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RECOMMENDATION  ITU-R  P.526-16* 

Propagation by diffraction 

(Question ITU-R 202-5/3) 

(1978-1982-1992-1994-1995-1997-1999-2001-2003-2005-2007-2009-2012-2013-2018-2019-2025) 

Scope 

This Recommendation presents several models to enable the reader to evaluate the effect of diffraction on the 

received field strength. The models are applicable to different obstacle types and to various path geometries. 

Keywords 

Diffraction, irregular terrain, obstacles, knife-edge, aperture, screen 

Related ITU Recommendations 

Recommendation ITU-R P.310 – Definitions of terms relating to propagation in non-ionized media 

Recommendation ITU-R P.368 – Ground-wave propagation prediction method for frequencies between 

10 kHz and 30 MHz 

Recommendation ITU-R P.834 – Effects of tropospheric refraction on radiowave propagation 

Recommendation ITU-R P.1546 – Method for point-to-area predictions for terrestrial services in the frequency 

range 30 MHz to 4 000 MHz 

NOTE – The latest edition of the Recommendation in force should be used. 

The ITU Radiocommunication Assembly, 

considering 

that there is a need to provide engineering information for the calculation of field strengths over 

diffraction paths, 

recommends 

that the methods described in Annex 1 should be used for the calculation of field strengths over 

diffraction paths, which may include a spherical earth surface, or irregular terrain with different kinds 

of obstacles. 
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* Recommendation ITU-R P.526-15 is incorporated by reference in the Radio Regulations, Edition of 2024, 

Volume 4. 
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1 Introduction 

Although diffraction is produced only by the surface of the ground or other obstacles, account must 

be taken of the mean atmospheric refraction on the transmission path to evaluate the geometrical 

parameters situated in the vertical plane of the path (angle of diffraction, radius of curvature, height 

of obstacle). For this purpose, the path profile has to be traced with the appropriate equivalent Earth 

radius (Recommendation ITU-R P.834). If no other information is available, an equivalent Earth 

radius of 8 500 km may be taken as a basis. 

2 Basic concepts 

Diffraction of radio-waves over the Earth’s surface is affected by terrain irregularities. In this context, 

before going further into the prediction methods for this propagation mechanism, a few basic concepts 

are given in this section. 

2.1 Fresnel ellipsoids and Fresnel zones 

In studying radio-wave propagation between two points A and B, the intervening space can be 

subdivided by a family of ellipsoids, known as Fresnel ellipsoids, all having their focal points at A and 

B such that any point M on one ellipsoid satisfies the relation: 

  
2

AB MBAM


+=+ n  (1) 

where n is a whole number characterizing the ellipsoid and n = 1 corresponds to the first Fresnel 

ellipsoid, etc., and  is the wavelength. 

As a practical rule, propagation is assumed to occur in line-of-sight (LoS), i.e. with negligible 

diffraction phenomena if there is no obstacle within the first Fresnel ellipsoid. 

The radius of an ellipsoid at a point between the transmitter and the receiver can be approximated in 

self-consistent units by: 
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or, in practical units: 
 

  

2/1

21

21

)(
550 









+
=

fdd

ddn
Rn

 (3) 

where f is the frequency (MHz) and d1 and d2 are the distances (km) between transmitter and receiver 

at the point where the ellipsoid radius (m) is calculated. 

https://www.itu.int/rec/R-REC-P.834/en
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Some problems require consideration of Fresnel zones which are the zones obtained by taking the 

intersection of a family of ellipsoids by a plane. The zone of order n is the part between the curves 

obtained from ellipsoids n and n – 1, respectively. 

2.2 Penumbra width 

The transition from light to shadow defines the penumbra region. This transition takes place along 

a narrow strip (penumbra width) in the boundary of geometric shadow. Figure 1 shows the penumbra 

width (W) in the case of a transmitter located a height, h, above a smooth spherical earth, which is 

given by: 

  

3/1
2













= ea

w m (4) 

where: 

  :  wavelength (m) 

 ae : effective Earth radius (m). 

FIGURE 1 

Definition of penumbra width 

 

2.3 Diffraction zone 

The diffraction zone of a transmitter extends from the LoS distance where the path clearance is equal 

to 60% of the first Fresnel zone radius, (R1), up to a distance well beyond the transmitter horizon 

where the mechanism of troposcatter becomes predominant. 

2.4 Obstacle surface smoothness criterion 

If the surface of the obstacle has irregularities not exceeding Δh, 

where: 

    3/12λ04.0 Rh =                 m (5) 

where: 

 R : obstacle curvature radius (m) 

   : wavelength (m); 

then the obstacle may be considered smooth and the methods described in §§ 3 and 4.2 may be used 

to calculate the attenuation. 
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2.5 Isolated obstacle 

An obstacle can be considered isolated if there is no interaction between the obstacle itself and the 

surrounding terrain. In other words, the path attenuation is only due to the obstacle alone without any 

contribution from the remaining terrain. The following conditions must be satisfied: 

– no overlapping between penumbra widths associated with each terminal and the obstacle top; 

– the path clearance on both sides of the obstacles should be, at least, 0.6 of the first Fresnel 

zone radius; 

– no specular reflection on both sides of the obstacle. 

2.6 Types of terrain 

Depending on the numerical value of the parameter h (see Recommendation ITU-R P.310) used to 

define the degree of terrain irregularities, three types of terrain can be classified: 

a) Smooth terrain 

The surface of the Earth can be considered smooth if terrain irregularities are of the order or less than 

0.1R, where R is the maximum value of the first Fresnel zone radius in the propagation path. In this 

case, the prediction model is based on the diffraction over the spherical Earth (see § 3). 

b) Isolated obstacles 

The terrain profile of the propagation path consists of one or more isolated obstacles. In this case, 

depending on the idealization used to characterize the obstacles encountered in the propagation path, 

the prediction models described in § 4 should be used. 

c) Rolling terrain 

The profile consists of several small hills, none of which form a dominant obstruction. Within its 

frequency range Recommendation ITU-R P.1546 is suitable for predicting field strength but it is not 

a diffraction method. 

2.7 Fresnel integrals 

The complex Fresnel integral is given by: 

  


 
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where j is the complex operator equal to –1, and C() and S() are the Fresnel cosine and sine 

integrals defined by: 
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The complex Fresnel integral Fc() can be evaluated by numerical integration, or with sufficient 

accuracy for most purposes for positive  using: 
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https://www.itu.int/rec/R-REC-P.310/en
https://www.itu.int/rec/R-REC-P.1546/en
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where: 

  x = 0.5 2 (9) 

and an, bn, cn and dn are the Boersma coefficients given below: 

a0 = +1.595769140 b0 = −0.000000033 c0 = +0.000000000 d0 = +0.199471140 

a1 = −0.000001702 b1 = +4.255387524 c1 = −0.024933975 d1 = +0.000000023 

a2 = −6.808568854 b2 = −0.000092810 c2 = +0.000003936 d2 = −0.009351341 

a3 = −0.000576361 b3 = −7.780020400 c3 = +0.005770956 d3 = +0.000023006 

a4 = +6.920691902 b4 = −0.009520895 c4 = +0.000689892 d4 = +0.004851466 

a5 = −0.016898657 b5 = +5.075161298 c5 = −0.009497136 d5 = +0.001903218 

a6 = −3.050485660 b6 = −0.138341947 c6 = +0.011948809 d6 = −0.017122914 

a7 = −0.075752419 b7 = −1.363729124 c7 = −0.006748873 d7 = +0.029064067 

a8 = +0.850663781 b8 = −0.403349276 c8 = +0.000246420 d8 = −0.027928955 

a9 = −0.025639041 b9 = +0.702222016 c9 = +0.002102967 d9 = +0.016497308 

a10 = −0.150230960 b10 = −0.216195929 c10 = −0.001217930 d10 = −0.005598515 

a11 = +0.034404779 b11 = +0.019547031 c11 = +0.000233939 d11 = +0.000838386 

C() and S() may be evaluated for negative values of  by noting that: 

  𝐶(−𝜈) = −𝐶(𝜈) (10a) 

 

  𝑆(−𝜈) = −𝑆(𝜈) (10b) 

3 Diffraction over a spherical Earth 

The additional transmission loss due to diffraction over a spherical Earth can be computed by the 

classical residue series formula. The computer program “LFMF-SmoothEarth” in Recommendation 

ITU-R P.368 provides the complete method. A subset of the outputs from this program (for antennas 

close to the ground and at lower frequencies) is presented in Recommendation ITU-R P.368. 

