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RECOMMENDATION ITU-R P.1812-8

A path-specific propagation prediction method for point-to-area
terrestrial services in the frequency range 30 MHz to 6 GHz
(Question ITU-R 203/3)

(2007-2009-2012-2013-2015-2019-2021-2023-2025)

Scope

This Recommendation describes a propagation prediction method suitable for terrestrial point-to-area services
in the frequency range 30 MHz to 6 GHz. It predicts signal levels at the median of the multipath distribution
exceeded for a given percentage of time, p%, in the range 1% < p < 50% and a given percentage of locations,
pr%, in the range 1% < p; < 99%. The method provides detailed analysis based on the terrain profile.

The method is suitable for predictions for radiocommunication systems utilizing terrestrial circuits having path
lengths from 0.25 km up to about 3 000 km distance, with both terminals within approximately 3 km height
above ground. It is not suitable for propagation predictions on either air-ground or space-Earth radio circuits.

This Recommendation complements Recommendation ITU-R P.1546.
Keywords

Long range path-specific propagation, tropospheric paths/circuits, basic transmission loss predictions,
time and location variability

Abbreviations/Glossary

amsl above mean sea level

DTT Digital terrestrial television
IDWM ITU digitized world map
LoS Line-of-sight

NLoS Non-line-of-sight

P-P Point-to-Point

UHF Ultra-high frequency

VHF Very high frequency

Related ITU Recommendations

Recommendation ITU-R P.452 — Prediction procedure for the evaluation of interference between stations on
the surface of the Earth at frequencies above about 100 MHz

Recommendation ITU-R P.528 — A propagation prediction method for aeronautical mobile and
radionavigation services using the VHF, UHF and SHF bands

Recommendation ITU-R P.530 — Propagation data and prediction methods required for the design of terrestrial
line-of-sight systems

Recommendation ITU-R P.617 — Propagation prediction techniques and data required for the design of trans-
horizon radio-relay systems

Recommendation ITU-R P.844 — Ionospheric factors affecting frequency sharing in the VHF and UHF bands
(30 MHz-3 GHz)

Recommendation ITU-R P.1144 — Guide to the application of the propagation methods of
Radiocommunication Study Group 3
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Recommendation ITU-R P.1406 — Propagation effects relating to terrestrial land mobile and broadcasting
services in the VHF and UHF bands

Recommendation ITU-R P.1411 — Propagation data and prediction methods for the planning of short-range
outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz
to 100 GHz

Recommendation ITU-R P.1546 — Method for point-to-area predictions for terrestrial services in the frequency
range 30 MHz to 4 000 MHz

Recommendation ITU-R P.2001 — A general purpose wide-range terrestrial propagation model in the
frequency range 30 MHz to 50 GHz

Recommendation ITU-R P.2040 — Effects of building materials and structures on radio-wave propagation
above about 100 MHz

NOTE — The latest revision/edition of the Recommendation should be used.

The ITU Radiocommunication Assembly,

considering

a) that there is a need to give guidance to engineers in the planning of terrestrial
radiocommunication services in the VHF and UHF bands;

b) that, for stations working in the same or adjacent frequency channels, the determination of
the minimum geographical distance of separation required to avoid unacceptable interference due to
long-distance terrestrial propagation is a matter of great importance,

recognizing

a) that Recommendation ITU-R P.528 provides guidance on the prediction of point-to-area
basic transmission loss for the aeronautical mobile service for the frequency range 100 MHz to
30 GHz;

b) that Recommendation ITU-R P.452 provides guidance on the detailed evaluation of
microwave interference between stations on the surface of the Earth at frequencies above
about 0.1 GHz;

c) that Recommendation ITU-R P.617 provides guidance on the prediction of point-to-point
(P-P) propagation loss for trans-horizon radio-relay systems for the frequency range above 30 MHz
and for the distance range 100 to 1000 km;

d) that Recommendation ITU-R P.1411 provides guidance on prediction for short-range
(up to 1 km) outdoor services;

e that Recommendation ITU-R P.530 provides guidance on the prediction of P-P propagation
loss for terrestrial line-of-sight systems;

¥/ that Recommendation ITU-R P.1546 provides guidance on the prediction of point-to-area
field strengths in the VHF and UHF bands based principally on statistical analyses of experimental
data;

g) that Recommendation ITU-R P.2001 provides a wide-range terrestrial propagation model for
the frequency range 30 MHz to 50 GHz including both fading and enhancement statistics which is
well suited for use in Monte-Carlo simulations;

h) that Recommendation ITU-R P.2040 provides guidance on the effects of building material
properties and structures on radio-wave propagation,
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recommends

that the procedure given in the Annex should be used for the detailed evaluation of point-to-area

signal levels in connection with these services.

NOTE - Long range propagation paths may also occur at VHF via the ionosphere. These modes are

summarized in Recommendation ITU-R P.844.
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1 Introduction

The propagation prediction method described in this Annex is recommended for the detailed
evaluation of signal levels suitable for use in connection with terrestrial point-to-area services in the
frequency range 30 MHz to 6 000 MHz. It predicts the signal level (i.e. electric field strength)
exceeded for a given percentage, p%, of an average year in the range 1% < p < 50% and p;% locations
in the range 1% < pr < 99%. Therefore, this method may be used to predict both the service area and
availability for a desired signal level (coverage), and the reductions in this service area and availability
due to undesired, co- and/or adjacent-channel signals (interference).

The propagation model of this method is symmetric in the sense that it treats both radio terminals in
the same manner. From the model’s perspective, it does not matter which terminal is the transmitter
and which is the receiver. However, for convenience in the model’s description, the terms
“transmitter” and “receiver” are used to denote the terminals at the start and end of the radio path,
respectively.

The method is first described in terms of calculating basic transmission loss (dB) not exceeded for
p% time for the median value of locations. The location variability element is then characterized
statistically with respect to receiver locations, in addition to the building entry loss element from
Recommendation ITU-R P.2040. A procedure is then given for converting to electric field strength
(dB(uV/m)) for an effective radiated power of 1 kW.

This method is intended primarily for use with systems using low-gain antennas. However, the change
in accuracy when high-gain antennas are used only affects the troposcatter element of the overall
method, and the change in the predictions is small. For example, even with 40 dBi antennas at both
ends of the link the over-estimation of troposcatter signals will amount to only about 1 dB.

The method is suitable for predictions for radiocommunication systems utilizing terrestrial circuits
having path lengths from 0.25 km up to about 3 000 km distance, with both terminals within
approximately 3 km height above ground. It is not suitable for propagation predictions on either
air-ground or space-Earth radio circuits.

The propagation prediction method in this Annex is path-specific. Point-to-area predictions using this
method consist of series of many point-to-point (P-P) (i.e. transmitter-point-to-receiver-multipoint)
predictions, uniformly distributed over notional service areas. The number of points should be large
enough to ensure that the predicted values of basic transmission losses or field strengths thus obtained
are reasonable estimates of the median values, with respect to locations, of the corresponding
quantities for the elemental areas that they represent.

In consequence, it is assumed that users of this Recommendation are able to specify detailed terrain
profiles (i.e. elevations above mean sea level) as functions of distance along the great circle paths
(i.e. geodesic curves) between the terminals, for many different terminal locations (receiver-points).
For most practical applications of this method to point-to-area coverage and interference predictions,
this assumption implies the availability of a digital terrain elevation database, referenced to latitude
and longitude with respect to a consistent geodetic datum, from which the terrain profiles may be
extracted by automated means. If these detailed terrain profiles are not available, then
Recommendation ITU-R P.1546 should instead be used for predictions.

