Unión Internacional de Telecomunicaciones

Recomendación UIT-R P.372-11 (09/2013)

Ruido radioeléctrico

Serie P Propagación de las ondas radioeléctricas

Internacional de Telecomunicaciones

Prólogo

El Sector de Radiocomunicaciones tiene como cometido garantizar la utilización racional, equitativa, eficaz y económica del espectro de frecuencias radioeléctricas por todos los servicios de radiocomunicaciones, incluidos los servicios por satélite, y realizar, sin limitación de gamas de frecuencias, estudios que sirvan de base para la adopción de las Recomendaciones UIT-R.

Las Conferencias Mundiales y Regionales de Radiocomunicaciones y las Asambleas de Radiocomunicaciones, con la colaboración de las Comisiones de Estudio, cumplen las funciones reglamentarias y políticas del Sector de Radiocomunicaciones.

Política sobre Derechos de Propiedad Intelectual (IPR)

La política del UIT-R sobre Derechos de Propiedad Intelectual se describe en la Política Común de Patentes UIT-T/UIT-R/ISO/CEI a la que se hace referencia en el Anexo 1 a la Resolución UIT-R 1. Los formularios que deben utilizarse en la declaración sobre patentes y utilización de patentes por los titulares de las mismas figuran en la dirección web <u>http://www.itu.int/ITU-R/go/patents/es</u>, donde también aparecen las Directrices para la implementación de la Política Común de Patentes UIT-T/UIT-R/ISO/CEI y la base de datos sobre información de patentes del UIT-R sobre este asunto.

Series de las Recomendaciones UIT-R										
	(También disponible en línea en <u>http://www.itu.int/publ/R-REC/es</u>)									
Series	Título									
BO	Distribución por satélite									
BR	Registro para producción, archivo y reproducción; películas en televisión									
BS	Servicio de radiodifusión (sonora)									
ВТ	Servicio de radiodifusión (televisión)									
F	Servicio fijo									
Μ	Servicios móviles, de radiodeterminación, de aficionados y otros servicios por satélite conexos									
Р	Propagación de las ondas radioeléctricas									
RA	Radioastronomía									
RS	Sistemas de detección a distancia									
S	Servicio fijo por satélite									
SA	Aplicaciones espaciales y meteorología									
SF	Compartición de frecuencias y coordinación entre los sistemas del servicio fijo por satélite y del servicio fijo									
SM	Gestión del espectro									
SNG	Periodismo electrónico por satélite									
TF	Emisiones de frecuencias patrón y señales horarias									
V	Vocabulario y cuestiones afines									

Nota: Esta Recomendación UIT-R fue aprobada en inglés conforme al procedimiento detallado en la Resolución UIT-R 1.

Publicación electrónica Ginebra, 2014

© UIT 2014

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

Rec. UIT-R P.372-11

RECOMENDACIÓN UIT-R P.372-11

Ruido radioeléctrico*

(Cuestión UIT-R 214/3)

(1951 - 1953 - 1956 - 1959 - 1963 - 1974 - 1978 - 1982 - 1986 - 1990 - 1994 - 2001 - 2003 - 2007 - 2009 - 2013)

Cometido

La Recomendación UIT-R P.372 facilita información sobre los niveles de ruido de fondo del ruido radioeléctrico en la gama de frecuencias radioeléctricas entre 0,1 Hz y 100 GHz. En ella se tiene en cuenta el ruido originado por descargas atmosféricas, fuentes artificiales, la galaxia y la temperatura de las capas inferiores de la atmósfera. Los factores de ruido o temperaturas facilitados proporcionan una base para estimar el funcionamiento del sistema.

La Asamblea de Radiocomunicaciones de la UIT,

considerando

a) que el ruido radioeléctrico impone un límite de calidad de funcionamiento a los sistemas de radiocomunicaciones;

b) que el factor de ruido efectivo de la antena o la temperatura de ruido de la antena, junto con la distribución de probabilidad de las amplitudes de la envolvente del ruido recibido, son parámetros adecuados (casi siempre necesarios, pero a veces no suficientes) para la determinación y diseño de la calidad de funcionamiento del sistema;

c) que generalmente no conviene utilizar sistemas de recepción con factores de ruido inferiores a los determinados por el ruido externo mínimo;

d) que es necesario conocer las emisiones radioeléctricas procedentes de fuentes naturales para:

- evaluar los efectos de la atmósfera en las ondas radioeléctricas;
- atribuir frecuencias para la teledetección del entorno de la Tierra,

recomienda

que se utilice la siguiente información, donde corresponda, en el diseño y análisis de sistemas de radiocomunicaciones:

1 Fuentes de ruido radioeléctrico

La definición de ruido radioeléctrico que figura en la Recomendación UIT-R V.573 es la siguiente:

«ruido radioeléctrico;

fenómeno electromagnético variable que se manifiesta en las radiofrecuencias, aparentemente no lleva información y es susceptible de superponerse o combinarse como una señal útil.

^{*} La parte de la dirección web del UIT-R que trata de la Comisión de Estudio 3 de Radiocomunicaciones dispone de un programa de computador asociado con las características y aplicaciones del ruido atmosférico debido al rayo, del ruido artificial y del ruido galáctico (en frecuencias por debajo de unos 100 MHz) descritas en esta Recomendación.

Nota 1 – En algunas ocasiones un ruido radioeléctrico puede llevar información acerca de algunas características de su fuente, por ejemplo su naturaleza y emplazamiento.

Nota 2 – Un conjunto de señales puede aparecer como un ruido radioeléctrico cuando no son identificables por separado.»

