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terrestrial services in the frequency range 30 MHz to 6 GHz
(Question ITU‑R 203/3)
(2007-2009-2012-2013-2015-2019-2021-2023-2025)
Scope
This Recommendation describes a propagation prediction method suitable for terrestrial point-to-area services in the frequency range 30 MHz to 6 GHz. It predicts signal levels at the median of the multipath distribution exceeded for a given percentage of time, p%, in the range 1% ≤ p ≤ 50% and a given percentage of locations, pL%, in the range 1% ≤ pL ≤ 99%. The method provides detailed analysis based on the terrain profile.
The method is suitable for predictions for radiocommunication systems utilizing terrestrial circuits having path lengths from 0.25 km up to about 3 000 km distance, with both terminals within approximately 3 km height above ground. It is not suitable for propagation predictions on either air-ground or space-Earth radio circuits.
This Recommendation complements Recommendation ITU-R P.1546.
Keywords
Long range path-specific propagation, tropospheric paths/circuits, basic transmission loss predictions, time and location variability
Abbreviations/Glossary
amsl	above mean sea level
DTT	Digital terrestrial television
IDWM	ITU digitized world map
LoS	Line-of-sight
NLoS	Non-line-of-sight
P-P 	Point-to-Point
UHF	Ultra-high frequency
VHF	Very high frequency
Related ITU Recommendations
Recommendation ITU-R P.452 – Prediction procedure for the evaluation of interference between stations on the surface of the Earth at frequencies above about 100 MHz
Recommendation ITU-R P.528 – A propagation prediction method for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands
Recommendation ITU-R P.530 – Propagation data and prediction methods required for the design of terrestrial line-of-sight systems
Recommendation ITU-R P.617 – Propagation prediction techniques and data required for the design of trans-horizon radio-relay systems
Recommendation ITU-R P.844 – Ionospheric factors affecting frequency sharing in the VHF and UHF bands (30 MHz-3 GHz)
Recommendation ITU-R P.1144 – Guide to the application of the propagation methods of Radiocommunication Study Group 3
Recommendation ITU-R P.1406 – Propagation effects relating to terrestrial land mobile and broadcasting services in the VHF and UHF bands
Recommendation ITU-R P.1411 – Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz
Recommendation ITU-R P.1546 – Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 4 000 MHz
Recommendation ITU-R P.2001 – A general purpose wide-range terrestrial propagation model in the frequency range 30 MHz to 50 GHz
Recommendation ITU-R P.2040 – Effects of building materials and structures on radio-wave propagation above about 100 MHz
NOTE – The latest revision/edition of the Recommendation should be used.
The ITU Radiocommunication Assembly,
considering
a)	that there is a need to give guidance to engineers in the planning of terrestrial radiocommunication services in the VHF and UHF bands;
b)	that, for stations working in the same or adjacent frequency channels, the determination of the minimum geographical distance of separation required to avoid unacceptable interference due to long-distance terrestrial propagation is a matter of great importance,
recognizing
a)	that Recommendation ITU‑R P.528 provides guidance on the prediction of point-to-area basic transmission loss for the aeronautical mobile service for the frequency range 100 MHz to 30 GHz;
b)	that Recommendation ITU‑R P.452 provides guidance on the detailed evaluation of microwave interference between stations on the surface of the Earth at frequencies above about 0.1 GHz;
c)	that Recommendation ITU‑R P.617 provides guidance on the prediction of point-to-point (P‑P) propagation loss for trans-horizon radio-relay systems for the frequency range above 30 MHz and for the distance range 100 to 1 000 km;
d)	that Recommendation ITU‑R P.1411 provides guidance on prediction for short-range (up to 1 km) outdoor services;
e)	that Recommendation ITU‑R P.530 provides guidance on the prediction of P-P propagation loss for terrestrial line-of-sight systems;
f)	that Recommendation ITU‑R P.1546 provides guidance on the prediction of point-to-area field strengths in the VHF and UHF bands based principally on statistical analyses of experimental data;
g)	that Recommendation ITU-R P.2001 provides a wide-range terrestrial propagation model for the frequency range 30 MHz to 50 GHz including both fading and enhancement statistics which is well suited for use in Monte-Carlo simulations;
h)	that Recommendation ITU-R P.2040 provides guidance on the effects of building material properties and structures on radio-wave propagation,
recommends
that the procedure given in the Annex should be used for the detailed evaluation of point‑to‑area signal levels in connection with these services.
NOTE – Long range propagation paths may also occur at VHF via the ionosphere. These modes are summarized in Recommendation ITU-R P.844.
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[bookmark: _Toc203051684]1	Introduction
The propagation prediction method described in this Annex is recommended for the detailed evaluation of signal levels suitable for use in connection with terrestrial point-to-area services in the frequency range 30 MHz to 6 000 MHz. It predicts the signal level (i.e. electric field strength) exceeded for a given percentage, p%, of an average year in the range 1% ≤ p ≤ 50% and pL% locations in the range 1% ≤ pL ≤ 99%. Therefore, this method may be used to predict both the service area and availability for a desired signal level (coverage), and the reductions in this service area and availability due to undesired, co- and/or adjacent-channel signals (interference).