In view of the foregoing, the location variability element of this Recommendation and the building
entry loss model element of Recommendation ITU-R P.2040 are characterized via the statistics of
lognormal distributions with respect to receiver locations. Although this statistical characterization of
the point-to-area propagation problem would appear to make the overall model unsymmetrical
(i.e. non-reciprocal), users of this Recommendation should note that the location variability could, in
principle, be applied at either end of the path (i.e. either terminal), or even both (i.e. the transmitter
and the receiver). However, the location variability correction is only meaningful in situations when
exact location of a given terminal is unknown and a statistical representation over that terminal’s
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potential locations is required. There are unlikely to be many situations where this could meaningfully
be applied to the transmitter location. If the locations of both terminals are known exactly and this
procedure is being used in P-P mode, then this Recommendation is only applicable with p; = 50%.

A similar point is true regarding building entry losses. The argument is slightly more complicated
than for location variability owing to the fact that the median entry loss correction is non-zero. At the
transmitter end, users should also add the building entry loss to the basic transmission loss if the
transmitter is inside a building, but users must also be aware that the use of median loss values may
be misleading if the transmitter is not in a “median” location.

2 Model elements of the propagation prediction method

This propagation prediction method takes account of the following model elements:
— line-of-sight (LoS);

— diffraction (embracing smooth-Earth, irregular terrain and sub-path cases);
— tropospheric scatter;

— anomalous propagation (ducting and layer reflection/refraction);

— location variability;

— building entry losses (from Recommendation ITU-R P.2040).

3 Input parameters

3.1 Basic input data

Table 1 describes the basic input data, which defines the radio terminals, the frequency, and the
percentage time and locations for which a prediction is required.

The latitude and longitude of the two stations are stated as basic inputs on the basis that they are
needed to obtain the path profile. Radiometeorological parameters must be obtained for a single
location associated with the radio path, and for a long path the path-centre should be selected. It is
appropriate to obtain the radiometeorological parameters for the transmitter location when predicting
its coverage area.

TABLE 1

Basic input data

Parameter Minimum | Maximum Description
f(GHz) 0.03 6.0 Frequency (GHz)
p (%) 1.0 50.0 Percentage of average year for which the calculated
signal level is exceeded
pr (%) 1 99 Percentage of locations for which the calculated signal
level is exceeded
01, O (degrees) —80 +80 Latitude of transmitter, receiver
W, - (degrees) —180.0 180.0 Longitude of transmitter, receiver (positive = East of

Greenwich)
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TABLE 1 (end)

Parameter Minimum | Maximum Description
hig, hrg (M) 1 3 000 Antenna centre height above ground level
Polarization Signal polarisation, e.g. vertical or horizontal
ws (m) 1 100 Width of street. The value of 27 should be used unless
specific local values are available.

Polarisation in Table 1 is not a parameter with a numerical value. The information is used in § 4.3.3
in connection with equations (29a), (29b) and (30).

3.2 Radio path profile

The path profiles used in the method described below require path-specific data for terrain heights,
and in addition either path-specific clutter (ground cover) categories or path-specific surface heights
along the path. Terrain heights refer to bare-Earth to differentiate from the surface heights which
include the natural or man-made structures on top of the terrain.

A profile for the radio path is required for the application of the propagation prediction method. In
principle, this consists of three arrays each having the same number of values, #n, as follows:

d;: distance from transmitter of i-th profile point (km) (1a)
h;: terrain height of i-th profile point above sea level (m) (1b)
gi: surface height of i-th profile point above sea level (m) (1c)

where:
i: 1,2,3,.., n=1index of the profile point
n: number of profile points.

The height of clutter should not be added to the terrain heights at the transmitter and receiver. Thus
g1 1s the terrain height at the transmitter in metres above sea level and g is the terrain height at the
receiver in metres above sea level.

There must be at least one intermediate profile point between the transmitter and the receiver. Thus n
must satisfy #» > 3. Such a small number of points is appropriate only for short paths, less than of the
order of 1 km.

Note that the first profile point is at the transmitter. Thus, di is zero and /4 is the terrain height at the
transmitter in metres above sea level. Similarly, the n-th profile point is at the receiver. Thus, d, is
the path length in km, and /4, the terrain height at the receiver in metres above sea level.

No specific distance between profile points is given. Assuming that profiles are extracted from digital
terrain elevation and ground cover (clutter) datasets, a suitable spacing will typically be similar to the
point spacing of the source datasets of similar resolution to each other. The profile points are not
required to be equally-spaced, but it is desirable that they are at a similar spacing for the whole profile.

Two profile calculation methods may be used to derive the surface height g;, these are outlined in the
following sections. The first uses ground cover data to determine a representative clutter height which
can be added to the terrain heights, the second uses surface-height data, where heights include clutter
with no explicit distinction between terrain and clutter.
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3.2.1 Terrain and ground cover data

The method includes:
— the construction of a terrain profile using actual terrain heights;

— based on the clutter categories, the addition of representative clutter heights to the terrain
profile.

If this method is used to calculate diffraction loss using the terrain profile without clutter, the
diffraction loss will be under-estimated in cluttered environments, as opposed to combined
representation of terrain and clutter. This method has been developed and validated against digital
terrain data, by combining digital terrain data with statistical representative clutter categories. It is
important to note that diffraction loss may be over-estimated if the terrain heights h;, include natural
or man-made structures on top of the terrain. If accurate surface-heights are available, an improved
estimation of propagation loss may be obtained using the profile calculation method expanded in
§ 3.2.2, or other techniques such as 3-D ray tracing, which would include the effect of diffraction
around buildings, could be explored.

In this method the surface height profile is approximated using the terrain heights with the addition
of representative clutter heights based on the clutter categories at each profile point.

The surface heights g; are given by:

h; + representative clutter height of i-th profile point (m) fori=2,..,n—1
g =1 fori =1 (1d)
h, fori=n

When using this method the profile spacing should be no less than the order of 30 m.

The “representative clutter height” referred to in equation (1c) concerns statistical height information
associated with ground cover classification, such as vegetation and buildings, i.e. a single height value
assigned to each ground cover/clutter class. Adding representative clutter heights to a profile is based
on the assumption that the heights /; represent the bare surface of the Earth. If the radio path passes
over woodland or urbanization where diffraction or sub-path obstruction occurs, in general the
effective profile height will be higher because the radio signal will travel over the clutter. Thus a more
suitable representation of the profile can be obtained by adding representative heights to account for
the clutter.

The appropriate addition is not necessarily physical, such as rooftop heights in the case of buildings.
Where gaps exist between clutter objects, as seen by the radio wave, some energy may travel between
rather than over them. In this situation the presence of clutter is expected to increase diffraction loss,
but not by as much as raising the profile to the physical clutter height.

This applies particularly to high-rise urban areas. Categories such as “dense urban” or “high-rise
urban” tend to be associated with building heights of 30 metres or more. But some high-rise areas
have large spaces between the tall buildings, and it is possible for low-loss paths to exist passing
around them, rather than over the roofs. Smaller values of representative heights rather than the
physical clutter heights may be appropriate in such cases.

At the other extreme, even in areas classified as “open” or “rural” it is unusual for the ground to be
completely bare, that is, free of any objects which might add to propagation losses. Thus, small values
of representative clutter heights rather than zero, might be appropriate in many cases.

Thus, representative clutter height depends not only on the typical physical height of clutter objects
but also on the horizontal spacing of objects and the gaps between them. There is no generally
accepted standard as to what a clutter category, such as “urban”, represents in physical terms in
different countries. Where available, representative clutter height information based on local clutter
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height statistics or other sources should be used. Alternatively, clutter classification models developed
based on local or regional geospatial data and validated against measurements, are in use in some
administrations. Table 2 suggests default values for representative clutter heights which may be used
in the absence of region/country-specific information.