La Recomendación UIT-R P.372 facilita datos sobre el ruido radioeléctrico externo a un sistema receptor de radiocomunicaciones que está provocado por una de las siguientes causas:

- radiación procedente de descargas del rayo (ruido atmosférico debido al rayo);
- la suma de radiación no intencionada procedente de maquinaria eléctrica, equipos eléctricos y electrónicos, líneas de transmisión de energía o sistemas de encendido de motores de combustión interna (ruido artificial);
- emisiones procedentes de hidrometeoros y de gases atmosféricos;
- la superficie u otros obstáculos situados dentro del haz de antena;
- la radiación procedente de fuentes radioeléctricas celestes.

NOTA 1 – Las estimaciones de los niveles de ruido radioeléctrico proporcionadas corresponden al nivel de ruido de fondo en ausencia de otras señales, cuya radiación sea intencionada o no, de modo que el ruido o las señales debidos a transmisiones cocanal no deseadas o a emisiones no esenciales de sistemas de recepción o transmisión individuales no se consideran en la presente Recomendación.

NOTA 2 – Con respecto al ruido artificial, se trata de que los datos proporcionados sean representativos de la categoría del entorno, con niveles típicos de actividad eléctrica y electrónica que funcionan normalmente, a distancias típicas para ese entorno.

2 Términos para la especificación de intensidad de ruido y su interrelación

El factor de ruido, f, de un sistema receptor se compone de un número de fuentes de ruido en el terminal receptor del sistema. Deben considerarse tanto el ruido interno como el externo. El único punto de referencia adecuado para el factor global de ruido de funcionamiento de un sistema de recepción de radiocomunicaciones es la entrada de una antena receptora equivalente sin pérdidas. (Los terminales de esta antena sin pérdidas no existen físicamente.) Para receptores sin respuestas parásitas, el factor de ruido del sistema viene dado por:

$$f = f_a + (f_c - 1) + l_c (f_t - 1) + l_c l_t (f_r - 1)$$
(1)

donde:

 f_a : factor de ruido externo definido como:

$$f_a = \frac{p_n}{k t_0 b} \tag{2}$$

NOTA $1 - F_a$ es el factor de ruido externo definido como:

$$F_a = 10 \log f_a$$
 dB

- p_n : potencia de ruido disponible suministrada por una antena sin pérdidas equivalente
 - *k*: constante de Boltzmann = $1,38 \times 10^{-23}$ J/K

- to: temperatura de referencia (K) que se supone de 290 K
- b: anchura de banda de la potencia de ruido del sistema receptor (Hz)
- *l_c*: pérdidas del circuito de antena (potencia de entrada disponible/potencia de salida disponible)
- *l_t*: pérdidas de la línea de transmisión (potencia de entrada disponible/potencia de salida disponible)
- f_r : factor de ruido del receptor.

NOTA $2 - F_r$ es el factor de ruido del receptor definido como:

$$F_r = 10 \log f_r$$
 dB

 f_c es el factor de ruido asociado a las pérdidas del circuito de antena,

$$f_c = 1 + (l_c - 1) \left(\frac{t_c}{t_0}\right)$$
(3)

 f_t es el factor de ruido asociado a las pérdidas de la línea de transmisión,

$$f_t = 1 + \left(l_t - 1\right) \left(\frac{t_t}{t_0}\right) \tag{4}$$

donde:

 t_c : temperatura real (K) de la antena y la superficie cercana

у

t_t: temperatura real (K) de la línea de transmisión.

Si $t_c = t_t = t_0$, la ecuación (1) pasa a ser:

$$f = f_a - 1 + f_c f_t f_r (5)$$

La ecuación (2) puede expresarse de la forma siguiente:

$$P_n = F_a + B - 204 \qquad \text{dBW} \tag{6}$$

donde:

 $P_n = 10 \log p_n: \text{ potencia disponible (W)}$ $B = 10 \log b, \text{ y} -204 = 10 \log k t_0.$

En el caso de un monopolo vertical corto ($h \ll \lambda$) sobre un suelo perfectamente plano, la componente vertical del valor eficaz de la intensidad de campo viene dada por:

$$E_n = F_a + 20 \log f_{\rm MHz} + B - 95,5 \qquad dB(\mu V/m)$$
(7)

donde:

 E_n : intensidad de campo en la anchura de banda b, y

 $f_{\rm MHz}$: frecuencia central (MHz).

De forma similar, para un dipolo de media onda en el espacio libre:

$$E_n = F_a + 20 \log f_{\rm MHz} + B - 98,9 \qquad dB(\mu V/m)$$
(8)

El factor de ruido externo también se expresa normalmente como una temperatura, t_a , donde, por definición de f_a :

$$f_a = \frac{t_a}{t_0} \tag{9}$$

donde t_a es la temperatura efectiva de la antena debida al ruido externo.

Los valores correspondientes de E_n se pueden determinar con valores estimados de F_a , utilizando las ecuaciones (7) y (8) apropiadas al tipo de antena empleado.

La potencia de ruido indicada anteriormente, si bien se necesita para determinar, por ejemplo, la relación señal/ruido apenas es suficiente para determinar la calidad de funcionamiento del sistema (constituyendo la única excepción al ruido de fondo gaussiano blanco). Se necesitan las descripciones probabilísticas adecuadas de la onda de ruido aleatoria recibida. Como para los tipos de ruido relativos a esta Recomendación, la fase de la envolvente recibida normalmente presenta una distribución uniforme, se especifica la distribución de probabilidad de las amplitudes (probabilidad de rebasamiento) de la envolvente recibida. Para los procesos de ruido impulsivo a frecuencias más elevadas (es decir, superiores a 1 GHz aproximadamente), los valores de F_a son bastante bajos y únicamente los impulsos de mayor amplitud aparecen por encima del umbral de ruido del receptor. En este caso, las descripciones pueden referirse al valor de cresta en un intervalo de tiempo determinado, a las probabilidades de rebasamiento en estos niveles elevados, o al cómputo de impulsos a un nivel especificado, etc.

