form,
may be evaluated accurately for small 6, by the Fresnel integral method of § 5.2.1.1, or with
reasonable accuracy for any 0, by the semi-empirical method of § 5.2.1.2.

The corresponding diffraction loss L, is given by:

Lg = —201logyo(leq]) dB (74)

5.2.1.1 Fresnel integral method

ea(x1,x2,y1,02) = 0.5(C:Sy + SxCy) +7 0.5(5:Sy — CxC)) (75)
where:
Cx = C(vx2) — C(vy1) (762)
Cy = C(vy2) = C(vy1) (76b)
Sx = S(xz2) = S(Vy1) (76c¢)

Sy = S(vy2) = S(vy1) (76d)
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C(v) and S(v) are as given in equations (7a) and (7b) and may be evaluated from the complex Fresnel
coefficient using equations (8a) and (8b).

The four diffraction parameters vxi, vx2, Vy1 and vy are:

0.18
2 _ 1 1 .
Va = Sgn(xl)\/x|xl|l : (_ - _J |¢21|082 (77a)
z, z,
2 IS I
Vo = Sgn(xz)\/x|xz|1.18 [_ - — |¢22|0.82 (77b)
z, z,
2 1 1 0.18
1.18 0.82
Vi = Sgn()’l)\/x|y1| [Z - Z_t |(|)11| (77¢)
v, = sen(y,) z| |1.18 1 1 0'18|¢ |0.82 17d
yo = Sgnly, N Y2 Z z, 12 (77d)
with:
¢$,, = arctan (x1ZTxr) — arctan (xlztxt) rad (77¢)
¢,, = arctan (xzzr T) — arctan (sztxt) rad (779
¢$,; = arctan (y . ) — arctan (y lztyt) rad (77g)
¢, = arctan (y zzry T) — arctan (y ZZty t) rad (77h)

5.2.1.2  Semi-empirical method

For reasonable accuracy at any 0,, the following method does not require the Fresnel integrals C(v)
and S(v):

2
phzl phzZ
e = S —— G, ———=G, 78
a E[|: gr1(¢ll)(2 Ph il ) (4)12)( Ph le:| ( )
where:
b, [1 1 }
G, = cos Y | =——arctan(l.4v . 79
( 212 =& ( y) (79
with @; from equations (77¢) to (77h), and
1
Vi = 2\/X(Dtpm/y‘ +D, ey 7, pmjft) (80)
P P
rprojfl = \/(Zr _Zt) +(yr _yt) (813)

rproj—2 = \/(Zr —Z )2 + (‘xr _xt )2 (Slb)
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thprojfll = \/th +(y1 _yt )2

thprojle = \/th +(y2 _yl )2

— ]2 2
Dt—proj—Zl - \/Zt +(x1 _‘xt)

_ ]2 2
Dt—proj—ZZ - \/Zt +(x2 _xt)

Drfprojfll = \/Zf +(yl _yr )2

Dr—pruj—lZ = \/Zf +(y2 _yr )2

Dr—prqj—2l = \/Zf +('xl _xr )2

Dr—proj—22 = \/Zf + ()C2 _xr )2

D, :\/(zr)2 +(yr —yl.j)2 +(xr —)cl.j)2 +\/(zt)2 +(yt —yij)2 +(xt —)cl.j)2

where, if Dr—proj—l s D t-proj—1

X, (D

r-proj—1j )

—X, (D

D D

t-proj—1; ) -

t-proj—1,j " r-proj—1;

1j

or if Dr—proj—lj - Dt—proj—lj

and if Dr-pr0j72j * Dt'Pl’Ojfzj

Vi (Dr—proj—Zj )2 -V, (Dt-projfz./)

(D r-proj—1; )2 o (D t-proj—1j )2

2

- Dt—pr0j72jDr—proj72j (yz - yr )

YVoj =

or if Diproja; = Diproj-2;

and:

using ph11,ph12,ph21,ph22, from

(Dr—proj—Zj )2 - (Dt—prOj—ZJ' )2

Ve TV,
Yo = t

Ny =V, X =4
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(82a)