TABLE 2

Default representative clutter height values

Clutter category Representative clutter height (m)

Add to profile of equation (1c)
fori=2ton-1

Water/sea 0
Open/rural 0
Suburban 10
Urban/trees/forest 15
Dense urban 20

3.2.2 Terrain and surface data
In this method the surface height profile is extracted directly from surface height data.
The surface heights g, are given by:

surface height of i-th profile point above sea level (m) fori=2,..,n—1
g, =i fori=1 (le)
h, fori=n

Noting that surface height data should be used with a similar resolution as the profile spacing, when
using this method, spacing of less than the order of 10 m may lead to the overestimation of basic
transmission loss as the data will describe individual obstacles. Extensive testing has shown that use

of profile spacing of greater than the order of 50 m gives no benefit over the method described in
§3.2.1.

3.3 Radio-climatic zones

Information is also needed on what lengths of the path are in the radio-climatic zones described in
Table 3.

For reference purposes administration might wish to use the coastal contours as contained in the [TU
Digitized World Map (IDWM) which is available from the BR: https:/www.itu.int/pub/R-SOFT-
IDWM. If all points on the path are at least 50 km from the sea or other large bodies of water, then
only the inland category applies.

If the zone information is stored in successive points along the radio path, it should be assumed that
changes occur midway between points having different zone codes.
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TABLE 3

Radio-climatic zones

Zone type Code Definition

Coastal land Al Coastal land and shore areas, i.e. land adjacent to the sea up to an
altitude of 100 m relative to mean sea or water level, but limited to a
distance of 50 km from the nearest sea area. Where precise 100 m
data are not available an approximate value may be used

Inland A2 All land, other than coastal and shore areas defined as “coastal land”
above
Sea B Seas, oceans and other large bodies of water (i.e. covering a circle of

at least 100 km in diameter).

34 Terminal distances from the coast

If the path is over zone B two further parameters are required, des, der, giving the distance of the
transmitter and the receiver from the coast (km), respectively, in the direction of the other terminal.
For a terminal on a ship or sea platform the distance is zero.

3.5 Basic radio-meteorological parameters

The prediction procedure requires two radio-meteorological parameters to describe the variability of
atmospheric refractivity.

— AN (N-units/km), the average radio-refractivity lapse-rate through the lowest 1 km of the
atmosphere, provides the data upon which the appropriate effective Earth radius can be
calculated for path profile and diffraction obstacle analysis. Note that AN is a positive
quantity in this procedure.

- No (N-units), the sea-level surface refractivity, is used only by the troposcatter model as a
measure of variability of the troposcatter mechanism.

If local measurements are not available, these quantities can be obtained from the maps in the integral
digital products supplied with this Recommendation. The maps are contained in the files DN50.txt
and NO50.txt, respectively. The data are from 0° to 360° in longitude and from +90° to —90° in latitude,
with a resolution of 1.5° in both latitude and longitude. The data are used in conjunction with the
companion data files LAT.txt and LON.txt containing respectively the latitudes and longitudes of the
corresponding entries (grid points) in the files DN50.txt and N050.txt. For a location different from
the grid points, the parameter at the desired location can be derived by performing a bi-linear
interpolation on the values at the four closest grid points, as described in Recommendation
ITU-R P.1144.

TABLE 4
Integral digital products
Latitude Longitude

Filename Origin From To Spacing From To Spacing
(degree) (degree) (degree) (degree) (degree) (degree)

DNS50.txt P.453 90 =90 1.5 0 360 1.5

NO050.txt P.453 90 =90 1.5 0 360 1.5

LAT.txt P.453 90 =90 1.5 0 360 1.5

LON.txt P.453 90 =90 1.5 0 360 1.5
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These digital maps were derived from analysis of a ten-year (1983—1992) global dataset of radiosonde
ascents.

The digital maps are contained in the zip file R-REC-P.1812-8-202509-1!!ZIP-E.zip.

3.6 Incidence of ducting

The degree to which signal levels will be enhanced due to anomalous propagation, particularly
ducting, is quantified by a parameter o (%), the time percentage for which refractivity lapse-rates
exceeding 100 N-units/km can be expected in the first 100 m of the lower atmosphere. The value of
Bo is calculated as follows.

Calculate the parameter p1, which depends on the degree to which the path is over land (inland and/or
coastal) and water:

d 0.2
tm
W = 1016-667 4 10—5(0.496 +0.3541) 2)
where the value of p; shall be limited to p < 1,
and
v =1-exp(- 0.000412 a2 3)

dm: longest continuous land (inland + coastal) section of the great-circle path (km)
dim:  longest continuous inland section of the great-circle path (km).

The radio-climatic zones to be used for the derivation of di and dj» are defined in Table 3. If all
points on the path are at least 50 km from the sea or other large bodies of water, then only the inland
category applies and di» and dj», are equal to the path length, d.

Calculate the parameter 4, which depends on p; and the latitude of the path centre in degrees:

W, = “1(70.935+ 0.0176/p]) for || < 70°

3 (4)

My = “10. for |(p| >70°

where:
¢@: path centre latitude (degrees).

Calculate Bo:

5 10—0.015‘(p‘+1.67“1 s % for |(P| <700
4170 py % for [¢|>70°
(%)
3.7 Effective Earth radius
The median effective Earth radius factor kso for the path is given by:
157
ksg=———— 6
07157 — AN ©)

The value of the average radio-refractivity lapse-rate, AN, may be obtained from the integral digital
map DN50.txt, using the latitude and longitude of the path centre as representative for the entire path.
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The median value of effective Earth radius a. is given by:

a, = kgpa km (7a)

The effective Earth radius exceeded for o time, ap, is given by:
aB = kBa km (7b)

where kg = 3.0 is an estimate of the effective Earth-radius factor exceeded for o time.

A general effective Earth radius is defined, where a, = a. for 50% of time, and a, = ap for 0% of time.

3.8 Parameters derived from the path profile analysis

Values for a number of path-related parameters necessary for the calculations, as indicated in Table 5,
must be derived via an initial analysis of the path profile based on the value of a. given by
equation (7a). Information on the derivation, construction and analysis of the path profile is given in
Attachment 1 to this Annex.

4 The prediction procedure

4.1 General

The overall prediction procedure is described in this section. First, the basic transmission loss,
Ly (dB), not exceeded for the required annual percentage time, p%, and 50% locations is evaluated as
described in §§ 4.2 to 4.6 (i.e. the basic transmission losses due to LoS propagation, propagation by
diffraction, propagation by tropospheric scatter, propagation by ducting/layer reflection and the
combination of these propagation mechanisms to predict the basic transmission loss, respectively).
In §§ 4.7 to 4.8, methods to account for the inclusion of the effects of location variability and building
entry loss are described. Finally, § 4.10 gives expressions that relate the basic transmission loss to the
field strength (dB puV/m) for 1 kW effective radiated power.

TABLE 5

Parameter values to be derived from the path profile analysis

Parameter Description
d Great-circle path distance (km)
dy, diy Distance from the transmit and receive antennas to their respective horizons (km)
0, 0, Transmit and receive horizon elevation angles respectively (mrad)
0 Path angular distance (mrad)
hus, Dy Antenna centre height above mean sea level (m)
Nie, hre his and A, respectively
Ny Nre Effective heights of antennas above the terrain (m) for the ducting/layer-reflection model
and as defined in Attachment 1 to Annex 1
dp Aggregate length of the path sections over water (km)
® Fraction of the total path over water:
o =dy/d

where d is the great-circle distance (km) calculated using equation (73). For totally
overland paths: ® = 0.
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4.2 Line-of-sight propagation (including short-term effects)
The following should all be evaluated for both LoS and trans-horizon paths.
The basic transmission loss due to free-space propagation is given by:
Lpss = 92.4 4+ 20log f + 20log(dss) dB (8)
where:
f: frequency (GHz)

di; . distance between the transmit and receive antennas (km):

_ hts_hrs 2
dps = \/dz + ( 1000 ) (8)

d: great-circle path distance (km)

his: transmit antenna height above sea level (masl)
hrs: receive antenna height above sea level (masl).