3 Niveles de ruido en función de la frecuencia

Las Figs. 1 a 3 y el análisis correspondiente especifican los valores esperados de F_a en la gama de frecuencias de 0,1 Hz a 100 GHz, así como otros niveles de ruido de interés. Las tres Figuras muestran la magnitud relativa de los tipos de ruido especificados en el § 1. En otros puntos de esta Recomendación aparecen detalles adicionales sobre diversos tipos de ruidos.

La Fig. 1 comprende la gama de frecuencias de 0,1 Hz a 10 kHz. La curva de trazo continuo corresponde a los valores medianos horarios mínimos esperados de F_a basados en mediciones (teniendo en cuenta la superficie total de la Tierra, para todas las estaciones y horas del día) y la curva discontinua a los máximos valores esperados. Es de notar que en esta gama de frecuencias las variaciones estacionales, diarias o geográficas son muy pequeñas. La mayor variabilidad en la gama de 100-10 000 Hz se debe a la variabilidad de la frecuencia de corte del guiaondas Tierra-ionosfera.

La Fig. 2 comprende la gama de frecuencias de 10^4 a 10^8 Hz, o sea, de 10 kHz a 100 MHz para diversas categorías de ruido. Las curvas de trazo continuo muestran el ruido mínimo esperado. Para el ruido atmosférico, se adoptan como valores mínimos de las medianas horarias previstos los excedidos durante el 99,5% de las horas y como valores máximos los excedidos durante el 0,5% de las horas. Para las curvas del ruido atmosférico, se han tenido en cuenta las horas del día, las estaciones y la superficie total de la Tierra.

La Fig. 3 comprende la gama de frecuencias de 10^8 a 10^{11} Hz, o sea de 100 MHz a 100 GHz. Aquí también el ruido mínimo se representa por curvas de trazo continuo, mientras que algunos otros ruidos de interés se indican por curvas discontinuas.

La mayor parte de los resultados de las tres figuras corresponden a antenas omnidireccionales (de no indicarse otra cosa en las figuras). No obstante, para antenas direccionales los estudios han indicado que en ondas decamétricas (por ejemplo), para el ruido atmosférico originado por descargas atmosféricas, puede existir una variación, según la dirección de puntería de la antena, la frecuencia y la ubicación geográfica de hasta 10 dB (5 dB por encima y 5 dB por debajo del valor medio de F_a indicado) para antenas de haz muy estrecho.

Para el ruido galáctico, el valor medio (para toda la bóveda celeste) viene dado por la curva de trazo continuo designada como ruido galáctico (Figs. 2 y 3). Las mediciones indican una variación de ±2 dB alrededor de esta curva, despreciando la pantalla ionosférica. El ruido galáctico mínimo (antena de haz estrecho en dirección al polo galáctico) es inferior en 3 dB al de la curva de ruido galáctico de trazo continuo de la Fig. 3. El ruido galáctico máximo para antenas de haz estrecho se representa mediante la curva de trazo discontinuo de la Fig. 3.

4 Ruido procedente de gases atmosféricos y de la superficie de la Tierra

El ruido procedente de fuentes individuales tales como el Sol, los gases atmosféricos, la superficie de la Tierra, etc., se expresa normalmente en términos de temperatura de brillo, t_b . La temperatura de antena, t_a , es la convolución del diagrama de antena con la temperatura de brillo del cielo y la superficie. En antenas cuyos diagramas engloban una sola fuente, la temperatura de antena y la temperatura de brillo son las mismas (Curvas C, D y E de la Fig. 3, por ejemplo).

En las Figs. 4 y 5 se representa la temperatura de brillo de la atmósfera para un receptor situado en tierra, excluyendo la contribución del ruido cósmico de 2,7 K u otras fuentes extraterrestres, para frecuencias comprendidas entre 1 y 340 GHz, en primer lugar y entre 1 y 60 GHz, en segundo lugar. Las curvas se han determinado utilizando un programa de transferencia de radiación para siete ángulos de elevación distintos y una atmósfera media (densidad de vapor de agua en la superficie de 7,5 g, temperatura de la superficie de 288 K y escala de altitudes de 2 km para el vapor de agua). Para la atmósfera seca se ha utilizado la atmósfera típica de Estados Unidos de América de 1976. Más allá de la tropopausa se ha añadido la contribución típica del vapor de agua.

Rec. UIT-R P.372-11

Temperatura de brillo (atmósfera despejada) para una concentración de vapor de agua de 7,5 g/m³ (temperatura y presión en la superficie de 15° C y 1 023 mb); θ representa el ángulo de elevación

Temperatura de brillo (atmósfera despejada) para una concentración de vapor de agua de 7,5 g/m³ (ampliación de la escala de abscisas de la Fig. 4); θ representa el ángulo de elevación

En las comunicaciones Tierra-espacio, si se conoce la atenuación de la señal procedente del transmisor del vehículo espacial, puede obtenerse una buena estimación de la temperatura de brillo para frecuencias comprendidas entre 2 y 30 GHz en esa dirección aplicando la siguiente fórmula:

 $t_b = t_e (1 - e^{-d}) + 2.7$ K (10)

donde:

d: profundidad óptica = atenuación (dB/4,343)

 t_e : temperatura efectiva, normalmente unos 275 K.