The following subsections describe numerical and nomogram methods which may be used for 

frequencies 10 MHz and above. For frequencies below 10 MHz, “LFMF-SmoothEarth” should 

always be used. Section 3.1 gives methods for over-the-horizon paths. Section 3.1.1 is a numerical 

method. Section 3.1.2 is a nomogram method. Section 3.2 is a method applicable for the smooth earth 

case for any distance and for frequencies 10 MHz and above. This utilizes the numerical method 

in § 3.1.1. 

3.1 Diffraction loss for over-the-horizon paths 

At long distances over the horizon, only the first term of the residue series is important. Even near or 

at the horizon this approximation can be used with a maximum error around 2 dB in most cases. 

This first term can be written as the product of a distance term, F, and two height gain terms, GT and 

GR. Sections 3.1.1 and 3.1.2 describe how these terms can be obtained from simple formula or from 

nomograms. 

https://www.itu.int/rec/R-REC-P.368/en
https://www.itu.int/rec/R-REC-P.368/en
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3.1.1 Numerical calculation 

3.1.1.1 Influence of the electrical characteristics of the surface of the Earth 

The extent to which the electrical characteristics of the surface of the Earth influence the diffraction 

loss can be determined by calculating a normalized factor for surface admittance, K, given by the 

formulae: 

in self-consistent units: 
 

  𝐾𝐻 = (
2π 𝑎𝑒

λ
)

−1 3⁄
[(ε − 1)2 + (60 λ σ)2]−1 4⁄           for horizontal polarization (11) 

and 

  𝐾𝑉 = 𝐾𝐻[ε2 + (60 λ σ)2]1 2⁄              for vertical polarization (12) 

or, in practical units: 

  𝐾𝐻 = 0.36(α𝑒 𝑓)−1 3⁄  [(ε − 1)2 + (18 000 σ 𝑓⁄ )2]−1 4⁄  (11a) 
 

  𝐾𝑉 = 𝐾𝐻  [ε2 + (18 000 σ 𝑓⁄ )2]1 2⁄  (12a) 

where: 

 ae : effective radius of the Earth (km) 

 ε : effective relative permittivity 

 σ : effective conductivity (S/m) 

 f : frequency (MHz). 

Typical values of K are shown in Fig. 2. 
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FIGURE 2 

Calculation of K 

 

If K is less than 0.001, the electrical characteristics of the Earth are not important. For values of K 

greater than 0.001 and less than 1, the appropriate formulae given in § 3.1.1.2 can be used. When K 

has a value greater than about 1, the diffraction field strength calculated using the method of § 3.1.1.2 

differs from the results given by the “LFMF-SmoothEarth”, and the difference increases rapidly as K 

increases. “LFMF-SmoothEarth” should be used for K greater than 1. This only occurs for vertical 

polarization, at frequencies below 10 MHz over sea, or below 200 kHz over land. In all other cases 

the method of § 3.1.1.2 is valid. 
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3.1.1.2 Diffraction field strength formulae 

The diffraction field strength, E, relative to the free-space field strength, E0, is given by the equation: 
 

  20 log10
𝐸

𝐸0
= 𝐹(𝑋) + 𝐺(𝑌1) + 𝐺(𝑌2)                dB (13) 

 

where X is the normalized length of the path between the antennas at normalized heights Y1 and Y2 

(and where 20 log10
𝐸

𝐸0
 is generally negative). 

In self-consistent units: 

  𝑋 = β (
π

λ α𝑒
2)

1 3⁄

𝑑 (14) 

 

  𝑌 = 2β (
π2

λ2 α𝑒
)

1 3⁄

ℎ (15) 

or, in practical units: 
 

  𝑋 = 2.188β 𝑓1 3⁄  α𝑒
−2 3⁄

 𝑑 (14a) 
 

  𝑌 = 9.575 × 10−3β 𝑓2 3⁄  α𝑒
−1 3⁄

 ℎ (15a) 
 

where: 

 d : path length (km) 

 ae : equivalent Earth’s radius (km) 

 h : antenna height (m) 

 f : frequency (MHz). 

 is a parameter allowing for the type of ground and for polarization. It is related to K by the following 

semi-empirical formula: 
 

  
42

42

53.15.41

67.06.11
β

KK

KK

++

++
=  (16) 

 

For horizontal polarization at all frequencies, and for vertical polarization above 20 MHz over land 

or 300 MHz over sea,  may be taken as equal to 1. 

For vertical polarization below 20 MHz over land or 300 MHz over sea,  must be calculated as 

a function of K. However, it is then possible to disregard ε and write: 
 

  2

2/3 5/3
6.89K

k f


  (16a) 

where  is expressed in S/m, f (MHz) and k is the multiplying factor of the Earth’s radius. 

The distance term is given by the formula: 
 

  F(X) = 11 + 10 log10 (X) − 17.6 X for X  1.6 (17a) 
 

  F(X) = −20 log10 (X) − 5.6488X1.425 for X < 1.6 (17b) 
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The height gain term, G(Y ) is given by the following formulae: 
 

  𝐺(𝑌) ≅ 17.6(𝐵 − 1.1)1 2⁄ − 5 log10(𝐵 − 1.1) − 8                 for 𝐵 > 2 (18) 
 

  𝐺(𝑌) ≅ 20 log10(𝐵 + 0.1𝐵3)                                                      for 𝐵 ≤ 2 (18a) 
 

If 𝐺(𝑌) < 2 + 20 log10 𝐾, set 𝐺(𝑌) to the value 2 + 20 log10 𝐾. 

In the above: 
 

  𝐵 = β𝑌  (18b) 
 

The accuracy of the diffracted field strength given by equation (13) is limited by the approximation 

inherent in only using the first term of the residue series. Equation (13) is accurate to better than 2 dB 

for values of X, Y1 and Y2 that are constrained by the formula: 
 

  𝑋 − (β𝑌1)1 2⁄ ∆(𝑌1, 𝐾) − (β𝑌2)1 2⁄ ∆(𝑌2, 𝐾) > 𝑋𝑙𝑖𝑚 (19) 
 

where: 
 

  𝑋𝑙𝑖𝑚 = 1.096 − 1.280(1 − β) (19a) 
 

  ∆(𝑌, 𝐾) = ∆(𝑌, 0) + 1.779(1 − β) [∆(𝑌, ∞) − ∆(𝑌, 0)] (19b) 
 

Δ(Y,0) and Δ(Y,∞) are given by: 
 

  
100.5 log (β ) 0.255

( ,0) 0.5 1 tanh
0.3

Y
Y

 −  
 = +   

  
 (19c) 

 

  100.5 log (β ) 0.255
( , ) 0.5 1 tanh

0.25

Y
Y

 +  
  = +   

  
 (19d) 

Consequently, the minimum distance dmin for which equation (13) is valid is given by: 
 

  ),()β(),()β( 2

2/1

21

2/1

1 KYYKYYXX limmin ++=  (19e) 
 

and dmin is obtained from Xmin using equation (14a). 