The propagation model of this method is symmetric in the sense that it treats both radio terminals in the same manner. From the model’s perspective, it does not matter which terminal is the transmitter and which is the receiver. However, for convenience in the model’s description, the terms “transmitter” and “receiver” are used to denote the terminals at the start and end of the radio path, respectively.
The method is first described in terms of calculating basic transmission loss (dB) not exceeded for p% time for the median value of locations. The location variability element is then characterized statistically with respect to receiver locations, in addition to the building entry loss element from Recommendation ITU-R P.2040. A procedure is then given for converting to electric field strength (dB(μV/m)) for an effective radiated power of 1 kW.
This method is intended primarily for use with systems using low-gain antennas. However, the change in accuracy when high-gain antennas are used only affects the troposcatter element of the overall method, and the change in the predictions is small. For example, even with 40 dBi antennas at both ends of the link the over-estimation of troposcatter signals will amount to only about 1 dB.
The method is suitable for predictions for radiocommunication systems utilizing terrestrial circuits having path lengths from 0.25 km up to about 3 000 km distance, with both terminals within approximately 3 km height above ground. It is not suitable for propagation predictions on either air‑ground or space-Earth radio circuits.
The propagation prediction method in this Annex is path-specific. Point-to-area predictions using this method consist of series of many point-to-point (P-P) (i.e. transmitter-point-to-receiver-multipoint) predictions, uniformly distributed over notional service areas. The number of points should be large enough to ensure that the predicted values of basic transmission losses or field strengths thus obtained are reasonable estimates of the median values, with respect to locations, of the corresponding quantities for the elemental areas that they represent.
In consequence, it is assumed that users of this Recommendation are able to specify detailed terrain profiles (i.e. elevations above mean sea level) as functions of distance along the great circle paths (i.e. geodesic curves) between the terminals, for many different terminal locations (receiver-points). For most practical applications of this method to point-to-area coverage and interference predictions, this assumption implies the availability of a digital terrain elevation database, referenced to latitude and longitude with respect to a consistent geodetic datum, from which the terrain profiles may be extracted by automated means. If these detailed terrain profiles are not available, then Recommendation ITU-R P.1546 should instead be used for predictions.
In view of the foregoing, the location variability element of this Recommendation and the building entry loss model element of Recommendation ITU-R P.2040 are characterized via the statistics of lognormal distributions with respect to receiver locations. Although this statistical characterization of the point-to-area propagation problem would appear to make the overall model unsymmetrical (i.e. non-reciprocal), users of this Recommendation should note that the location variability could, in principle, be applied at either end of the path (i.e. either terminal), or even both (i.e. the transmitter and the receiver). However, the location variability correction is only meaningful in situations when exact location of a given terminal is unknown and a statistical representation over that terminal’s potential locations is required. There are unlikely to be many situations where this could meaningfully be applied to the transmitter location. If the locations of both terminals are known exactly and this procedure is being used in P-P mode, then this Recommendation is only applicable with pL = 50%.
A similar point is true regarding building entry losses. The argument is slightly more complicated than for location variability owing to the fact that the median entry loss correction is non-zero. At the transmitter end, users should also add the building entry loss to the basic transmission loss if the transmitter is inside a building, but users must also be aware that the use of median loss values may be misleading if the transmitter is not in a “median” location.
[bookmark: _Toc203051685]2	Model elements of the propagation prediction method
This propagation prediction method takes account of the following model elements:
–	line-of-sight (LoS);
–	diffraction (embracing smooth-Earth, irregular terrain and sub-path cases);
–	tropospheric scatter;
–	anomalous propagation (ducting and layer reflection/refraction);
–	location variability;
–	building entry losses (from Recommendation ITU-R P.2040).
[bookmark: _Toc203051686]3	Input parameters
[bookmark: _Toc398118785][bookmark: _Toc203051687]3.1	Basic input data
Table 1 describes the basic input data, which defines the radio terminals, the frequency, and the percentage time and locations for which a prediction is required.
The latitude and longitude of the two stations are stated as basic inputs on the basis that they are needed to obtain the path profile. Radiometeorological parameters must be obtained for a single location associated with the radio path, and for a long path the path-centre should be selected. It is appropriate to obtain the radiometeorological parameters for the transmitter location when predicting its coverage area. 
TABLE 1
Basic input data
	Parameter
	Minimum
	Maximum
	Description