Esta relación proporciona resultados con una precisión de, aproximadamente, 0,1 dB por debajo de 30 GHz. Por encima de dicha frecuencia, la dispersión interviene en la atenuación y la estimación de la temperatura sería demasiado alta. Puede utilizarse esta relación para incluir la atenuación debida a la lluvia.

En Estados Unidos de América se ha llevado a cabo un estudio de transferencia de radiación que comprende los efectos de las nubes. Se ha calculado la temperatura de brillo hacia el cenit a partir de los datos meteorológicos de un año típico seleccionado en una base de datos de 15 años para cada una de 15 ubicaciones. En las Figs. 6a) y 6b) se representan los resultados para dos ubicaciones de Estados Unidos de América, Yuma, Arizona (5,5 cm de intensidad anual de lluvia) y Nueva York (98,5 cm de intensidad anual de lluvia) y para cinco frecuencias distintas. En estas curvas puede observarse que la temperatura de ruido hacia el cenit a 90 GHz puede ser menor que para 44 GHz. Esto es así para temperaturas de brillo hacia el cenit muy bajas, lo que significa que el contenido de vapor de agua es muy pequeño (inferior a unos 3 g/m³). Sin embargo, en la Fig. 4 (7,5 g/m² de vapor de agua) puede verse que las temperaturas de brillo para 90 GHz y 44 GHz son casi las mismas.

La temperatura de brillo de la superficie de la Tierra considerada desde un ángulo de nadir particular puede calcularse utilizando la ecuación de transferencia radiactiva que describe la reflexión de la radiación atmosférica descendente y la emisión de radiación por la superficie de la Tierra.

Este cálculo supone la integración de la radiación descendente en todos los ángulos e incluye la atenuación atmosférica.

 $T = \in T_{surf} + \rho T_{atm}$

Puede simplificarse de la forma siguiente:

siendo:

- \in : emisividad efectiva de la superficie
- ρ: coeficiente de reflexión efectivo
- T_{sup} : temperatura física (K) de la superficie de la Tierra
- T_{atm} : media ponderada de la temperatura de brillo del cielo.

Hasta unos 100 GHz, pero en particular por debajo de 10 GHz, el coeficiente de reflexión ρ generalmente toma un valor elevado y la emisividad \in un valor bajo.

En la Fig. 7a) se representan la emisividad y la temperatura de brillo de una superficie de agua lisa para polarizaciones vertical y horizontal y para dos ángulos de incidencia. Puede observarse que en frecuencias superiores a 5 GHz no existe diferencia entre agua dulce y salada.

En la Fig. 7b) se representan la temperatura de brillo de nadir de la superficie del mar para tres frecuencias en función de la temperatura física de dicha superficie y para una salinidad de 36×10^{-3} .

En las Figs. 7c) y 7d) se representa el incremento de la temperatura de brillo de la superficie del mar con la velocidad del viento; este parámetro constituye una herramienta muy útil para la detección de tormentas.

FIGURA 6

Las emisividades (y por consiguiente las temperaturas de brillo) de las superficies terrestres son superiores que las de las superficies de agua debido al menor valor de las constantes dieléctricas en tierra. En la Fig. 8a) se representa la temperatura de brillo en un terreno liso para diversos contenidos de humedad; en la Fig. 8b) aparece la temperatura de brillo para distintos grados de rugosidad del

Variaciones de la emisividad y de la temperatura de brillo de la superficie del mar

terreno. Las curvas se han trazado para polarizaciones horizontal y circular. Si aumenta el contenido de humedad, la temperatura de brillo disminuye; si la rugosidad del terreno aumenta, la temperatura de brillo hace lo propio.

En la Fig. 9 se muestran los cálculos de las temperaturas de brillo vistas desde la órbita de los satélites geoestacionarios por un satélite que utiliza un haz de cobertura de la Tierra (la Tierra ocupa el haz principal entre puntos de 3 dB). A medida que el satélite se desplaza alrededor de su órbita, puede observarse el efecto de la masa de tierra africana (caliente) a 30° de longitud Este y del Océano Pacífico (frío) entre 180° y 150° de longitud Oeste. La temperatura de brillo aumenta con la frecuencia, debido fundamentalmente a la absorción gaseosa. Las curvas corresponden a la atmósfera típica de los Estados Unidos de América, con 2,5 g/m³ de vapor de agua y una nubosidad del 50%. El diagrama de antena para cobertura de la Tierra viene dado por $G(\phi) = -3(\phi/8.715)^2$ dB para $0 \le \phi \le 8,715$, siendo ϕ el ángulo con respecto al eje de puntería.

5 Ruido artificial

En la Fig. 10 se representan los valores medianos de la potencia de ruido¹ artificial procedente de un cierto número de entornos. La figura incluye también una curva para el ruido galáctico, (véase el § 6).

En todos los casos, los resultados son coherentes con una variación lineal del valor mediano, F_{am} , con la frecuencia f de la siguiente forma:

$$F_{am} = c - d\log f \tag{11}$$

Expresándose f (MHz) y dando a c y d los valores indicados en el Cuadro 1. Obsérvese que la ecuación (11) es válida en la gama de 0,3 a 250 MHz para todas las categorías del entorno excepto las de las Curvas D y E como se indica en la Figura.