3.1.2 Calculation by nomograms 

Under the same approximation condition (the first term of the residue series is dominant), 

the calculation may also be made using the following formula: 
 

  10 1 2

0

20 log F( ) H( ) H( )
E

d h h
E

= + +                 dB (20) 

 

where: 

 E : received field strength 
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 E0 : field strength in free space at the same distance 

 d : distance between the extremities of the path 

 h1 and h2 : heights of the antennas above the spherical earth. 

The function F (influence of the distance) and H (height-gain) are given by the nomograms in Figs 3, 

4, 5 and 6. 

These nomograms (Figs 3 to 6) give directly the received level relative to free space, for k = 1 and 

k = 4/3, and for frequencies greater than approximately 30 MHz. k is the effective Earth radius factor, 

defined in Recommendation ITU-R P.310. However, the received level for other values of k may be 

calculated by using the frequency scale for k = 1, but replacing the frequency in question by a 

hypothetical frequency equal to f / k2 for Figs 3 and 5, and kf / for Figs 4 and 6. 

Very close to the ground the field strength is practically independent of the height. This phenomenon 

is particularly important for vertical polarization over the sea. For this reason, Fig. 6 includes a heavy 

black vertical line AB. If the straight line should intersect this heavy line AB, the real height should 

be replaced by a larger value, so that the straight line just touches the top of the limit line at A. 

NOTE 1 – Attenuation relative to free space is given by the negative of the values given by equation (20). If 

equation (20) gives a value above the free-space field, the method is invalid. 

NOTE 2 – The effect of line AB is included in the numerical method given in § 3.1.1. 

https://www.itu.int/rec/R-REC-P.310/en


12 Rec. ITU-R  P.526-16 

 

FIGURE 3 

Diffraction by a spherical Earth – effect of distance 
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FIGURE 4 

Diffraction by a spherical Earth – height-gain 
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FIGURE 5 

Diffraction by a spherical Earth – effect of distance 
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FIGURE 6 

Diffraction by a spherical Earth – height-gain 

 

3.2 Diffraction loss for any distance at 10 MHz and above 

The following step-by-step procedure should be used for a spherical-earth path of any length at 

frequencies of 10 MHz and above, for effective Earth radius ae > 0. The method uses the calculation 

in § 3.1.1 for over-the-horizon cases, and otherwise an interpolation procedure based on a notional 

effective-earth radius. 
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The procedure uses self-consistent units and proceeds as follows: 

Calculate the marginal LoS distance given by: 
 

  ( )212 hhad elos +=  (21) 

 

If d ≥ dlos calculate diffraction loss using the method in § 3.1.1. No further calculation is necessary. 

Otherwise continue: 

Calculate the smallest clearance height between the curved-earth path and the ray between the 

antennas, h (see Fig. 7), given by: 
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Calculate the required clearance for zero diffraction loss, hreq, given by: 
 

  
d

dd
hreq

λ
552.0 21=  (23) 

 

If h > hreq the diffraction loss for the path is zero. No further calculation is required. 

Otherwise continue: 

Calculate the modified effective earth radius, aem, which gives marginal LoS at distance d given by: 
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Use the method in § 3.1.1 to calculate the diffraction field strength relative to free-space for the path 

using the modified effective earth radius aem in place of the effective earth radius ae, and calculate 

loss Ah, given by 𝐴ℎ = −20 log10
𝐸

𝐸0
. 

If Ah is negative, the diffraction loss for the path is zero, and no further calculation is necessary. 

Otherwise calculate the interpolated diffraction loss, A (dB), given by: 
 

    hreq AhhA /1 −=  (25) 

4 Diffraction over isolated obstacles or a general terrestrial or Earth – space path 

Many propagation paths encounter one obstacle or several separate obstacles and it is useful to 

estimate the losses caused by such obstacles. To make such calculations, it is necessary to idealize 

the form of the obstacles, either assuming a knife-edge of negligible thickness or a thick smooth 

obstacle with a well-defined radius of curvature at the top. Real obstacles have, of course, more 

complex forms, so that the indications provided in this Recommendation should be regarded only as 

an approximation. These models do not take into account the profile transverse to the direction of the 

radio link, which may have a significant effect on diffraction loss. 

In those cases where the direct path between the terminals is much shorter than the diffraction path, 

it is necessary to calculate the additional transmission loss due to the longer path. 

The data given below apply when the wavelength is fairly small in relation to the size of the obstacles, 

i.e. mainly to VHF and shorter waves ( f > 30 MHz). 

FIGURE 7 

Path clearance 

 

4.1 Single knife-edge obstacle 

In this extremely idealized case (see Figs 8a) and 8b)), all the geometrical parameters are combined 

together in a single dimensionless parameter normally denoted by ν which may assume a variety of 

equivalent forms according to the geometrical parameters selected: 
 

  




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21
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dd
h  (26) 
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2
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


=  (28) 

 

  )andofsignthehas(
2

2121 


=
d

 (29) 

 

where: 

 h : height of the top of the obstacle above the straight line joining the two ends of 

the path. If the height is below this line, h is negative 

 d1 and d2 : distances of the two ends of the path from the top of the obstacle 

 d : length of the path 

  : angle of diffraction (rad); its sign is the same as that of h. The angle  is assumed 

to be less than about 0.2 rad, or roughly 12º 

 1 and 2 : angles in radians between the top of the obstacle and one end as seen from the 

other end. The signs of 1 and 2 are the same sign of h in the above equations. 

NOTE 1 – In equations (26) to (29) inclusive h, d, d1, d2 and  should be in self-consistent units. 
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FIGURE 8 

Geometrical elements 

 

Figure 9 gives, as a function of , the loss J() (dB). 
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J() is given by: 

     
2 2

1 ( ) ( ) ( ) ( )
( ) 20 log

2

C S C S
J

 −  −  +  − 
  = −
 
 

 (30) 

where C() and S() are the real and imaginary parts respectively of the complex Fresnel integral 

F() defined in § 2.7. 

For  greater than −0.78 an approximate value can be obtained from the expression: 
 

  ( )2( ) 6.9 20 log ( – 0.1) 1 – 0.1 dBJ  = +  + +   (31) 

FIGURE 9 

Knife-edge diffraction loss 

 

4.2 Single rounded obstacle 

The geometry of a rounded obstacle of radius R is illustrated in Fig. 8c). Note that the distances d1 

and d2, and the height h above the baseline, are all measured to the vertex where the projected rays 

intersect above the obstacle. The diffraction loss for this geometry may be calculated as: 
 

  dB),()( nmTvJA +=  (32) 
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where: 

a) J(ν) is the Fresnel-Kirchoff loss due to an equivalent knife-edge placed with its peak at the 

vertex point. The dimensionless parameter ν may be evaluated from any of equations (26) to 

(29) inclusive. For example, in practical units equation (26) may be written: 
 

  

2/1

21

21 )(2
0316.0 











+
=

dd

dd
h  (33) 

 

 where h and λ are in metres, and d1 and d2 are in kilometres. 

 J(ν) may be obtained from Fig. 9 or from equation (31). Note that for an obstruction to LoS 

propagation, ν is positive and equation (31) is valid. 

b) T(m,n) is the additional attenuation due to the curvature of the obstacle: 
 

 22/32/1 8.06.3)5.122(2.7),( mmmnmnmT −+−−= dB                    for mn  4  (34a) 
 

22/32/1 8.06.3)172(2.7)(log206),( mmmnmmnnmT −+−−+−−= dB   for mn  4  (34b) 
 

 and 
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=  (36) 

 

 and R, d1, d2, h and λ are in self-consistent units. 

Note that as R tends to zero, T(m,n) also tend to zero. Thus, equation (32) reduces to knife-edge 

diffraction for a cylinder of zero radius. 