(82b)

(82¢)

(82d)

(82¢)

(82f)

(82g)

(82h)

(83)

(84a)

(84b)

(85a)

(85b)

(86)
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— j2nD;,
phy =exp| ——— (87)
and Ph:
Ph = exp( — ]ircr) (88)

5.2.2 Diffraction by composite apertures or screens
The method for a single rectangular aperture can be extended as follows:

Since in the linear units normalized to free space of equations (75) or (78) the free-space field is given
by 1.0 +; 0.0, the normalized complex field e; due to a single rectangular screen (isolated from
ground) is given by:

es=1.0—¢, (89)

where ¢, is calculated using equations (75) or (78) for an aperture of the same size and position as the
screen.

— The normalized field due to combinations of several rectangular apertures or isolated screens
can be calculated by adding the results of equations (75) or (78).

— Arbitrarily shaped apertures or screens can be approximated by suitable combinations of
rectangular apertures or screens.

— Since the C(v) and S(v) integrals converge to 0.5 + j 0.5 as v approaches infinity,
equation (75) can be applied to rectangles of unlimited extent in one or more directions.

6 Diffraction over a finitely conducting wedge

The method described below can be used to predict the diffraction loss due to a finitely conducting
wedge. Suitable applications are for diffraction around the corner of a building or over the ridge of
aroof, or where terrain can be characterized by a wedge-shaped hill. The method requires the
conductivity and relative dielectric constant of the obstructing wedge, and assumes that no
transmission occurs through the wedge material.

The method is based on UTD. It takes account of diffraction in both the shadow and line-of-sight
region, and a method is provided for a smooth transition between these regions.

The geometry of a finitely conducting wedge-shaped obstacle is illustrated in Fig. 18.
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FIGURE 18
Geometry for application of UTD wedge diffraction
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The UTD formulation for the electric field at the field point, specializing to two dimensions, is:

_ oo XpCks) s exp(—jks,) (90)

€urp = €
S s,(8y + 5,)

where:
eurp: electric field at the field point
eo: relative source amplitude
s1: distance from source point to diffracting edge
s2:  distance from diffracting edge to field point

k:  wave number 27/A
D'':  diffraction coefficient depending on the polarization (parallel or perpendicular
to the plane of incidence) of the incident field on the edge
and s1, s2 and A are in self-consistent units.
The diffraction coefficient for a finitely conducting wedge is given as:

cot(7T + (P, - q)l)j - F(kLa" (®, — @)))
2n

2n
2ny2mk gl cot(n - (q;2 i q)l)j . F(kLa (@, + ®,))

n
+ t(n + (D, + D))

+ cot(7T - (@, - q)l)j - F(kLa (®, — @)))
91)

+ R co i j - F(kLa' (®, + ®)))

where:
®;: incidence angle, measured from incidence face (0 face)

®,: diffraction angle, measured from incidence face (0 face)
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n: external wedge angle as a multiple of m radians (actual angle = nm (rad))
ji= VA
and where F(x) is a Fresnel integral:

o0

F(x) = 2jvx - exp(jx) - J.exp(fjtz) dr (92)
Jx
B JVx
[exp(-jt’) dt = \/g(l — i) = Jexp(-jr) de (93)

Jx 0
The integral may be calculated by numerical integration.

Alternatively a useful approximation is given by:

Texp(—jtz) dr = \/EA(x) (94)
N 2

where:

o 11 n
ITJ — exp(—jx) %Z; {(an 4 jbn)GH ifx < 4

A(x) = 95)
4 U 4Y'
—exp(—jx) —Z {(cn + jdn)(—j :l otherwise
R X
and the coefficients a, b, ¢, d are given in § 2.7.
L =225 (96)
S, +
2 ' -
aP) = 2005{#] (97)
where:
=, £, (98)
In equation (45), N~ are the integers which most nearly satisfy the equation.
+
N BET (99)
2nm
L1
R(|)‘ ,R,'l| are the reflection coefficients for either perpendicular or parallel polarization given by:
sin(®) — — cos(®)?
ol Sn(@®) — \n — cos(@) (100