CUADRO 1

Categoría del entorno	с	d
Zona urbana (curva A)	76,8	27,7
Zona residencial (curva B)	72,5	27,7
Zona rural (curva C)	67,2	27,7
Zona rural tranquila (curva D)	53,6	28,6
Ruido galáctico (curva E)	52,0	23,0

Valores de las constantes c y d

Para las zonas urbanas, residenciales y rurales, en el Cuadro 2 se da la media, en la gama de frecuencias antes mencionada, de las desviaciones de los decilos D_u y D_l , de la potencia de ruido según el tiempo. Dicho Cuadro contiene también valores de la desviación según el emplazamiento. Cabe suponer que esas variaciones no están correlacionadas y que unas distribuciones log-normal a cada lado de la mediana son adecuadas. Esos valores se midieron en el decenio de 1970 y pueden cambiar con el correr del tiempo, en función de las actividades que podrían generar ruido artificial.

¹ Para el ruido artificial, la presente Recomendación proporciona el factor de ruido externo, es decir, el componente del ruido que tiene una distribución gaussiana. Generalmente el ruido artificial posee un componente impulsivo y ello puede ser importante en cuanto afecta la calidad de funcionamiento de las redes y sistemas radioeléctricos.

FIGURA 8

Temperatura de brillo del suelo a 1 430 MHz en función del ángulo de elevación

Temperatura de brillo ponderada de la Tierra en función de la longitud vista desde la órbita de los satélites geoestacionarios a frecuencias de 1 y 51 GHz

Los datos sobre ruido artificial indicados anteriormente proceden de mediciones efectuadas hace algunos años. Las mediciones correspondientes a Europa en 2006-2007 y en Japón en 2009-2011 han confirmado en general los factores de ruido mencionados. Estos resultados se facilitan en los Cuadros 3 a 5.

Categoría del entorno:

Curvas A: zona urbana B: zona residencial

D: zona rural
D: zona rural tranquila (aldeas)
E: ruido galáctico (véase el § 6)

P.0372-10

CUADRO 2

Valores de las desviaciones de los decilos del ruido artificial

Categoría	Decilo	Variación con el tiempo (dB)	Variación con el emplazamiento (dB)	
Zona urbana	Superior	11,0	8,4	
	Inferior	6,7	8,4	
Zona residencial	Superior	10,6	5,8	
	Inferior	5,3	5,8	
Zona rural	Superior	9,2	6,8	
	Inferior	4,6	6,8	

Rec. UIT-R P.372-11

CUADRO 3

Mediciones de ruido artificial exterior en Europa

Frecuencia (MHz)	Factor de ruido mediano F_a (dB rel $k T_0 b$)			Desviación del decilo superior			Desviación del decilo inferior		
	Urbano	Residencial	Rural	Urbano Residencial Rural U			Urbano	Residencial	Rural
35	23	17	16	7	5	1	1,5	2	2
140	12	8	6	4	2	2	3	3,5	2
210	16	8	5	1	2	1	2	1	2
270	6	4	4	2	2	1	2	1	1
425	6	4	3	1	2	1	1	1	1

CUADRO 4

Mediciones de ruido artificial exterior en Europa

Frecuencia (MHz)	Factor de ruido mediano F_a (dB rel $k T_0 b$)		Desviaciór supe	1 del decilo erior	Desviación del decilo inferior		
	Urbano	Residencial	Urbano	Residencial	Urbano	Residencial	
37	27,1	20,2	5,4	3,9	4,8	2,4	
67	21,4	17,1	4,5	2,2	4,7	3,8	
75	21,1	15,2	5,5	5,5	3,9	3,1	
99	18,6	11,1	4,9	4,4	4,7	3,3	
121	15,5	10,3	5,1	6,1	3,6	3,2	
163	13,0	9,1	6,7	3,8	3,4	4,4	
222	9,0	6,8	5,1	6,1	3,0	2,2	
322	5,7	3,1	6,8	5,5	2,2	1,0	

CUADRO 5

Mediciones de ruido artificial interior en Europa

Frecuencia (MHz)	Factor de ruido mediano F_a (dB rel k $T_0 b$)		Desv decile	iación del o superior	Desviación del decilo inferior	
	Urbano	Residencial	Urbano	Residencial	Urbano	Residencial
210	14	5	3	3	2	1
425	16	3	4	1	1	1

6 Temperatura de brillo debida a fuentes extraterrestres

Por regla general, para las comunicaciones a frecuencias inferiores a 2 GHz, debe considerarse el Sol y la galaxia (la Vía Láctea), que aparece como un amplio cinturón de fuerte emisión. Para frecuencias de hasta unos 100 MHz, el factor de ruido mediano para el ruido galáctico, despreciando los efectos de la pantalla ionosférica, viene dado por:

$$F_{am} = 52 - 23 \log f \tag{12}$$

donde:

Las desviaciones del decilo de la potencia de ruido galáctico medio son ±2 dB

En estas circunstancias, la variación de los decilios superior e inferior del ruido galáctico es de 2 dB.

El ruido galáctico no se observará a frecuencias inferiores a foF2 y será inferior al valor dado por la ecuación (12) para frecuencias de hasta tres veces foF2 aproximadamente.

Por encima de 2 GHz, sólo hay que considerar el Sol y algunas fuentes no térmicas de gran intensidad como Cassiopeia A, Cisne A y X y la nebulosa de Cáncer, ya que el fondo cósmico contribuye solamente con 2,7 K y la Vía Láctea aparece como una zona estrecha de intensidad ligeramente mayor. En la Fig. 12 se representa la gama de temperaturas de brillo para las fuentes de ruido extraterrestres más comunes en la gama de frecuencias de 0,1 a 100 GHz.