The obstacle radius of curvature corresponds to the radius of curvature at the apex of a parabola fitted 

to the obstacle profile in the vicinity of the top. When fitting the parabola, the maximum vertical 

distance from the apex to be used in this procedure should be of the order of the first Fresnel zone 

radius where the obstacle is located. An example of this procedure is shown in Fig. 10, where: 
 

  
i

i
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=  (37) 

and ri is the radius of curvature corresponding to the sample i of the vertical profile of the ridge. In the 

case of N samples, the median radius of curvature of the obstacle is given by: 
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2
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1
 (38) 
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FIGURE 10 

Vertical profile of the obstacle 

 

4.3 Double isolated edges 

This method consists of applying single knife-edge diffraction theory successively to the two 

obstacles, with the top of the first obstacle acting as a source for diffraction over the second obstacle 

(see Fig. 11). The first diffraction path, defined by the distances a and b and the height ,1h  gives a loss 

L1 (dB). The second diffraction path, defined by the distances b and c and the height ,2h  gives a loss 

L2 (dB). L1 and L2 are calculated using formulae of § 4.1. A correction term Lc (dB) must be added to 

take into account the separation b between the edges. Lc may be estimated by the following formula: 
 

  𝐿𝑐 = 10 log10 [
(𝑎+𝑏) (𝑏+𝑐)

𝑏(𝑎+𝑏+𝑐)
] (39) 

 

which is valid when each of L1 and L2 exceeds about 15 dB. The total diffraction loss is then given 

by: 
 

  𝐿 = 𝐿1 + 𝐿2 + 𝐿𝑐 (40) 
 

The above method is particularly useful when the two edges give similar losses. 

FIGURE 11 

Method for double isolated edges 

 

If one edge is predominant (see Fig. 12), the first diffraction path is defined by the distances a and 

b + c and the height h1. The second diffraction path is defined by the distances b and c and the 

height h'2. 
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FIGURE 12 

Figure showing the main and the second obstacle 

 

The method consists of applying single knife-edge diffraction theory successively to the two 

obstacles. First, the higher h/r ratio determines the main obstacle, M, where h is the edge height from 

the direct path TxRx as shown in Fig. 12, and r is the first Fresnel ellipsoid radius given by equation 

(2). Then h'2, the height of the secondary obstacle from the sub-path MR, is used to calculate the loss 

caused by this secondary obstacle. A correction term Tc (dB) must be subtracted, in order to take into 

account the separation between the two edges as well as their height. Tc (dB) may be estimated by the 

following formula: 
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with: 
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h1 and h2 are the edge heights from the direct path transmitter-receiver. 

The total diffraction loss is given by: 
 

  𝐿 = 𝐿1 + 𝐿2 − 𝑇𝑐 (43) 
 

The same method may be applied to the case of rounded obstacles using § 4.3. 

In cases where the diffracting obstacle may be clearly identified as a flat-roofed building a single 

knife-edge approximation is not sufficient. It is necessary to calculate the phasor sum of two 

components: one undergoing a double knife-edge diffraction and the other subject to an additional 

reflection from the roof surface. It has been shown that, where the reflectivity of the roof surface and 

any difference in height between the roof surface and the side walls are not accurately known, then a 



24 Rec. ITU-R  P.526-16 

 

double knife-edge model produces a good prediction of the diffracted field strength, ignoring the 

reflected component. 

4.4 Multiple isolated cylinders 

This method is recommended for diffraction over irregular terrain which forms one or more obstacles 

to LoS propagation where each obstacle can be represented by a cylinder with a radius equal to the 

radius of curvature at the obstacle top, being advisable when detailed vertical profile through the ridge 

is available. 

The terrain height profile should be available as a set of samples of ground height above sea level, 

the first and last being the heights of the transmitter and receiver above sea level. Atmospheric 

refractivity gradient should be taken into account via the concept of effective Earth radius. Distance 

and height values are described as though stored in arrays indexed from 1 to N, where N equals 

the number of profile samples. 

In the following a systematic use of suffices is made: 

 hi : height above sea level of the i-th point 

 di : distance from the transmitter to the i-th point 

 dij : distance from the i-th to the j-th points. 

The first step is to perform a “stretched string” analysis of the profile. This identifies the sample 

points which would be touched by a string stretched over the profile from transmitter to receiver. This 

may be done by the following procedure, in which all values of height and distance are in 

self-consistent units, and all angles are in radians. The method includes approximations which are 

valid for radio paths making small angles to the horizontal. If a path has ray gradients exceeding about 

5º more exact geometry may be justified. 

Each string point is identified as the profile point with the highest angular elevation above the local 

horizontal as viewed from the previous string point, starting at one end of the profile and finishing at 

the other. Viewed from point s, the elevation of the i-th profile sample (i > s) is given by: 
 

  𝑒 = [(ℎ𝑖 − ℎ𝑠) 𝑑𝑠𝑖⁄ ] − [𝑑𝑠𝑖 2𝑎𝑒⁄ ] (44) 
 

where: 

 ae: effective Earth radius, given by: 

 = k × 6 371 (km) 

and 

 k : effective Earth-radius factor. 

A test is now applied to determine whether any group of two or more string points should represent 

the same terrain obstruction. For samples at spacings of 250 m or less any group of string points 

which are consecutive profile samples, other than the transmitter or receiver, should be treated as one 

obstruction. 

Each obstruction is now modelled as a cylinder, as illustrated in Fig. 13. The geometry of each 

individual cylinder corresponds with Fig. 8c). Note that in Fig. 13 the distances s1, s2 for each cylinder 

are shown as measured horizontally between the vertex points, and that for near-horizontal rays these 

distances approximate to the slope distances d1 and d2 in Fig. 8c). For ray angles to the horizontal 

greater than about 5º it may be necessary to set s1 and s2 to the inter-vertex slope distances d1 and d2. 
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FIGURE 13 

The cascaded cylinder model a), overall problem b), details 

 

Similarly in Fig. 13, the height h of each cylinder is shown as measured vertically from its vertex 

down to the straight line joining the adjacent vertex or terminal points. The value of h for each 

cylinder corresponds to h in Fig. 8c). Again, for near-horizontal rays the cylinder heights may be 

computed as though vertical, but for steeper ray angles it may be necessary to compute h at right 

angles to the baseline of its cylinder. 

Figure 14 illustrates the geometry for an obstruction consisting of more than one string point. 

The following points are indicated by: 

 w: closest string point or terminal on the transmitter side of the obstruction which 

is not part of the obstruction 

 x: string point forming part of the obstruction which is closest to the transmitter 

 y: string point forming part of the obstruction which is closest to the receiver 
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 z: closest string point or terminal on the receiver side of the obstruction which is 

not part of the obstruction 

 v: vertex point made by the intersection of incident rays above the obstruction. 

FIGURE 14 

Geometry of a multipoint obstacle 

 

The letters w, x, y and z will also be indices to the arrays of profile distance and height samples. For an 

obstruction consisting of an isolated string point, x and y will have the same value, and will refer to a 

profile point which coincides with the vertex. Note that for cascaded cylinders, points y and z for one 

cylinder are points w and x for the next, etc. 

A step-by-step method for fitting cylinders to a general terrain profile is described in Attachment 1 to 

Annex 1. Each obstruction is characterized by w, x, y and z. The method of Attachment 1 to Annex 1 

is then used to obtain the cylinder parameters s1, s2, h and R. Having modelled the profile in this way, 

the diffraction loss for the path is computed as the sum of three terms: 

– the sum of diffraction losses over the cylinders; 

– the sum of sub-path diffraction between cylinders (and between cylinders and adjacent 

terminals); 

– a correction term. 