) sin(®) + \n - cos(CI))2
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Rl — M - sin(®) — \n - cos(<I>)2
N - sin(®) + yn - cos(d))2

(101)

where:
D= forRyand P = 1 — Do) g,
n=c¢ — jx18 x 10°c/ f
e-. relative dielectric constant of the wedge material
c: conductivity of the wedge material (S/m)
f: frequency (Hz).
Note that, if necessary, the two faces of the wedge may have different electrical properties.

At shadow and reflection boundaries one of the cotangent functions in equation (91) becomes
singular.

iR
However, D'| remains finite, and can be readily evaluated. The term containing the singular
cotangent function is given for small € as:

cot[nzi Bj PG ) = n - [2RRL - sign(e) - 24Le - exp(nid)] - exp(md) (102)
n

with € defined by:
e=mn+ B — 2nnN" for B=a, + D, (103)
e=mn - B + 2nnN" for =0, -], (104)

The resulting diffraction coefficient will be continuous at shadow and reflection boundaries, provided
that the same reflection coefficient is used when calculating reflected rays.

The field e.p due to the diffracted ray, plus the LoS ray for (®, —®,) <, is given by:

eyrp + Xp(ks) for @O, <®d + 1

€p = s (105)
eurp for @©,>2®d + 1

where:

s: straight-line distance between the source and field points.
Note that at (@, —®,) = the 2" cotangent term in equation (91) will become singular, and that the
alternative approximation given by equation (102) must be used.

The field strength at the field point (dB) relative to the field which would exist at the field point in
the absence of the wedge-shaped obstruction (i.e. dB relative to free space) is given by setting eo to
unity in equation (90) and calculating:

S €y

exp(—jks)

E,., = 20 log[ J (106)
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where:
s: straight-line distance between the source and field points.

Note that, for n =2 and zero reflection coefficients, this should give the same results as the knife edge
diffraction loss curve shown in Fig. 9.

A MathCAD version of the UTD formulation is available from the Radiocommunication Bureau.

7 Guide to propagation by diffraction

A general guide for the evaluation of diffraction loss corresponding to §§ 3 and 4 is shown in Fig. 19.
This flow chart summarizes the procedure to be adopted in each case.
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FIGURE 19
Guide to propagation by diffraction
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Attachment 1
to Annex 1

Calculation of cylinder parameters

The following procedure can be used to calculate the cylinder parameters illustrated in Figs 8c)
and 14 for each of the terrain obstructions. Self-consistent units are used, and all angles are in radians.
The approximations used are valid for radio paths which are within about 5° of horizontal.

1 Diffraction angle and position of vertex

Although not used directly as cylinder parameters, both the diffraction angle over the cylinder and
the position of the vertex are required.

The diffraction angle over the obstacle is given by:

0=oa, +a, +a (107)

where o, and o, are the angular elevations of points x and y above the local horizontal as viewed
from points w and z respectively, given by:

o, = —(hxd‘ h) _ ;’_ (108)
wx ae
h —h d
vz ae

and a, is the angle subtended by the great-circle distance between points w and z given by:

o, = L= (110)

e
a

e

The distance of the vertex from point w is calculated according to whether the obstruction is
represented by a single profile sample or by more than one.

For a single-point obstruction:

dwy = dux (111)
For a multipoint obstruction it is necessary to protect against very small values of diffraction:
Hocz + Oéj d,.+h - hw}
d, = 5 for 0 - a. > d,, (112a)
(dwx + d\/t’y)
WV:# for 0 - a.<d,, (112b)

The distance of point z from the vertex point is given by:
dy; = dwz — dwy (113)
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The height of the vertex point above sea level is calculated according to whether the obstruction is
represented by a single profile sample or by more than one.