Las Figs. 13a, 13b, 13c y 13d indican la temperatura de cielo radioeléctrico total a 408 MHz simplificando a una resolución angular de 5°. Estas figuras se representan en coordenadas ecuatoriales: declinación δ (latitud) y ascensión recta α (horas hacia el Este alrededor del Ecuador a partir del equinoccio de primavera). Los contornos están directamente expresados en K por encima de 2,7 K. La precisión es de 1 K. Los intervalos de los contornos son:

- 2 K por debajo de 60 K,
- 4 K desde 60 K a 100 K,
- 10 K desde 100 K a 200 K,
- 20 K por encima de 200 K.

En las líneas de contorno que no llevan indicación, las flechas apuntan en el sentido de las agujas del reloj en torno a un mínimo de la distribución del brillo.

La curva sinusoidal discontinua entre $\pm 23,5^{\circ}$ de las Figs. 13a y 13d define la eclíptica que cruza la Vía Láctea cerca del centro galáctico. Ello significa que si se observa un vehículo espacial en el espacio interplanetario, quizás sea preciso tener este elemento en cuenta. Las fuentes puntuales de mayor intensidad se indican con crestas estrechas para la distribución de la temperatura mientras que las fuentes de menor intensidad son menos aparentes debido a la resolución angular limitada.

La radiación del fondo galáctico varía con la frecuencia. Para obtener las temperaturas de brillo a otras frecuencias, f_i , con radiación de fondo debe emplearse la expresión:

$$t_b(f_i) = t_b (f_0) (f_i/f_0)^{-2.75} + 2.7$$
 K (13)

Así, para $t_b = 200$ K, $f_0 = 408$ MHz y $f_i = 1$ GHz; esta extrapolación daría:

$$t_b = 19,7$$
 K

FIGURA 11

Número medio de impulsos de ruido por segundo

Para frecuencias distintas de 150 MHz, auméntense o disminúyanse las curvas H, M y L, de conformidad con la fórmula que figura a continuación:

$$A = C + 10 \log V - 28 \log f$$

donde $A = dB(\mu N/MHz)$ caso de 10 impulsos por segundo.

Curvas H: lugar con alto nivel de ruido (V = 100)

M: lugar con nivel medio de ruido (V = 10)

L: lugar con bajo nivel de ruido (V = 1)

P.0372-11

Para hacer extrapolaciones más precisas utilizando esta fórmula es necesario tener en cuenta las variaciones del exponente en función de la gama de frecuencias y del cielo. En el caso de fuentes puntuales, la variación de la intensidad con la frecuencia depende de sus diferentes condiciones físicas.

En las telecomunicaciones que utilizan satélites geoestacionarios, tiene interés especial una parte limitada del cielo, como se indica en la Fig. 14 a). La Fig. 14 b) muestra la gama correspondiente de declinaciones ($\pm 8,7^{\circ}$) e indica las fuentes más intensas.

FIGURA 13a Temperatura del cielo radioeléctrico a 408 MHz

FIGURA 13b Temperatura del cielo radioeléctrico a 408 MHz

FIGURA 13c Temperatura del cielo radioeléctrico a 408 MHz

FIGURA 13d Temperatura del cielo radioeléctrico a 408 MHz

Declinación, 6 (grados)

 b) Ubicaciones de las fuentes radioeléctricas más fuertes (O para una gama de ±8,7° en torno al Ecuador celeste. Los números se refieren a designaciones de catálogo, por ejemplo, 3C indica third Cambridge
 P.0372-14

El Sol es una importante fuente de ruido variable con una temperatura de ruido de unos 10^6 K entre 50 y 200 MHz y de al menos 10^4 K a 10 GHz en condiciones de calma solar y grandes incrementos en los periodos de actividad solar. La temperatura de brillo de la Luna es casi independiente de la frecuencia por encima de 1 GHz; varía en unos 140 K durante la fase de la Luna nueva y hasta 280 K durante la de Luna llena. El trayecto del Sol se encuentra en el plano de la eclíptica (línea de trazos de las Figs. 13). La Luna se observa con $\pm 5^{\circ}$ de declinación con respecto al plano de la eclíptica.

7 Ruido atmosférico debido al rayo

En las Figs. 15a a 38a del ruido radioeléctrico atmosférico de fondo se reproducen mapas mundiales con los valores medianos probables de la potencia de ruido medio, F_{am} (dB) por encima de $k T_0 b$, a 1 MHz para cada estación y bloques de tiempo de 4 h (hora local). En las Figs. 15b a 38b se representa la variación de F_{am} con la frecuencia para cada estación y bloque de tiempo y en las Figs. 15c a 38c se representa la variación con la frecuencia de los otros parámetros del ruido. La antena de referencia para estas estimaciones del ruido atmosférico es un monopolo vertical corto situado sobre un plano de tierra perfectamente conductor. La intensidad de campo incidente puede obtenerse conforme a lo indicado en el § 2.

Cabe observar que se indican valores del ruido atmosférico inferiores a los niveles probables de ruido artificial y ruido galáctico. Estos valores deben utilizarse con precaución puesto que sólo representan estimaciones de los niveles de ruido atmosférico que se registrarían en ausencia de otros tipos de ruido. Sin embargo, un examen de los datos muestra que esos niveles de ruido bajo se midieron de hecho en muy pocas ocasiones.

El ruido atmosférico debido al rayo no tiene generalmente una distribución gaussiana y su función de densidad de probabilidad puede ser importante para determinar la calidad de funcionamiento de los sistemas digitales. La distribución de probabilidad de la amplitud de este tipo de ruido se describe mediante la desviación de tensión, V_d , que es la relación entre el valor eficaz y el valor medio de la tensión de la envolvente de ruido.