The total diffraction loss, in dB relative to free-space loss, may be written: 

  dBlog20–)()(
1

1

1

Ni

N

i

i

N

i

d CzyLxwLLL ++= 
==

 (45) 

where: 

 L'i : diffraction loss over the i-th cylinder calculated by the method of § 4.2 

 L"(w x)1 : sub-path diffraction loss for the section of the path between points w and x for 

the first cylinder 

 L"(y z)i : sub-path diffraction loss for the section of the path between points y and z for all 

cylinders 

 CN : correction factor to account for spreading loss due to diffraction over successive 

cylinders. 

Attachment 2 to Annex 1 gives a method for calculating L" for each LoS section of the path between 

obstructions. 
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The correction factor, CN, is calculated using: 
 

  𝐶𝑁 = (𝑃𝑎 𝑃𝑏⁄ )0.5 (46) 

where: 
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and the suffices to round brackets indicate individual cylinders. 

4.5 Method for a general terrestrial path 

This method is recommended for situations where an automatic process is required to predict 

diffraction loss for any type of path as defined by a profile, whether LoS or trans-horizon, and whether 

the terrain is rough or smooth. This model is based on the Bullington construction, but also makes 

use of the spherical Earth diffraction model as described in § 3.2. These models are combined so that 

for a completely smooth path, the result will be the same as the spherical Earth model. 

The path must be described by a profile consisting of samples of terrain height in metres above sea 

level for a succession of distances from one terminal to the other. Unlike the profile required in § 4.4, 

the first and last points of this profile, (d1, h1) and (dn, hn), must give terrain height underneath the 

two antennas, and the antenna heights above ground must be supplied separately. 

In this model, there is no requirement for the profile points to be equally spaced. However, it is 

important that the maximum point spacing is not large compared to the sample spacing of the 

topographic data from which it is extracted. It is particularly inadvisable to represent a section of 

constant height profile, such as water, by a first and last point separated by the length of the flat 

section of the path. The model performs no interpolation between profile points, and due to Earth 

curvature a large distance between profile points, however flat the profile between, can lead to 

significant errors. 

Where urbanization or tree cover exists along the profile, it will normally improve accuracy to add 

a representative clutter height to bare earth terrain heights. This should not be done for the terminal 

locations (first and last profile points) and care is needed close to the terminals to ensure that the 

addition of cover heights does not cause an unrealistic increase in the horizon elevation angles as seen 

by each antenna. If a terminal is in an area with ground cover and below the representative cover 

height, it may be preferable to raise the terminal to the cover height for the application of this model, 

and to use a separate height-gain correction for the additional loss actually experienced by the 

terminal in its actual (lower) position. 

This method should be used when there is no a priori information as to the nature of the propagation 

path or of possible terrain obstructions. This is typical of the case where a computer program is used 

for profiles selected from a terrain height database on a fully automatic basis, with no individual 

inspection of path characteristics. The method gives reliable results for all types of path, LoS or trans-

horizon, rough or smooth, or over the sea or large bodies of water. 

The method contains two sub-models: 

a) the Bullington diffraction method used with a tapered correction to provide a smooth 

transition between LoS and trans-horizon; 
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b) the spherical Earth method given in § 3.2. 

The Bullington part of the method is used twice. The following subsection gives a general description 

of the Bullington calculation. 

4.5.1 Bullington model 

In the following equations slopes are calculated in m/km relative to the baseline joining sea level at 

the transmitter to sea level at the receiver. The distance and height of the i-th profile point are di km 

and hi m above sea level respectively, i takes values from 1 to n where n is the number of profile 

points, and the complete path length is d km. For convenience the terminals at the start and end of the 

profile are referred to as transmitter and receiver, with heights in m above sea level hts and hrs, 

respectively. Effective Earth curvature Ce km−1 is given by 1/re where re is effective Earth radius in 

km. Wavelength in metres is represented by . 

Find the intermediate profile point with the highest slope of the line from the transmitter to the point. 
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where the profile index i takes values from 2 to n − 1. 

Calculate the slope of the line from transmitter to receiver assuming an LoS path: 
 

  
d
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−
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Two cases must now be considered. 

Case 1. Path is LoS 

If Stim < Str the path is LoS. 

Find the intermediate profile point with the highest diffraction parameter : 
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where the profile index i takes values from 2 to n − 1. 

In this case, the knife-edge loss for the Bullington point is given by: 

  ( )max= JLuc            dB (52) 

where the function J is given by equation (31) for b greater than −0.78, and is zero otherwise. 

Case 2. Path is trans-horizon 

If Stim  Str the path is trans-horizon. 

Find the intermediate profile point with the highest slope of the line from the receiver to the point. 
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where the profile index i takes values from 2 to n − 1. 

Calculate the distance of the Bullington point from the transmitter: 
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Calculate the diffraction parameter, b, for the Bullington point: 
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 (55) 

 

In this case, the knife-edge loss for the Bullington point is given by: 
 

  ( )buc JL =                 dB (56) 
 

For Luc calculated using either equation (52) or (56), Bullington diffraction loss for the path is now 

given by: 

  𝐿𝑏 = 𝐿𝑢𝑐 + [1 − exp(−𝐿𝑢𝑐 6⁄ )](10 + 0.02𝑑) (57) 

4.5.2 Complete method 

Use the method in § 4.5.1 for the actual terrain profile and antenna heights. Set the resulting 

Bullington diffraction loss for the actual path, Lba dB, to Lb as given by equation (57). 

Find the effective transmitter and receiver heights relative to a smooth surface fitted to the profile. 

Calculate initial provisional values for the heights of the smooth surface at the transmitter and receiver 

ends of the path, as follows: 
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Find the highest obstruction height above the straight-line path from transmitter to receiver hobs, 

and the horizon elevation angles αobt, αobr, all based on flat-Earth geometry, according to: 

   obiobs hh max=                 m (61a) 

   iobiobt dh /max=                 mrad (61b) 

  ( ) iobiobr ddh −= /max                 mrad (61c) 

where: 

  ( )  ddhddhhh irsitsiobi /+−−=                m (61d) 

and the profile index i takes values from 2 to (n – 1). 

Calculate provisional values for the heights of the smooth surface at the transmitter and receiver ends 

of the path: 
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If hobs is less than or equal to zero, then: 

  ℎ𝑠𝑡𝑝 = ℎ𝑠𝑡𝑖𝑝          masl (62a) 

  ℎ𝑠𝑟𝑝 = ℎ𝑠𝑟𝑖𝑝          masl (62b) 

otherwise: 

  ℎ𝑠𝑡𝑝 = ℎ𝑠𝑡𝑖𝑝 − ℎ𝑜𝑏𝑠𝑔𝑡          masl (62c) 

  ℎ𝑠𝑟𝑝 = ℎ𝑠𝑟𝑖𝑝 − ℎ𝑜𝑏𝑠𝑔𝑟          masl (62d) 

where: 

  𝑔𝑡 = α𝑜𝑏𝑡 (α𝑜𝑏𝑡 + α𝑜𝑏𝑟)⁄  (62e) 

  𝑔𝑟 = α𝑜𝑏𝑟 (α𝑜𝑏𝑡 + α𝑜𝑏𝑟)⁄  (62f) 

Calculate final values for the heights of the smooth surface at the transmitter and receiver ends of the 

path: 

If hstp is greater than h1 then: 

  
1hhst =                 masl (63a) 

otherwise: 

  
stpst hh =                 masl (63b) 

If hsrp is greater than hn then: 

  
nsr hh =                 masl (63c) 

otherwise: 

  srpsr hh =                masl (63d) 

Use the method in § 4.5.1 for a smooth profile by setting all profile heights hi to zero, and with 

modified antenna heights: 

  sttsts hhh −='                 masl (64a) 

  srrsrs hhh −='               masl (64b) 

Set the resulting Bullington diffraction loss for the smooth path, Lbs dB, to Lb as given by 

equation (57). 