For a single point obstruction:
h, = h, (114)

For a multipoint obstruction:

hv:dwvaw+hw+& (115)

2 Cylinder parameters

The cylinder parameters illustrated in Fig. 8c) can now be calculated for each of the terrain obstacles
defined by the string analysis:

d; and d, are the positive inter-vertex distances to the obstacles (or terminals) on the transmitter and
receiver sides of the obstacle respectively,
and:

d, d (hd_+hd,)

h — h + wyv-vz w vz Z Wy 1 16
" 2a, d (116)

wz

To calculate the cylinder radius use is made of two further profile samples:
p: the point adjacent to x on the transmitter side,

and:
q: the point adjacent to y on the receiver side.

Thus the profile indices p and ¢ are given by:

p=x—1 (117)

and:
q=y+1 (118)
If a point given by p or ¢ is a terminal, then the corresponding value of / should be the terrain height

at that point, not the height above sea level of the antenna.

The cylinder radius is calculated as the difference in slope between the profile section p-x and y-gq,
allowing for Earth curvature, divided by the distance between p and g.

The distances between profile samples needed for this calculation are:

dpy = dy — d,, (119)
dyg = dg —d, (120)
dpg = dg — d,, (121)

The difference in slope between the p-x and y-g profile sections is given in radians by:
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=k (h-h)

122
d, d, a, (122)
where a, is the effective Earth radius.
The cylinder radius is now given by:
R =la, /] [t - exp4w)f (123)

where v is the dimensionless knife-edge parameter in equation (32).

In equation (123), the second factor is an empirical smoothing function applied to the cylinder radius
to avoid discontinuities for marginally LoS obstructions.

Attachment 2
to Annex 1

Sub-path diffraction losses

1 Introduction

This Attachment provides a method for computing the sub-path diffraction loss for a LoS subsection
of a diffraction path. The path has been modelled by cascaded cylinders each characterized by profile
points w, x, y and z as illustrated in Figs 13 and 14. The sub-path diffraction is to be calculated for
each subsection of the overall path between points represented by w and x, or by y and z. These are
the LoS sections of the path between obstructions, or between a terminal and an obstruction.

The method can also be used for a LoS with sub-path diffraction, in which case it is applied to the
entire path.

2 Method

For a LoS section of the profile between profile samples indexed by u and v, the first task is to identify
the profile sample between but excluding u and v which obstructs the largest fraction of the first
Fresnel zone for a ray travelling from u to v.

To avoid selecting a point which is essentially part of one of the terrain obstacles already modelled
as a cylinder, the profile between u and v is restricted to a section between two additional indices p
and g, which are set as follows:

— Setp=u+1.
— If both p <vand h, > h,,,, then increase p by 1 and repeat.
— Setg=v—1.
— If both ¢ > u and h, > h,_;, then decrease ¢ by 1 and repeat.
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If p = g then the sub-path obstruction loss is set to 0. Otherwise the calculation proceeds as follows.

It is now necessary to find the minimum value of normalized clearance, Cr, given by 4./ F, where in
self-consistent units:

h,: height of ray above profile point

Fy: radius of first Fresnel zone.

The minimum normalized clearance may be written:

C, =™ (), / (F),]

i=p (124)

where:
(hy); = (hy); — (hy); (125)
(Fl)i = \/A'dui 'div/duv (126)

(h,);, the height of the ray above a straight line joining sea level at u and v at the i-th profile point is
given by:

(hy)i = (hy - dip + hy - dy) /dyy (127)

(h,);, the height of the terrain above a straight line joining sea level at u and v at the i-th profile point
is given by:

(he); = hy + dy; - diy/2a, (128)

The minimum value of normalized clearance is used to compute the knife-edge diffraction
geometrical parameter for the most significant sub-path obstruction:

v=—Cp-V2 (129)

The sub-path diffraction loss L" is now obtained from equation (31) or Fig. 9.

For some applications it may be undesirable to include sub-path diffraction enhancements. In this
case a value of L" should be set to zero when it would otherwise be negative.
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