En la Fig. 39 pueden verse las curvas de la distribución de probabilidad de la amplitud correspondientes a diversos valores de V_d , en las cuales se toma como referencia la tensión eficaz de la envolvente, A_{ef} . Los valores medidos de V_d varían en torno a los valores predichos de la mediana, V_{dm} , y su variación viene dada por σ_{Vd} . Estas curvas pueden utilizarse para una amplia gama de anchuras de banda. Las estimaciones dadas de V_d (Figs. 15c a 38c) corresponden a una anchura de banda de 200 Hz y a partir de la Fig. 40 puede convertirse este valor de V_d a 200 Hz en los correspondientes valores de V_d para otras anchuras de banda. La Fig. 40 sólo es estrictamente válida en ondas hectométricas y decamétricas, por lo tanto, debe tenerse mucha precaución al aplicar estos resultados a frecuencias inferiores (por ejemplo en las bandas de ondas kilométricas, miriamétricas o decamiriamétricas).

Las figuras se utilizan como se indica a continuación. El valor de F_{am} para 1 MHz se obtiene a partir de los mapas de ruido (Figs. 15a a 38a) para la estación considerada. Utilizando este valor como grado de ruido, se determina el valor de F_{am} para la frecuencia requerida a partir de las curvas de frecuencia (Figs. 15b a 38b). Los parámetros de variabilidad σ_{Fam} , D_u , σ_{Du} , etc., se obtienen para la frecuencia en cuestión a partir de las Figs. 15c a 38c. Los valores de D y σ_D para otros porcentajes de tiempo pueden obtenerse suponiendo semidistribuciones log-normal a cada lado de los valores medianos.

8 Combinación de ruidos procedentes de varias fuentes

En algunas ocasiones es preciso considerar más de un tipo de ruido, puesto que dos o más son de intensidad comparable. Esto puede suceder a cualquier frecuencia en general, pero ocurre más a menudo en ondas decamétricas donde los ruidos atmosférico, artificial y galáctico pueden ser comparables (por ejemplo, Fig. 2, 10 MHz).

Se da por supuesto que los factores de ruido para cada una de las fuentes de ruido definidas supra (valores F_a expresados en decibeles), tienen una distribución representada por dos distribuciones seminormales a cada lado del valor F_{am} mediano. La distribución seminormal más baja tiene una desviación típica $\sigma_l (= D_l/1,282)$ por debajo de la mediana y la distribución seminormal más alta, una desviación típica $\sigma_u (= D_u/1,282)$ por encima de la mediana. Los factores de ruido correspondientes (valores f_a expresados en vatios) tienen distribuciones log-normales a cada lado de la mediana.

La mediana, F_{amT} , y la desviación típica, σ_T , del factor de ruido para la suma de dos o más procesos de ruido vienen dados por:

$$F_{amT} = c \left[\ln \left(\alpha_T \right) - \frac{\sigma_T^2}{2c^2} \right] \qquad \text{dB} \tag{14}$$

$$\sigma_T = c \sqrt{\ln\left(1 + \frac{\beta_T}{\alpha_T^2}\right)} \qquad \text{dB} \qquad (15)$$

donde:

$$c = 10/\ln(10) = 4.343 \tag{16}$$

$$\alpha_T = \sum_{i=1}^n \alpha_i = \sum_{i=1}^n \exp\left[\frac{F_{ami}}{c} + \frac{\sigma_i^2}{2c^2}\right] \qquad (17)$$

y F_{ami} y σ_i son la mediana y la desviación típica de los factores de ruido de las fuentes componentes del ruido. Para el ruido atmosférico, se han obtenido de las Figs. 15 a 38; para el ruido artificial, de la Fig. 10 y del Cuadro 2. Para el ruido galáctico, F_{am} viene dado por la ecuación (12) y σ_i se fija a 1,56 dB (= 3/1,282).

La desviación del decilo superior, D_{uT} , del factor de ruido para la suma de dos o más procesos de ruido viene dada por:

$$D_{uT} = 1,282 \,\sigma_T \qquad \text{dB} \tag{19}$$

donde σ_T se calcula utilizando las desviaciones del decilo superior de los componentes de ruido para calcular σ_i (= $D_u/1,282$) en las ecuaciones (17) y (18).

La desviación del decilo inferior, D_{lT} , del factor de ruido para la suma de dos o más procesos de ruido viene dada por:

$$D_{lT} = 1,282 \,\sigma_T \qquad \text{dB} \tag{20}$$

donde σ_T se calcula utilizando las desviaciones del decilo inferior de los componentes de ruido para calcular σ_i (= $D_l/1,282$) en las ecuaciones (17) y (18).

Cuando una desviación del decilo superior del factor de ruido para un componente de ruido, como mínimo, excede los 12 dB, la σ_T obtenida por las ecuaciones (15) a (18), utilizando las desviaciones del decilo superior de los componentes de ruido, debería limitarse a un valor máximo de:

$$\sigma_T = c \sqrt{2 \ln \left(\frac{\alpha_T}{\gamma_T}\right)} \qquad \text{dB} \qquad (21)$$

donde γ_T es el factor de ruido para la suma de potencia simple de cada factor de ruido mediano:

Del mismo modo, cuando una desviación del decilo inferior del factor de ruido para un componente de ruido, como mínimo, excede los 12 dB, la σ_T obtenida por las ecuaciones (15) a (18), utilizando las desviaciones del decilo inferior de los componentes de ruido, debería limitarse al valor máximo obtenido mediante la ecuación (21).