Use the method for diffraction over spherical earth given in § 3.2 for the actual path length d km and 

with: 

  '

1 tshh =                 m (65a) 

  '

2 rshh =                 m (65b) 

Set the resulting spherical-earth diffraction loss, Lsph dB, to A as given by equation (25). 

The diffraction loss for the general path is now given by: 

  }0,max{ bssphba LLLL −+=                 dB (66) 

4.6 Method for a general Earth – space slant path 

This method is recommended to predict diffraction loss for any type of slant path as defined by a 

profile in the region of the terrestrial portion of the path, whether LoS or trans-horizon, and whether 
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the terrain is rough or smooth, and is preferred when the high end of the path is much further away 

from the obstructing terrain than the low end of the path. This model is based on the knife-edge loss 

of the Bullington construction, blended with a similar construction predicting plane-Earth loss for a 

general path, referred to as the “effective plane-Earth model”. Care is needed close to the terminals 

to ensure that the heights of local terrain do not cause unrealistic horizon elevation angles as seen by 

each antenna. 

This method has been found to be reasonably accurate for rough terrain up to 50 dB obstruction 

relative to free-space and for smooth terrain up to 30 dB obstruction relative to free space, so is 

suitable for all Earth-space paths where the elevation angle is between zero and 90 degrees. It may 

under-estimate diffraction loss at negative elevation angles, especially in smooth terrain. 

4.6.1 Bullington model for an Earth – space slant path 

The Bullington triangle knife-edge construction may be applied to the terrain in the region of the 

lower end of a slant path with the upper end at great distance, by assuming parallel rays to the upper 

end, as shown in Fig. 15, with a ray leaving the antenna at the low end of the path, towards the antenna 

at the high end, travelling through the terrain if the path is not line-of-sight. In this case, another ray 

parallel to this one is drawn to be tangent to the terrain, and the perpendicular distance h between 

these two parallel rays is used to calculate diffraction parameter ν with equation (26), together with 

d1 as shown in Fig. 15. The d2 term in equation (26) may be omitted if it is extremely large; otherwise 

d2 is the length of the remainder of the direct path, and the two rays to the high end of the path 

converge on the high-end antenna. 

If the line-of-sight is unobstructed, h is negative, and evaluated at the point where Fresnel clearance 

is a minimum. The measurement of h is perpendicular to the line-of-sight ray. All quantities in 

equation (26); h, d1, d2, and λ, are in the same units. 

Having calculated ν with equation (26), Bullington knife-edge loss J(ν) is estimated with equation 

(31), provided ν exceeds −0.78; otherwise assume J(ν) = 0, and assume diffraction loss is zero. If ν 

exceeds −0.78, proceed to §§ 4.6.2 and 4.6.3 to estimate terrain diffraction loss. 
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FIGURE 15 

Bullington geometry for a slant path 

 

4.6.2 Effective plane-Earth model 

The Bullington triangle knife-edge loss method of § 4.6.1 is a simple diffraction loss estimation 

method which may be applied to any arbitrary terrain but can only be assumed accurate for the case 

of a true single knife-edge obstruction. For other obstructing terrain, Bullington knife-edge loss J(ν) 

is generally an under-estimate of diffraction loss. This deficiency is overcome in the following 

method, especially for smooth terrain in the region of the low end of the path. 

The effective plane-Earth model described here, is a simple diffraction loss estimation method which 

may be applied to any arbitrary terrain, but can only be assumed accurate for the case of any plane-

Earth path with low enough clearance to cause diffraction loss. For irregular obstructing terrain, this 

simple model has a tendency to over-estimate diffraction loss, in contrast to the Bullington knife-

edge loss equation (56), which tends to under-estimate loss. 

The procedure for estimating effective plane-Earth loss is a triangle obstruction method, similar to 

the Bullington construction, except that the terrain profile points are raised by first Fresnel radius 

divided by 1/√𝜋, given as 𝑅1/π ≈ √λ𝑑1 π⁄  in the satellite case with consistent units, in a direction 

perpendicular to the direct rayline, before finding the tangent rays from each antenna. This 

construction is shown in Fig. 16. 
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FIGURE 16 

Effective plane-Earth geometry for a slant path 

 

The angles of these tangent rays to the direct rayline are α1 and α2 radians. If the total path length is 

d and the wavelength is λ, both in the same units, then the effective plane-earth obstruction loss 

relative to free space is given by 
 

  𝐿𝑒 = −40 log10[√πα1α2𝑑/λ + 1 −  √πα1α2𝑑/λ ] (67) 
 

In the case of a slant path of great length, the height h of the obstruction triangle may be approximated 

as h ≈ α2d, leading to the following expression: 
 

  𝐿𝑒 ≈ −40 log10[√πα1ℎ/λ + 1 − √πα1ℎ/λ ] (68) 
 

Height h and angle α1 are as shown in Fig. 16, with the terrain is here raised by 1 √π⁄  of the first 

Fresnel zone radius (𝑅1/π). For convenience, distances such as d1 may be measured in the direction 

of the direct ray to the satellite, and heights such as h or 𝑅1/𝜋 must be measured perpendicular to the 

direct ray. 

4.6.3 The complete slant-path model 

The Bullington knife-edge loss J(ν) from § 4.6.1, and the effective plane-Earth loss Le from § 4.6.2, 

are blended to give the diffraction loss Leb as follows: 
 

  𝐿𝑒𝑏 = 𝑘𝑏𝐽(𝜈) + (1 − 𝑘𝑏)𝐿𝑒 (69) 
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with 
 

  𝑘𝑏 = max {
(𝐿𝑒−26)

70
, 0} (70) 

 

The blended loss Leb has been found to provide reasonable accuracy in predicting terrain diffraction 

losses up to 50 dB in excess of free space for irregular terrain. It may under-estimate the diffraction 

loss in smooth terrain beyond line-of-sight, i.e. at negative elevation angles. 

5 Diffraction by thin screens 

The following methods assume that the obstruction is in the form of a thin screen. They can be applied 

to propagation around an obstacle or through an aperture. 

5.1 Finite-width screen 

Interference suppression for a receiving site (e.g. a small earth station) may be obtained by an artificial 

screen of finite width transverse to the direction of propagation. For this case the field in the shadow 

of the screen may be calculated by considering three knife-edges, i.e. the top and the two sides of the 

screen. Constructive and destructive interference of the three independent contributions will result in 

rapid fluctuations of the field strength over distances of the order of a wavelength. The following 

simplified model provides estimates for the average and minimum diffraction loss as a function of 

location. It consists of adding the amplitudes of the individual contributions for an estimate of the 

minimum diffraction loss and a power addition to obtain an estimate of the average diffraction loss. 

The model has been tested against accurate calculations using the uniform theory of diffraction (UTD) 

and high-precision measurements. 

Step 1:  Calculate the geometrical parameter ν for each of the three knife-edges (top, left side and right 

side) using any of equations (26) to (29). 

Step 2:  Calculate the loss factor j(ν) = 10 J(ν)/20 associated with each edge from equation (31). 

Step 3:  Calculate minimum diffraction loss Jmin from: 
 

  10

1 2 3

1 1 1
( ) – 20 log

( ) ( ) ( )
minJ

j j j


  

 
= + + 

 
                dB (71) 

or, alternatively, 

Step 4:  Calculate average diffraction loss Jav from: 

  10 2 2 2

1 2 3

1 1 1
( ) –10 log

( ) ( ) ( )
aJ

j j j
 

  

 
= + + 

 
                dB (72) 

5.2 Diffraction by rectangular apertures and composite apertures or screens 

The method described below can be used to predict the diffraction loss due to a rectangular aperture 

in an otherwise totally absorbing thin screen. The method can be extended to cover several rectangular 

apertures or finite screens, and is thus an alternative method for the finite-width screen discussed in 

§ 5.1. 