Corrections for multipath and focusing effects at p and Bo percentage times, respectively, are given

by:
d,+d P
E =261- — 2 i | og | £ dB 9a
{ exp( 10 ” g(soj ()

d,+d, B
E, = 2.6{1 — exp(— ll—olj }bg(ij dB (9b)

Calculate the basic transmission loss not exceeded for time percentage, p%, due to LoS propagation
(regardless of whether or not the path is actually LoS), as given by:

Loop = Lo + Esp dB (10)
Calculate the basic transmission loss not exceeded for time percentage, 0%, due to LoS propagation
(regardless of whether or not the path is actually LoS), as given by:

Lyop = Lo + Esp dB (11)

4.3 Propagation by diffraction

Diffraction loss is calculated by the combination of a method based on the Bullington construction
and spherical-Earth diffraction. The Bullington part of the method is an expansion of the basic
Bullington construction to control the transition between free-space and obstructed conditions.
This part of the method is used twice: for the actual path profile, and for a zero-height smooth profile
with modified antenna heights referred to as effective antenna heights. The same effective antenna
heights are also used to calculate spherical-earth diffraction loss. The final result is obtained as a
combination of three losses calculated as above. For a perfectly smooth path the final diffraction loss
will be the output of the spherical-Earth model.

This method provides an estimate of diffraction loss for all types of path, including over-sea or over-
inland or coastal land, and irrespective of whether the path is smooth or rough, and whether LoS or
transhorizon.

This diffraction method is always used for median effective Earth radius. If an overall prediction is
required for p = 50%, no further diffraction calculation is necessary.
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In the general case where p < 50%, the diffraction calculation must be performed a second time for
an effective Earth-radius factor equal to 3. This second calculation gives an estimate of diffraction
loss not exceeded for Bo% time, where Po is given by equation (5).

The diffraction loss not exceeded for p% time, for 1% < p < 50%, is then calculated using a limiting
or interpolation procedure described in § 4.3.5.

The method uses an approximation to the single knife-edge diffraction loss as a function of the
dimensionless parameter, v, given by:

J(Vv) =6.9+2010g(w/(v—0.1)2 +1 +v—0.1j (12)

Note that J(—0.78) = 0, and this defines the lower limit at which this approximation should be used.
J(v) is set to zero for v <—0.78.

The overall diffraction calculation is described in sub-sections as follows:

Section 4.3.1 describes the Bullington part of the diffraction method. For each diffraction calculation
for a given effective Earth radius this is used twice. On the second occasion the antenna heights are
modified and all profile heights are zero.

Section 4.3.2 describes the spherical-Earth part of the diffraction model. This is used with the same
antenna heights as for the second use of the Bullington part in § 4.3.1.

Section 4.3.3 describes how the methods in § 4.3.1 and § 4.3.2 are used in combination to perform
the complete diffraction calculation for a given effective Earth radius. Due to the manner in which
the Bullington and spherical-earth parts are used, the complete calculation has come to be known as
the “delta-Bullington” model.

Section 4.3.4 describes the complete calculation for diffraction loss not exceeded for a given
percentage time p%.

4.3.1 The Bullington part of the diffraction calculation

In the following equations slopes are calculated in m/km relative to the baseline joining sea level at
the transmitter to sea level at the receiver. The distance and height of the i-th profile point are
di kilometres and g; metres above sea level respectively, i takes values from 1 to » where #n is the
number of profile points, and the complete path length is d kilometres. For convenience the terminals
at the start and end of the profile are referred to as transmitter and receiver, with heights in metres
above sea level & and Ay, respectively. Effective Earth curvature C. km™' is given by 1/a, where a,
is effective earth radius in kilometres. Wavelength in metres is represented by A. Values to be used
for a, are given in § 4.3.5.

Find the intermediate profile point with the highest slope of the line from the transmitter to the point.

Syim = Max [gi+5°°Ced;Ed‘di)‘h“] m/km (13)

where the profile index i takes values from 2 to n — 1.

Calculate the slope of the line from transmitter to receiver assuming a LoS path:

S, :% m/km (14)
Two cases must now be considered.
Case 1. Diffraction path is LoS

If Siim < Sy the diffraction path is LoS.
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Find the intermediate profile point with the highest diffraction parameter v:

_ max{ [gi 4 500C,d.(d — d,)— e @ —d;)+ hrcdl} 0.002d } (15)

Y d A, (d — d;)

max

where the profile index 7 takes values from 2 ton — 1.

In this case, the knife-edge loss for the Bullington point is given by:

Lie = (Vi) dB (16)
where the function J is given by equation (12) for v, greater than —0.78, and is zero otherwise.
Case 2. Diffraction path is transhorizon

If Siim = S the diffraction path is transhorizon.

Find the intermediate profile point with the highest slope of the line from the receiver to the point.

+500Cd.(d—d )—h
s, =max| = A(d=d,)=h, m/km (17)
rim d _ dl
where the profile index i takes values from 2 ton — 1.
Calculate the distance of the Bullington point from the transmitter:
hrc — htc + Srimd
dbp B Stim + Srim km (1 8)

Calculate the diffraction parameter, vs, for the Bullington point:

htc (d - dbp ) + hrcdbp 0.002d
v, = {hw + Simdpy — y Wy ld - dy) (19)
In this case, the knife-edge loss for the Bullington point is given by:
L.=J(v,) dB (20)

For L, calculated using either equation (16) or (20), Bullington diffraction loss for the path is now
given by:

L,,=L,. + {1 - exp(_ é ﬂ(lo +0.02d) dB (21)

4.3.2 Spherical-Earth diffraction loss

The spherical-Earth diffraction loss for effective antenna heights /sespn and hrespn (M), Lagpn, 1S
calculated as follows.

Calculate the marginal LoS distance for a smooth path:

d,, = |2a, (\/o.oommph +\/0.001hresph) km (22)

Values to be used for a, are given in § 4.3.5. Effective antenna heights Aespr and hyespn are defined in
equations (38a) and (38b).

If d > djos calculate diffraction loss using the method in § 4.3.3 below for a4 = a, to give Lz, and set
Laspn equal to Lgs. No further spherical-Earth diffraction calculation is necessary.

Otherwise continue as follows:
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Calculate the smallest clearance height between the curved-Earth path and the ray between the
antennas, /., given by:

di, d%,
htesph o 500;76 dse2 + hresph —500 c:e dsel

p p

he, = p m (23)
where:
d

dyy =5 (1+b) km (24a)
dseZ =d - dsel km (24b)

b =2 m"+lcos Ty 1 arccos 3¢ % (24¢)
3m, 3 3 2\(m, +1

where the arccos function returns an angle in radians

h - h
c = tesph resph (24d)
htesph + hresph
2
m, = 250d (24e)
ap (htesph + hresph)

Calculate the required clearance for zero diffraction loss, /e, given by:

h,, = 17456 dudoh . B
d

If hse > hyeq the spherical-Earth diffraction loss Lasys 1s zero. No further spherical-Earth diffraction
calculation is necessary.

Otherwise continue as follows:

Calculate the modified effective Earth radius, a.n, which gives marginal LoS at distance d given by:

a,, = 500 km (26)

2
d
{ V vespin T A Prespi J

Use the method in § 4.3.3 for aqi = aem to give La.

If Las is negative, the spherical-Earth diffraction loss Lagpn 1s zero, and no further spherical-Earth
diffraction calculation is necessary.