Rec. UIT-R P.372-11

FIGURA 15a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Invierno; 0000-0400 hora local)

FIGURA 15c

P.0372-15b

: Desviación típica de V_d

FIGURA 16a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Invierno; 0400-0800 hora local)

P.0372-16a

Datos sobre la variabilidad y el carácter del ruido (Invierno; 0400-0800 hora local)

FIGURA 16c

Véase la leyenda de la Fig. 15c

P.0372-16b

Rec. UIT-R P.372-11

FIGURA 17a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Invierno; 0800-1200 hora local)

FIGURA 17c

Rec. UIT-R P.372-11

Véase la leyenda de la Fig. 15b

P.0372-17b

Véase la leyenda de la Fig. 15c

FIGURA 18a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Invierno; 1200-1600 hora local)

8

8

9

ន

8

V éase la leyenda de la Fig. 15b

5

2

8

 F_{am} (dB por encima de kT_0b

3

\$

Véase la leyenda de la Fig. 15c

P.0372-18b

FIGURA 19a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Invierno; 1600-2000 hora local)

FIGURA 19c

 F_{am} (dB aor encima de kT_0b

Véase la leyenda de la Fig. 15c

P.0372-18b

FIGURA 20a

FIGURA 20c

P.0372-20b

FIGURA 21a

Valores probables del ruido atmosférico, *F_{am}*, en dB por encima de *kT*₀*b* en 1 MHz (Primavera; 0000-0400 hora local)

Véase la leyenda de la Fig. 15c

P.0372-21b

\$

8

FIGURA 22a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Primavera; 0400-0800 hora local)

Véase la leyenda de la Fig. 15b

P.0372-22b

Véase la leyenda de la Fig. 15c

FIGURA 23a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Primavera; 0800-1200 hora local)

FIGURA 23b

FIGURA 23c

Variaciones del ruido radioeléctrico con la frecuencia (Primavera; 0800-1200 hora local)

Véase la leyenda de la Fig. 15c

P.0372-23b

Véase la leyenda de la Fig. 15b

FIGURA 24a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Primavera; 1200-1600 hora local)

FIGURA 24c

Véase la leyenda de la Fig. 15b

P.03 72 -24b

Véase la leyenda de la Fig. 15 c

FIGURA 25a

Datos sobre la variabilidad y el carácter del ruido

FIGURA 25c

(Primavera; 1600-2000 hora local)

Véase la leyenda de la Fig. 15c

P0372-25b

FIGURA 26a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Primavera; 2000-2400 hora lcoal)

Variaciones del ruido radioeléctrico con la frecuencia (Primavera; 2000-2400 hora local)

Véase la leyenda de la Fig. 15c

P.0372-26b

Véase la leyenda de la Fig. 15b

FIGURA 27a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Verano; 0000-0400 hora local)

FIGURA 27b

FIGURA 27c

Véase la leyenda de la Fig. 15c

Véase la leyenda de la Fig. 15b

0372-27b

FIGURA 28a

Valores probables del ruido atmosférico, *F_{am}*, en dB por encima de *kT*₀*b* en 1 MHz (Verano; 0400-0800 hora local)

°FIGURA 28c

Véase la leyenda de la Fig. 15c

P.0372-28b

Véase la leyenda de la Fig. 15b

FIGURA 29a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Verano; 0800-1200 hora local)

FIGURA 29c

Véase la leyenda de la Fig. 15c

0372-29b

Véase la leyenda de la Fig. 15b

FIGURA 30a

Valores probables del ruido atmosférico, F_{ann} , en dB por encima de kT_0b en 1 MHz (Verano; 1200-1600 hora local)

FIGURA 30c

Véase la leyenda de la Fig. 15 c

Véase la leyenda de la Fig. 15b

P.0372-30b

FIGURA 31a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Verano; 1600-2000 hora local)

Véase la leyenda de la Fig. 15c

P.0372-31b

Véase la leyenda de la Fig. 15b

FIGURA 32a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Verano; 2000-2400 hora local)

Véase la leyenda de la Fig. 15b

P.0372-32b

FIGURA 33a

FIGURA 33c

Véase la leyenda de laFig. 15c

P.0372-33b

FIGURA 34a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Otoño; 0400-0800 hora local)

FIGURA 34c

Rec. UIT-R P.372-11

Véase la leyenda de la Fig. 15 c

P.0372-34b

Véase la leyenda de la Fig. 15b

FIGURA 35a

Valores probables del ruido atmosférico, F_{ann} , en dB por encima de kT_0b en 1 MHz (Otoño; 0800-1200 hora local)

FIGURA 36a

Valores probables del ruido atmosférico, F_{ann} , en dB por encima de kT_0b en 1 MHz (Otoño; 1200-1600 hora local)

FIGURA 36c

Variaciones del ruido radioeléctrico con la frecuencia (Otoño; 1200-1600 hora local)

Véase la leyenda de la Fig. 15c

P.0372-36b

FIGURA 37a

Valores probables del ruido atmosférico, F_{am} , en dB por encima de kT_0b en 1 MHz (Otoño; 1600-2000 hora local)

FIGURA 37c

Véase la leyenda de la Fig. 15c

P.0372-37b

Véase la leyenda de la Fig. 15b

FIGURA 38a

Valores probables del ruido atmosférico, *F_{am}*, en dB por encima de *kT*₀*b* en 1 MHz (Otoño; 2000-2400 hora local)

P.03 72 -3 8b

Distribuciones de la probabilidad de amplitud del ruido radio
eléctrico atmosférico para diversos valores de V_d

P.0372-39

Conversión de V_d para una anchura de banda de 200 Hz, V_{dm} , en valores para otras anchuras de banda, b

77