5.2.1 Diffraction by a single rectangular aperture 

Figure 17 shows the geometry used to represent a rectangular aperture in an infinite totally absorbing 

thin screen. 
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FIGURE 17 

Geometry for a single rectangular aperture 

 

The positions of the aperture edges, x1, x2, y1 and y2, are given in a Cartesian coordinate system with 

origin at the point where the straight line from transmitter T at coordinates xt, yt, zt, to receiver R at 

coordinates xr, yr, zr, passes through the screen in the X-Y plane, with propagation not necessarily 

parallel to the Z axis. The origin is on the plane of the screen. 

The angle θp between the direction of propagation and the Z axis is: 

  θ𝑝 = arctan (
√(𝑥𝑟−𝑥𝑡)2+(𝑦𝑟−𝑦𝑡)2

𝑍𝑟−𝑍𝑡
)                rad (73) 

The field strength, ea, at the receiver in linear units normalized to free space, and in complex form, 

may be evaluated accurately for small θp by the Fresnel integral method of § 5.2.1.1, or with 

reasonable accuracy for any θp by the semi-empirical method of § 5.2.1.2. 

The corresponding diffraction loss La is given by: 
 

  𝐿𝑎 = −20 log10(|𝑒𝑎|)                dB (74) 

 

5.2.1.1 Fresnel integral method 

   ea(x1,x2,y1,y2) = 0.5(CxSy + SxCy) + j 0.5(SxSy – CxCy) (75) 

where: 

  𝐶𝑥 = 𝐶(ν𝑥2) − 𝐶(ν𝑥1) (76a) 

  𝐶𝑦 = 𝐶(ν𝑦2) − 𝐶(ν𝑦1) (76b) 

  𝑆𝑥 = 𝑆(ν𝑥2) − 𝑆(ν𝑥1) (76c) 

  𝑆𝑦 = 𝑆(ν𝑦2) − 𝑆(ν𝑦1) (76d) 
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C() and S() are as given in equations (7a) and (7b) and may be evaluated from the complex Fresnel 

coefficient using equations (8a) and (8b). 

The four diffraction parameters x1, x2, y1 and y2 are: 
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with: 

  

ϕ21 = arctan (
𝑥1−𝑥𝑟

𝑍𝑟
) − arctan (

𝑥1−𝑥𝑡

𝑍𝑡
)                rad (77e) 

  ϕ22 = arctan (
𝑥2−𝑥𝑟

𝑍𝑟
) − arctan (

𝑥2−𝑥𝑡

𝑍𝑡
)                rad (77f) 

  ϕ11 = arctan (
𝑦1−𝑦𝑟

𝑍𝑟
) − arctan (

𝑦1−𝑦𝑡

𝑍𝑡
)                 rad (77g) 

  ϕ12 = arctan (
𝑦2−𝑦𝑟

𝑍𝑟
) − arctan (

𝑦2−𝑦𝑡

𝑍𝑡
)                rad (77h) 

5.2.1.2 Semi-empirical method 

For reasonable accuracy at any θp, the following method does not require the Fresnel integrals C() 

and S(): 
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where: 

  ( )



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


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
−




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
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with φij from equations (77e) to (77h), and 

  ( )
1

2ij t proj ij r proj ij proj iD D r− − − − − = + −


 (80) 

  ( ) ( )22

1 trtrproj yyzzr −+−=−  (81a) 

  ( ) ( )22

2 trtrproj xxzzr −+−=−  (81b) 
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  ( )
22

11 1t proj t tD z y y− − = + −  (82a) 

  ( )
22

12 2t proj t tD z y y− − = + −  (82b) 

  ( )
22

21 1t proj t tD z x x− − = + −  (82c) 

  ( )
22

22 2t proj t tD z x x− − = + −  (82d) 

  ( )
22

11 1r proj r rD z y y− − = + −  (82e) 

  ( )
22

12 2r proj r rD z y y− − = + −  (82f) 

  ( )
22

21 1r proj r rD z x x− − = + −  (82g) 

  ( )
22

22 2r proj r rD z x x− − = + −  (82h) 

Evaluate D11, D12, D21, D22: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 22 2

ij r r ij r ij t t ij t ijD z y y x x z y y x x= + − + − + + − + −  (83) 

where, if r-proj 1 t-proj 1j jD D− −  
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or if r-proj 1 t-proj 1j jD D− −=
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or if r-proj 2 t-proj 2j jD D− −=  

  
2

2
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+
=  (85b) 

and: 

  1 j jy y= , 2 j jx x=  (86) 

using ph11, ph12, ph21, ph22, from 
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and Ph: 
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5.2.2 Diffraction by composite apertures or screens  

The method for a single rectangular aperture can be extended as follows: 

Since in the linear units normalized to free space of equations (75) or (78) the free-space field is given 

by 1.0 + j 0.0, the normalized complex field es due to a single rectangular screen (isolated from 

ground) is given by: 
 

  𝑒𝑠 = 1.0 − 𝑒𝑎 (89) 
 

where ea is calculated using equations (75) or (78) for an aperture of the same size and position as the 

screen. 

– The normalized field due to combinations of several rectangular apertures or isolated screens 

can be calculated by adding the results of equations (75) or (78). 

– Arbitrarily shaped apertures or screens can be approximated by suitable combinations of 

rectangular apertures or screens. 

– Since the C() and S() integrals converge to 0.5 + j 0.5 as  approaches infinity, 

equation (75) can be applied to rectangles of unlimited extent in one or more directions. 

6 Diffraction over a finitely conducting wedge 

The method described below can be used to predict the diffraction loss due to a finitely conducting 

wedge. Suitable applications are for diffraction around the corner of a building or over the ridge of 

a roof, or where terrain can be characterized by a wedge-shaped hill. The method requires the 

conductivity and relative dielectric constant of the obstructing wedge, and assumes that no 

transmission occurs through the wedge material. 

The method is based on UTD. It takes account of diffraction in both the shadow and line-of-sight 

region, and a method is provided for a smooth transition between these regions. 

The geometry of a finitely conducting wedge-shaped obstacle is illustrated in Fig. 18. 
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FIGURE 18 

Geometry for application of UTD wedge diffraction 

 

The UTD formulation for the electric field at the field point, specializing to two dimensions, is: 
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where: 

 eUTD : electric field at the field point 

 e0 : relative source amplitude 

 s1 : distance from source point to diffracting edge 

 s2 : distance from diffracting edge to field point 

 k : wave number 2π/λ 

 
⊥

D : diffraction coefficient depending on the polarization (parallel or perpendicular 

to the plane of incidence) of the incident field on the edge 

and s1, s2 and λ are in self-consistent units. 

The diffraction coefficient for a finitely conducting wedge is given as: 
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where: 

 1 : incidence angle, measured from incidence face (0 face) 

 2 : diffraction angle, measured from incidence face (0 face) 
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 n : external wedge angle as a multiple of π radians (actual angle = nπ (rad)) 

 j = 1−  

and where F(x) is a Fresnel integral: 
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The integral may be calculated by numerical integration. 

Alternatively a useful approximation is given by: 
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and the coefficients a, b, c, d are given in § 2.7. 
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where: 

  12β =  (98) 

In equation (45), 
N are the integers which most nearly satisfy the equation. 
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are the reflection coefficients for either perpendicular or parallel polarization given by: 
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where: 

 1=  for R0 and )π( 2−= n  for Rn  

 fr /1018j 9−=  

 r : relative dielectric constant of the wedge material 

  : conductivity of the wedge material (S/m) 

 f :  frequency (Hz). 

Note that, if necessary, the two faces of the wedge may have different electrical properties. 