Otherwise continue as follows:

Calculate the spherical-Earth diffraction loss by interpolation:

hse
Ldsph :|:1_ 7 :ILdft dB (27)

req

4.3.3 First-term part of spherical-Earth diffraction loss

This sub-section gives the method for calculating spherical-Earth diffraction using only the first term
of the residue series. It forms part of the overall diffraction method described in § 4.3.2 above to give



Rec. ITU-R P.1812-8 17

the first-term diffraction loss La; for a given value of effective Earth radius aqs. The value of aqz to
use is given in § 4.3.2.

Set terrain electrical properties typical for land, with relative permittivity €. = 22.0 and conductivity
o =0.003 S/m and calculate Lg; using equations (29) to (36) and call the result Lagiana.

Set terrain electrical properties typical for sea, with relative permittivity € = 80.0 and conductivity o
= 5.0 S/m and calculate L4 using equations (29) to (36) and call the result Lasisea-

First-term spherical diffraction loss is now given by:

Lgft = 0Lgfrseq + (1 — ®)Laftiana dB (28)
where o is the fraction of the path over sea.
Start of calculation to be performed twice, as described above:

Normalized factor for surface admittance for horizontal and vertical polarization:

Ky =0.036(ay, /)" {(sr - 1)2{@”
/ (horizontal) (29a)

and
1/2

2
18
K, =K, |& +(70J (vertical) (29b)

If the polarization vector contains both horizontal and vertical components, e.g. circular or slant,
decompose it into horizontal and vertical components, calculate each separately and combine the
results by a vector sum of the field amplitude. In practice this decomposition will generally be
unnecessary because above 300 MHz a value of 1 can be used for By in equation (30).

Calculate the Earth ground/polarisation parameter:

1+1.6K*+0.67K* (30)
1+4.5K% +1.53k*

Bas =

where K 1s Ky or Ky according to polarisation.

Normalized distance:

1/3
X = 2188y % d 31)
Aaf
Normalized transmitter and receiver heights:
1/3
f2
Y, = 095758 | == | Prespn (32a)
" ay,
/3
f2
Y, = 095758, | =— | g (32b)

Ay,



18 Rec. ITU-R P.1812-8

Calculate the distance term given by:

11+10log( X)—-17.6X for X>1.6
X~ 1.425 (33)
—20log( X)—5.6488X for X <1.6
Define a function of normalized height given by:
_ 0.5 _ _
G(Y) = 17.6(B—-1.1) ) Slog(B—-1.1)-8 for B>2 (34)
20log( B+0.1B7) otherwise
where:
B = Bape¥ (35)
Limit G(Y) such that G(¥Y) =2+ 20log K
The first-term spherical-Earth diffraction loss is now given by:
Ly =~Fy -G(Y,)-G(1,) dB (36)

4.3.4 Complete “delta-Bullington” diffraction loss model

Use the method in § 4.3.1 for the path profile heights (gi) and antenna heights (4, h..). Set the
resulting Bullington diffraction loss for the actual path, Lpuia = Lsun as given by equation (21).

Attachment 3 to this Annex provides an alternative method to calculate Lp.is without using terrain
profile analysis.

Use the method in § 4.3.1 for a second time, with all profile heights, gi, set to zero, and modified
antenna heights given by:

h;c = htc - hstd m (373)
h}:c = hrc - hsrd m (37b)

where the smooth-Earth heights at transmitter and receiver, Ags and A4, are given in § 5.6.2 of
Attachment 1 to this Annex. Set the resulting Bullington diffraction loss for this smooth path,
Lpuits = Lyun as given by equation (21).

Use the method in § 4.3.2 to calculate the spherical-Earth diffraction loss Lasys for the actual path
length d km and with:

htesph = htc m (3 83)
hresph =, m (3 8b)

Diffraction loss for the general path is now given by:
Ly = Ly +max{ Ly, — Ly, » 0} dB (39)

4.3.5 The diffraction loss not exceeded for p% of the time

Use the method in § 4.3.4 to calculate diffraction loss L, for median effective Earth radius a, = a. as
given by equation (7a). Set median diffraction loss Laso = La.

If p = 50% the diffraction loss not exceeded for p% time, Lgp, is given by Laso.

If p <50%, the diffraction loss not exceeded for p% time, Ly, should be calculated as follows.
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Use the method in § 4.3.4 to calculate diffraction loss Ly for effective Earth radius not exceeded for
Bo% time a, = ap as given by equation (7b). Set diffraction loss not exceeded for Po% time
Lap = La.

The application of the two possible values of effective Earth radius factor is controlled by
an interpolation factor, Fi, based on a log-normal distribution of diffraction loss over the range
Bo%< p < 50%, given by:

0 if p = 50%
1(p/100) .

where /(x) is the inverse complementary cumulative normal distribution as a function of the
probability x. An approximation for /(x) which may be used with confidence for x <0.5 is given in
Attachment 2 to this Annex.

The diffraction loss, Ly, not exceeded for p% time, is now given by:
Lap = Laso + (Lag — Laso)F; dB (41)
Fi is defined by equation (40), depending on the values of p and fo.
The median basic transmission loss associated with diffraction, Lsaso, is given by:
Lpaso = Lpgs + Laso dB (42)
where Ly 1s given by equation (8).
The basic transmission loss associated with diffraction not exceeded for p% time is given by:
Lpa = Lpop + Lap dB (43)

where Lo, is given by equation (10).

4.4 Propagation by tropospheric scatter

NOTE 1 — At time percentages much below 50%, it is difficult to separate the true tropospheric scatter mode
from other secondary propagation phenomena which give rise to similar propagation effects. The “tropospheric
scatter” model adopted in this Recommendation is therefore an empirical generalization of the concept of
tropospheric scatter which also embraces these secondary propagation effects. This allows a continuous
consistent prediction of basic transmission loss over the range of time percentages p from 0.001% to 50%, thus
linking the ducting and layer reflection model at the small time percentages with the true “scatter mode”
appropriate to the weak residual field exceeded for the largest time percentage.

NOTE 2 — This troposcatter prediction model has been derived for interference prediction purposes and is not
appropriate for the calculation of propagation conditions above 50% of time affecting the performance aspects
of trans-horizon radio-relay systems.

The basic transmission loss due to troposcatter, L (dB), not exceeded for any time percentage, p, below 50%,
is given by:

0.7
Lps = 190.1 + Ly + 20logy(d) + 0.5736 — 0.15N, — 10.125 [logs, (%)] dB  (44)

where:

Ls:  frequency dependent loss:

Lp = 2510g10(f) — 2.5 [logs (g)]2 dB (45)

Ny: path centre sea-level surface refractivity from the integral digital map N050.txt
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4.5 Propagation by ducting/layer reflection

The basic transmission loss associated with ducting/layer-reflection not exceeded for p% time,
Lpq (dB), is given by:

Lya = Ar + A4(p) dB (46)
where:
Ar:  total of fixed coupling losses between the antennas and the anomalous
propagation structure within the atmosphere:
A, =102.45+20log(f)+20log(d, +d, )+ A, + A, + A, + A, + A, dB 47)
Ay empirical correction to account for the increasing attenuation with wavelength
in ducted propagation
45375-137.0f +92.5f dB  for £ <0.5GHz
A[f (f ) =
0 dB  for £>0.5GHz
or/ (47a)
Ag, Asr 2 site-shielding diffraction losses for the transmitting and receiving stations
respectively:
2010g(1+ 036107, (15 ) V%) + 026407, fV/3 B for 07, > 0 mrad
Ast,sr =
0 dB for 07 , < 0 mrad
’ (48)
where:
9;:}, = et’r — 0.1 dlt,lr nrad (483)
A, Ae: over-sea surface duct coupling corrections for the transmitting and receiving
stations respectively:
4, =-3exp(-0.25d>, f{1+tanh[0.07(50 -, . )|} dB  for ®20.75
®=>0.75
~3exp(-025d2, f1+tanh[0.07(50-,,. )]}  dB for d,, <d,,
Act,cr = dcl,cr < Skm
0 dB for all other conditions (49)

It is useful to note the limited set of conditions under which equation (49) is needed.

Aa(p): time percentage and angular-distance dependent losses within the anomalous
propagation mechanism:

A4;(p) = 749 + A(p) dB (50)

where:

va:  specific attenuation:

y,=5-10"a " dB/mrad (51)
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0': angular distance (corrected where appropriate (via equation (48a))
to allow for the application of the site shielding model in equation (46)):

3
0 = 10°d +0, +0, mrad (52)
ae
et’}, for e[’r <0.1 dlt,lr mrad
0;, = (52a)
0.1 dlt,lr for Ot’r > 0.1 dlt,lr mrad
A(p): time percentage variability (cumulative distribution):
r
A(p) = -12 + (1.2 + 3.7-103d) log [%J +12 (%} dB (53)
= 1076 B exp[— (9.51 — 4.8 log B+ 0.198 (log 5)2)~ 10‘6d1‘13] (53a)
(2.0058 — log B)
B=BoHakz % (54)
po:  correction for path geometry:
500 d’
M, = [ } (55)
“ [+ )
The value of p. shall not exceed 1.
a=-06—- td>le-107 (552)
where:
e 35
t: 1is defined in equation (3), and the value of a shall not be allowed to decrease
below —3.4
us:  correction for terrain roughness:
1 for 2, <10m
= (56)
exp|-4.6-10° (h, —10) (43+6d,)) for h >10m
and:
d; =mn (d —d;, —d,,, 40) km (56a)

The remaining terms have been defined in Tables 1 and 2 and Attachment 1 to this Annex.

4.6 Basic transmission loss not exceeded for p% time and 50% locations

The following procedure should be applied to the results of the foregoing calculations for all paths,
in order to compute the basic transmission loss not exceeded for p% time and 50% locations. In order
to avoid physically unreasonable discontinuities in the predicted notional basic transmission losses,
the foregoing propagation models must be blended together to get modified values of basic
transmission losses in order to achieve an overall prediction for p% time and 50% locations.
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Calculate an interpolation factor, Fj, to take account of the path angular distance:

F, :1.0—0.5{1.0+tanh(3.02’;(e ;)(9) ﬂ (57)

where:

®: fixed parameter determining the angular range of the associated blending;
set to 0.3 mrad

§: fixed parameter determining the blending slope at the end of the range; set to 0.8
0 : path angular distance (mrad) defined in Table 7.

Calculate an interpolation factor, F%, to take account of the path great-circle distance:

F, =1.0—0.5{1.0+tanh[3.0 K(‘Z;M ﬂ (58)

Sw
where:
d: great circle path length defined in Table 3 (km)

dgw: fixed parameter determining the distance range of the associated blending;
set to 20

k: fixed parameter determining the blending slope at the ends of the range;
set to 0.5.

Calculate a notional minimum basic transmission loss, Luinsop (dB), associated with LoS propagation
and over-sea sub-path diffraction:
Ly, +(1-w)L, forp<B, dB
L

minb0 p =

(59)
Lyyso + (LhOB +(1- O‘))Ldp —Lyys0)F; forp=>B, dB

where:

Lpop:  notional LoS basic transmission loss not exceeded for p% time, given by
equation (10)

Lpop: mnotional LoS basic transmission loss not exceeded for Po% time, given by
equation (11)

Lgy:  diffraction loss not exceeded for p% time, given by equation (41)

Lpaso:  median basic transmission loss associated with diffraction, given by
equation (42)

Fi: Diffraction interpolation factor, given by equation (40).

Calculate a notional minimum basic transmission 10ss, Lminnay (dB), associated with LoS and
transhorizon signal enhancements:

L
L,ipap =M1 {exp[%j + exp(%ﬂ dB (60)



Rec. ITU-R P.1812-8 23

where:

Lpa ©  ducting/layer reflection basic transmission loss not exceeded for p% time, given
by equation (46)
Lpo: mnotional LoS basic transmission loss not exceeded for p% time, given by
equation (10)
n= 25.

Calculate a notional basic transmission loss, Ly (dB), associated with diffraction and LoS or
ducting/layer-reflection enhancements:

L, for Loimay > Lia

Ly, = dB (61)
Lminbap + (Lbd -L )F}c for L < Lbd

‘minbap ‘minbap

where:

Lpq: basic transmission loss for diffraction not exceeded for p% time from
equation (43)

Luminbap :  notional minimum basic transmission loss associated with LoS propagation and
trans-horizon signal enhancements from equation (60)

Fi: interpolation factor given by equation (58), according to the value of the path
great-circle distance, d.

Calculate a modified basic transmission loss, Lswn (dB), which takes diffraction and LoS or
ducting/layer-reflection enhancements into account:

Lpan = Lpga + (Lminb0p - Lbda)F}' dB (62)
where:

Lpas :  notional basic transmission loss associated with diffraction and LoS or
ducting/layer-reflection enhancements, given by equation (61)

Lpinbop :  notional minimum basic transmission loss associated with LoS propagation and
over-sea sub-path diffraction, given by equation (59)

F;: interpolation factor given by equation (57), according to the value of the path
angular distance, 0.

Calculate the basic transmission loss not exceeded for p% time and 50% locations, L. (dB), as given
by:

Ly = —51og(107%2Lbs + 1070-2Lbam) dB (63)
where:

Lps:  basic transmission loss due to troposcatter not exceeded for p% time, given by
equation (44)

Lpam :  modified basic transmission loss taking diffraction and LoS ducting/
layer-reflection enhancements into account, given by equation (62).
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4.7 Location variability of losses

In this Recommendation, and generally, location variability refers to the spatial statistics of local
ground cover variations. This is a useful result over scales substantially larger than the ground cover
variations, and over which path variations are insignificant. As location variability is defined to
exclude multipath variations, it is independent of system bandwidth.

In the planning of radio systems, it will also be necessary to take multipath effects into account.
The impact of these effects will vary with systems, being dependent on bandwidths, modulations and
coding schemes. Guidance on the modelling of these effects is given in Recommendation
ITU-R P.1406.

Extensive data analysis suggests that the distribution of local mean field strength due to ground cover
variations is approximately lognormal.

Values of the standard deviation are dependent on the prediction resolution and frequency, and
empirical studies have shown a spread. Representative values, which relate to the 50™ percentile of
the distribution of standard deviation of location variability, are given by the following expression:

o, = (0.024f + 0.52)w, %28 dB (64)
where:
f+ required frequency (GHz)

wq . prediction resolution (m).

The prediction resolution is the width of the square area over which the variability applies. The
percentage locations, p;%, can vary between 1% and 99%. This model is not valid for percentage
locations less than 1% or greater than 99%.

The values given in Table 6 have been found appropriate for the planning of digital terrestrial
television (DTT) services. They were found to be equivalent to the 93™ percentile of the measurement
cumulative distribution function for a rooftop height antenna in a 100 x 100 m area.

TABLE 6

Values of location variability standard deviations used in certain planning situations

Standard deviation (dB)
100 MHz 600 MHz 2 000 MHz
Broadcasting, DTT 5.5 5.5 5.5

When the receiver/mobile is located on land and outdoors but its height above ground is greater than
or equal to the height of representative clutter, it is reasonable to expect that the location variability
will decrease monotonically with increasing height until, at some point, it vanishes. In this
Recommendation, the location variability height variation, u(#), is given by:

u(h)=1 for 0<h<R
u(h)zl—? for R<h<R+10 (65)
u(h)=0 for R+10<h

where R (m) is the height of representative clutter at the receiver/mobile location. Therefore, for a
receiver/mobile located outdoors, the standard deviation of the location variability, o, as given by
either equation (64) or Table 6, should be multiplied by the height variation function, u(%4), given in
equation (65), when computing values of the basic transmission loss for values of p;% different from
50%.
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4.8 Building entry loss

Definitions, theoretical models and references to empirical results relating to building entry loss can
be found in Recommendation ITU-R P.2040.