At shadow and reflection boundaries one of the cotangent functions in equation (91) becomes 

singular. 

However, 
⊥

D  remains finite, and can be readily evaluated. The term containing the singular 

cotangent function is given for small  as: 
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with  defined by: 
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−+−= nN2  for 12 −=  (104) 

The resulting diffraction coefficient will be continuous at shadow and reflection boundaries, provided 

that the same reflection coefficient is used when calculating reflected rays. 

The field eLD due to the diffracted ray, plus the LoS ray for π,)( 12 −  is given by: 
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where: 

 s : straight-line distance between the source and field points. 

Note that at π)( 12 =−  the 2nd cotangent term in equation (91) will become singular, and that the 

alternative approximation given by equation (102) must be used. 

The field strength at the field point (dB) relative to the field which would exist at the field point in 

the absence of the wedge-shaped obstruction (i.e. dB relative to free space) is given by setting e0 to 

unity in equation (90) and calculating: 
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where: 

 s : straight-line distance between the source and field points. 

Note that, for n = 2 and zero reflection coefficients, this should give the same results as the knife edge 

diffraction loss curve shown in Fig. 9. 

A MathCAD version of the UTD formulation is available from the Radiocommunication Bureau. 

7 Guide to propagation by diffraction 

A general guide for the evaluation of diffraction loss corresponding to §§ 3 and 4 is shown in Fig. 19. 

This flow chart summarizes the procedure to be adopted in each case. 
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FIGURE 19 

Guide to propagation by diffraction 
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Attachment 1  

to Annex 1 

 

Calculation of cylinder parameters 

The following procedure can be used to calculate the cylinder parameters illustrated in Figs 8c) 

and 14 for each of the terrain obstructions. Self-consistent units are used, and all angles are in radians. 

The approximations used are valid for radio paths which are within about 5º of horizontal. 

1 Diffraction angle and position of vertex 

Although not used directly as cylinder parameters, both the diffraction angle over the cylinder and 

the position of the vertex are required. 

The diffraction angle over the obstacle is given by: 
 

  θ = α𝑤 + α𝑧 + α𝑒  (107) 

where w and z are the angular elevations of points x and y above the local horizontal as viewed 

from points w and z respectively, given by: 
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and e is the angle subtended by the great-circle distance between points w and z given by: 

  
e

wz
e

a

d
=  (110) 

The distance of the vertex from point w is calculated according to whether the obstruction is 

represented by a single profile sample or by more than one. 

For a single-point obstruction: 

  𝑑𝑤𝑣 = 𝑑𝑤𝑥 (111) 

For a multipoint obstruction it is necessary to protect against very small values of diffraction: 
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The distance of point z from the vertex point is given by: 

  𝑑𝑣𝑧 = 𝑑𝑤𝑧 − 𝑑𝑤𝑣 (113) 
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The height of the vertex point above sea level is calculated according to whether the obstruction is 

represented by a single profile sample or by more than one. 

For a single point obstruction: 

  ℎ𝑣 = ℎ𝑥 (114) 

For a multipoint obstruction: 
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2 Cylinder parameters 

The cylinder parameters illustrated in Fig. 8c) can now be calculated for each of the terrain obstacles 

defined by the string analysis: 

d1 and d2 are the positive inter-vertex distances to the obstacles (or terminals) on the transmitter and 

receiver sides of the obstacle respectively, 

and: 
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To calculate the cylinder radius use is made of two further profile samples: 

 p:  the point adjacent to x on the transmitter side, 

and: 

 q: the point adjacent to y on the receiver side. 

Thus the profile indices p and q are given by: 
 

  𝑝 = 𝑥 − 1 (117) 

and: 
 

  𝑞 = 𝑦 + 1 (118) 
 

If a point given by p or q is a terminal, then the corresponding value of h should be the terrain height 

at that point, not the height above sea level of the antenna. 

The cylinder radius is calculated as the difference in slope between the profile section p-x and y-q, 

allowing for Earth curvature, divided by the distance between p and q. 

The distances between profile samples needed for this calculation are: 
 

  𝑑𝑝𝑥 = 𝑑𝑥 − 𝑑𝑝  (119) 
 

  𝑑𝑦𝑞 = 𝑑𝑞 − 𝑑𝑦 (120) 
 

  𝑑𝑝𝑞 = 𝑑𝑞 − 𝑑𝑝 (121) 

The difference in slope between the p-x and y-q profile sections is given in radians by: 
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where ae is the effective Earth radius. 

The cylinder radius is now given by: 
 

     3)4(exp–1/ −= tdR pq  (123) 

where ν is the dimensionless knife-edge parameter in equation (32). 

In equation (123), the second factor is an empirical smoothing function applied to the cylinder radius 

to avoid discontinuities for marginally LoS obstructions. 

 

 

Attachment 2  

to Annex 1 

 

Sub-path diffraction losses 

1 Introduction 

This Attachment provides a method for computing the sub-path diffraction loss for a LoS subsection 

of a diffraction path. The path has been modelled by cascaded cylinders each characterized by profile 

points w, x, y and z as illustrated in Figs 13 and 14. The sub-path diffraction is to be calculated for 

each subsection of the overall path between points represented by w and x, or by y and z. These are 

the LoS sections of the path between obstructions, or between a terminal and an obstruction. 

The method can also be used for a LoS with sub-path diffraction, in which case it is applied to the 

entire path. 

2 Method 

For a LoS section of the profile between profile samples indexed by u and v, the first task is to identify 

the profile sample between but excluding u and v which obstructs the largest fraction of the first 

Fresnel zone for a ray travelling from u to v. 

To avoid selecting a point which is essentially part of one of the terrain obstacles already modelled 

as a cylinder, the profile between u and v is restricted to a section between two additional indices p 

and q, which are set as follows: 

– Set p = u + 1. 

– If both p < v and hp > hp+1, then increase p by 1 and repeat. 

– Set q = v – 1. 

– If both q > u and hq > hq–1, then decrease q by 1 and repeat. 
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If p = q then the sub-path obstruction loss is set to 0. Otherwise the calculation proceeds as follows. 

It is now necessary to find the minimum value of normalized clearance, CF, given by hz 
/

 
F1, where in 

self-consistent units: 

 hz: height of ray above profile point 

 F1: radius of first Fresnel zone. 

The minimum normalized clearance may be written: 
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where: 
 

  (ℎ𝑧)𝑖 = (ℎ𝑟)𝑖 − (ℎ𝑡)𝑖 (125) 
 

  (𝐹1)𝑖 = √λ ∙ 𝑑𝑢𝑖 ∙ 𝑑𝑖𝑣 𝑑𝑢𝑣⁄  (126) 
 

(hr)i, the height of the ray above a straight line joining sea level at u and v at the i-th profile point is 

given by: 
 

  (ℎ𝑟)𝑖 = (ℎ𝑢 ∙ 𝑑𝑖𝑣 + ℎ𝑣 ∙ 𝑑𝑢𝑖) 𝑑𝑢𝑣⁄  (127) 
 

(ht)i, the height of the terrain above a straight line joining sea level at u and v at the i-th profile point 

is given by: 
 

  (ℎ𝑡)𝑖 = ℎ𝑖 + 𝑑𝑢𝑖 ∙ 𝑑𝑖𝑣 2𝑎𝑒⁄  (128) 
 

The minimum value of normalized clearance is used to compute the knife-edge diffraction 

geometrical parameter for the most significant sub-path obstruction: 
 

  ν = −𝐶𝐹 ∙ √2 (129) 
 

The sub-path diffraction loss L" is now obtained from equation (31) or Fig. 9. 

For some applications it may be undesirable to include sub-path diffraction enhancements. In this 

case a value of L" should be set to zero when it would otherwise be negative. 
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