The field-strength variation for indoor reception is the combined result of the outdoor variation, oy,
and the variation due to building attenuation, . (see Recommendation ITU-R P.2040). These
variations are likely to be uncorrelated. The standard deviation for indoor reception, o; can therefore
be calculated by taking the square root of the sum of the squares of the individual standard deviations.

c, = w/c% + 612,8 dB (66)

where o, is the standard deviation of location variability, as given by equation (64) or Table 6.

4.9 Basic transmission loss not exceeded for p% time and p; % locations

In order to compute the desired percentage locations, the median loss, L., and the standard deviation,
Gloc, are given by:

L,.=0 (outdoors) dB (67a)
Lige = Lpe (indoors) dB (67b)
and:
0, =u(h)6, (outdoors) dB (68a)
Gjpc =0; (indoors) dB (68b)

where the median building entry loss, Lee, 1s given in Recommendation ITU-R P.2040, the height
function, u(h), is given by equation (65) and the standard deviations, 6, and o;, are given by
equation (64) (or Table 6) and equation (66), respectively.

The basic transmission loss not exceeded for p% time and p;% locations, L, (dB), is given by:

L= max{Lbop,Lbc +L,. —l(l%jc,w} dB (69)

where:

Lpop:  basic transmission loss not exceeded for p% time and 50% locations associated
with LoS with short term enhancements, given by equation (10)

Lpe::  basic transmission loss not exceeded for p% of time and 50% locations,
including the effects of terminal clutter losses, given by equation (63)

Lie:  median value of the location loss, as given by equations (67a) and (67b)

I(x): inverse complementary cumulative normal distribution as a function of
probability, x. An approximation for /(x) which may be used for
0.000001 <x <0.999999 is given in Attachment 2 to this Annex

Gle:  combined standard deviation (i.e. building entry loss and location variability),
given by equations (68a) and (68b).

The percentage locations, p1%, can vary between 1% and 99%. This model is not valid for percentage
locations less than 1% or greater than 99%.
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4.10  The field strength exceeded for p% time and p.% locations

The field strength normalized to 1 kW effective radiated power exceeded for p% time and p;%
locations, £, dB(uV/m), may be calculated using:

Ep =199.36 + 20 log( /) — L, dB(uV/m) (70)
where:
Ly: basic transmission loss not exceeded for p% time and p;% locations calculated
by equation (69)
f: required frequency (GHz).
Attachment 1
to the Annex
Path profile analysis
1 Introduction

For path profile analysis, a path profile of terrain heights above mean sea level is required.
The parameters that need to be derived from the path profile analysis for the purposes of the
propagation models are given in Table 7.

2 Construction of path profile

Based on the geographical coordinates of the transmitting (¢, ;) and receiving (¢, V) stations,
terrain heights (above mean sea level) along the great-circle path should be derived from
a topographical database or from appropriate large-scale contour maps. The distance resolution of the
profile should be as far as is practicable to capture significant features of the terrain. Typically,
a distance increment of 30 m to 1 km is appropriate. In general, it is appropriate to use longer distance
increments for longer paths. The profile should include the ground heights at the transmitting and
receiving station locations as the start and end points. The equations of this section take Earth
curvature into account where necessary, based on the value of a. found in equation (7a).

Although equally spaced profile points are considered preferable, it is possible to use the method with
non-equally spaced profile points. This may be useful when the profile is obtained from a digital map
of terrain height contours. However, it should be noted that the Recommendation has been developed
from testing using equally spaced profile points; information is not available on the effect of non-
equally spaced points on accuracy.

For the purposes of this Recommendation the point of the path profile at the transmitting station is
considered as point 1, and the point at the receiving station is considered as point n. The path profile
therefore consists of n points. Figure 1 gives an example of a path profile of terrain heights above
mean sea level, showing the various parameters related to the actual terrain.
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FIGURE 1
Example of a (trans-horizon) path profile

Interfering station (T) Interfered-with

station (R)

Note I — The value of 6, as drawn will be negative.

P.1812-01
Table 7 defines parameters used or derived during the path profile analysis.
TABLE 7
Path profile parameter definitions
Parameter Description

a Average physical Earth’s radius (6 371 km)

e Effective Earth’s radius (km)

d Great-circle path distance (km)

d; Great-circle distance of the i-th profile point from the transmitter

dii Incremental distance for regular (i.e. equally spaced) path profile data (km)

f Frequency (GHz)

A Wavelength (m)

s Transmitter antenna height (m) above mean sea level (amsl)

Ry Receiver antenna height (m) (amsl)

0, For a trans-horizon path, horizon elevation angle above local horizontal (mrad), measured
from the transmitting antenna. For a LoS path this should be the elevation angle of the
receiving antenna

0, For a trans-horizon path, horizon elevation angle above local horizontal (mrad), measured
from the receiving antenna. For a LoS path this should be the elevation angle of the
transmitting antenna
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TABLE 7 (end)

Parameter Description
0 Path angular distance (mrad)
s Height of the smooth-Earth surface (amsl) at the transmitting station location (m)
hsr Height of the smooth-Earth surface (amsl) at the receiving station location (m)
hi Height of the i-th terrain point amsl (m)

hi: ground height of the transmitter
h,: ground height of receiver

Pom Terrain roughness (m)
Nie Effective height of transmitting antenna (m)
Nre Effective height of receiving antenna (m).

3 Path length

The path length can be obtained using great-circle geometry (based on the average physical Earth
radius a) from the geographical coordinates of the transmitting (¢;, y,) and receiving (¢, y,) stations.
Alternatively the path length can be found from the path profile. For general cases, the path length, d
(km), can be found from the path profile data:

d=d, km (71)
For regularly spaced path profile data it is also true that:

fori=1, ..., n, where d is the incremental path distance (km).

4 Path classification

The path must be classified into LoS or transhorizon only for the determination of distances dj; and dj,
and elevation angles 0; and 0,, see below.

The path profile must be used to determine whether the path is LoS or trans-horizon based on the
median effective Earth’s radius of a., as given by equation (7a).

A path is trans-horizon if the physical horizon elevation angle as seen by the transmitting antenna
(relative to the local horizontal) is greater than the angle (again relative to the transmitter's local
horizontal) subtended by the receiving antenna.

The test for the trans-horizon path condition is thus:

Omax = 9¢a mrad (73)
where:
0, = maz;< 6) mrad (74)
0;:  elevation angle to the i-th terrain point
8, = 1000 arctan (% - %) mrad (75)
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where:
hi: height of the i-th terrain point amsl (m)
hi:  transmitter antenna height amsl (m)
di:  distance from transmitter to the i-th terrain element (km).
0:;q = 1000 arctan (% - ziae) mrad (76)
where:
hrs:  receiving antenna height amsl (m)
d. total great-circle path distance (km)
a.. median effective Earth’s radius appropriate to the path (see equation (7a)).
5 Derivation of parameters from the path profile

The parameters to be derived from the path profile are those contained in Table 7.

5.1 Transmitting antenna horizon elevation angle above the local horizontal, 0,
The transmitting antenna’s horizon elevation angle relative to the local horizontal is given by:
0 = max (0,,4x »O¢a) mrad (77)

with 0,4 as determined in equation (74). Thus for a LoS path the transmitting antenna's horizon
elevation angle is considered to be the elevation angle of the line to the receiving antenna.

5.2 Transmitting antenna horizon distance, dj

The horizon distance is the minimum distance from the transmitter at which the maximum antenna
horizon elevation angle is calculated from equation (74).

d;=d; km  formax(6;) (78)

For a LoS path, the index i should be the value which gives the maximum diffraction parameter v:

Vinax = max{ [hl- +500C,d,(d - d;) - ld - dc;)+ hrsdz} M?-((c)iozil )}
A

(78a)

where the profile index i takes values from 2 to n — 1, and Ce. is effective Earth curvature as defined
in § 4.3.1 of Annex 1.

53 Receiving antenna horizon elevation angle above the local horizontal, 0,

For a LoS path, 0, is given by:

8, = 1000 arctan [% - %] mrad (79)

Otherwise, 0, is given by:

n—1

6, = max (6) mrad (80)
hax

8, = 1000 arctan[ hj=hrs d_d’]

0 (a-a)  za; mrad (80a)
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5.4 Receiving antenna horizon distance, d;,

The horizon distance is the minimum distance from the receiver at which the maximum antenna
horizon elevation angle is calculated from equation (80).

di=d—d; km  for max(6;) (81)
For a LoS path, d;, is given by:
dp=d—d km (81a)

5.5 Angular distance 0 (mrad)

10° d
0= +6, +6, mrad (82)
ae
5.6 “Smooth-Earth” model and effective antenna heights

A “smooth-Earth” surface is derived from the profile to calculate effective antenna heights both for
the diffraction model, and for an assessment of path roughness required by the ducting/
layer-reflection model. The definitions of effective antenna heights differ for these two purposes.

Section 5.6.1 fits a smooth-Earth surface to the profile, from which are obtained the heights of this
surface at the terminals, Ay, and /-

In § 5.6.2, hy, and Ay are used to calculate modified smooth-Earth heights at the terminals, /s and
hsra, which in § 4.3.4 of Annex 1 are used to calculate effective antenna heights for the diffraction
model. Depending on the profile, 4sa and A5« may have different values from /4, and A respectively.

In § 5.6.3, hy, and A are used to calculate effective antenna heights /4., and 4,. and a terrain roughness
parameter 4, which are required in the ducting/layer-reflection model described in § 4.5 of Annex 1.

5.6.1 Deriving the smooth-Earth surface

Calculate the smooth-Earth heights at the terminals, 4, and Ay, as follows:

vy = ié(d,- —d;_y Nh; + 1) (83)
vy = Z(d d;, NhQ2d; +d;_y)+ b (d; +2d;_)] (84)
i=2

where:

hs: height amsl (m), of the smooth-Earth surface at the path origin, i.e. at the
transmitter

hg- . height amsl (m), of the smooth-Earth surface at the end of the path, i.e. at the
receiver.
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5.6.2 Smooth-surface heights for the diffraction model

Find the highest obstruction height above the straight-line path from transmitter to receiver /s, and
the horizon elevation angles ooss, 0sr, all based on flat-Earth geometry, according to:

hops = max(H;) m (87a)
o, = rmx(%] mrad (87b)
o,y :ma){ (dHid )} mrad (87¢)

where:

[htc (d — di )+ hrcdi]
d

and the profile index i takes values from 2 to (n — 1).

H =h- m (87d)

Calculate provisional values for the heights of the smooth surface at the transmitter and receiver ends
of the path:

If hops 1s less than or equal to zero, then:

hgy, = hy, mamsl (88a)
hgy, = hg, M amsl (88b)
otherwise:
hyy, = My — hypeg, mamsl (88c)
Ry = hyp— hopeg, M amsl (88d)
where:
a
T (aabt :_béxobr) (85
®ppy
& (aobt + aobr) (850

Calculate final values for the heights of the smooth surface at the transmitter and receiver ends of the
path as required by the diffraction model:

If hgyp 1s greater than A then:

hys =h  mamsl (89a)
otherwise:
hgy = hgy,  mamsl (89b)
If hgp 1s greater than 4, then:
hg.qg =h,  mamsl (89¢)

otherwise:
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hg,q = hgp, M amsl (89d)

5.6.3 Parameters for the ducting/layer-reflection model

Calculate the smooth-Earth heights at transmitter and receiver as required for the roughness factor
given by:

h, =min (h

st>

h) m (90a)
hsr = rr]irl (hsr’ hn) m (9Ob)

The slope, m, of the smooth-Earth surface should be calculated as:
hsr — hst

= _sr st m/km 91
m y O
The terminal effective heights for the ducting/layer-reflection model, 4. and 4., are given by:
h,=h,+h—h, m (92a)
h}’(f = hrg + h"l - hSV m (92b)

The terrain roughness parameter, /,, (m) is the maximum height of the terrain above the smooth-Earth
surface in the section of the path between, and including, the horizon points:

[lr
h, = max [hl. — (h, + mdl)] m (93)
E=i
where:

i index of the profile point at distance dj; from the transmitter
i~ . index of the profile point at distance d;- from the receiver.

The smooth-Earth surface and the terrain roughness parameter /4, are illustrated in Fig. 2.

FIGURE 2

An example of the smooth-Earth surface and terrain roughness parameter

: Interfered-with
station (R)
7

P.1812-02
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Attachment 2
to the Annex

An approximation to the inverse complementary cumulative

normal distribution function

33

The following approximation to the inverse complementary cumulative normal distribution function
is valid for 0.000001 < x < 0.999999 and is in error by a maximum of 0.00054. If x < 0.000001, which
implies Bo < 0.0001%, x should be set to 0.000001. Similar considerations hold for x > 0.999999. This
approximation may be used with confidence for the interpolation function in equations (40) and (59)
and in equation (69). For the latter equation, however, the value of x must be limited: 0.01 <x <0.99.

The function /(x) is given by:

I(x)=T(x)—§&(x) for 0.000001 <x <0.5
and, by symmetry:

I(x)=E1-x)-T(A-x) for 0.5 <x <0.999999

where:

T(x) = y/[-2 n(x)]

[(C,T(x)+ C)T()]+C,
[(D,T(x) + D) T(x) + D] T(x)+1

&(x) =

Co = 2.515516698

C; = 0.802853
¢, =0.010328
D, = 1.432788
D, = 0.189269
D; = 0.001308
Attachment 3

to the Annex

(94a)

(94b)

(95a)

(95b)

(95c¢)
(95d)
(95¢)
(951)
(95g)
(95h)

An alternative method to calculate the spherical earth diffraction loss L yuus

This Attachment gives an alternative method to calculate L.us without using terrain profile analysis.

If d<dws (LoS), calculate the diffraction parameter for the smallest clearance height /e

(equation (23)) between the curved-Earth path and the ray between the antennas with the distance d wl

(equation (24a)):
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0.002d
Vmax = ~hse " [7—mm— (96)

The knife-edge loss for this point is given by:

Lys = ](Vmax) dB 7

If d > djos (non-line-of-sight (NLoS)), find the highest slope of the line from the transmitter antenna
to the curved-Earth path.

S,, =500C,d —2,/500C h,,,, m/km 98)
Then find the highest slope of the line from the receiver antenna to the curved-Earth path.
S,,, =500C,d —2,/500C,h,,,, m/km (99)
Use these two slopes to calculate the Bullington point as:
d — hresph - hte.vph + Srmd
Son+ Sy km (100)

Calculate the diffraction parameter v; for the Bullington point:

_ . htesph(d - dv) + hresphds 0.00ZCZ
Vs - |:htesph + Stmds d MS (d _ déj

(101)
The knife-edge loss for the Bullington point is given by:
Lys =] (vs) dB (102)

For L, calculated using either equation (97) or equation (102), the Bullington diffraction loss for the
smooth path is given by:

Lbulls = Lus + (1 - exp( — é’us jj(l 0 + 002d)

(103)