	f (GHz)
	0.03
	6.0
	Frequency (GHz)

	p (%)
	1.0
	50.0
	Percentage of average year for which the calculated signal level is exceeded

	pL (%)
	1
	99
	Percentage of locations for which the calculated signal level is exceeded

	φt, φr (degrees)
	−80
	+80
	Latitude of transmitter, receiver 

	ψt, ψr (degrees)
	−180.0
	180.0
	Longitude of transmitter, receiver (positive = East of Greenwich)



TABLE 1 (end)
	Parameter
	Minimum
	Maximum
	Description

	htg, hrg (m)
	1
	3 000
	Antenna centre height above ground level

	Polarization
	
	
	Signal polarisation, e.g. vertical or horizontal

	ws (m)
	1
	100
	Width of street. The value of 27 should be used unless specific local values are available.



Polarisation in Table 1 is not a parameter with a numerical value. The information is used in § 4.3.3 in connection with equations (29a), (29b) and (30).
[bookmark: _Toc203051688]3.2	Radio path profile
The path profiles used in the method described below require path-specific data for terrain heights, and in addition either path-specific clutter (ground cover) categories or path-specific surface heights along the path. Terrain heights refer to bare-Earth to differentiate from the surface heights which include the natural or man-made structures on top of the terrain. 
A profile for the radio path is required for the application of the propagation prediction method. In principle, this consists of three arrays each having the same number of values, n, as follows:
	di: distance from transmitter of i-th profile point (km)	(1a)
	hi: terrain height of i-th profile point above sea level (m)	(1b)
	gi: surface height of i-th profile point above sea level (m)	(1c)
where:
	i :	1, 2, 3, ..., n = index of the profile point
	n :	number of profile points.
The height of clutter should not be added to the terrain heights at the transmitter and receiver. Thus g1 is the terrain height at the transmitter in metres above sea level and gn is the terrain height at the receiver in metres above sea level. 
There must be at least one intermediate profile point between the transmitter and the receiver. Thus n must satisfy n ≥ 3. Such a small number of points is appropriate only for short paths, less than of the order of 1 km.
Note that the first profile point is at the transmitter. Thus, d1 is zero and h1 is the terrain height at the transmitter in metres above sea level. Similarly, the n-th profile point is at the receiver. Thus, dn is the path length in km, and hn the terrain height at the receiver in metres above sea level.
No specific distance between profile points is given. Assuming that profiles are extracted from digital terrain elevation and ground cover (clutter) datasets, a suitable spacing will typically be similar to the point spacing of the source datasets of similar resolution to each other. The profile points are not required to be equally-spaced, but it is desirable that they are at a similar spacing for the whole profile.
Two profile calculation methods may be used to derive the surface height gi, these are outlined in the following sections. The first uses ground cover data to determine a representative clutter height which can be added to the terrain heights, the second uses surface-height data, where heights include clutter with no explicit distinction between terrain and clutter.
3.2.1	Terrain and ground cover data
The method includes:
–	the construction of a terrain profile using actual terrain heights;
–	based on the clutter categories, the addition of representative clutter heights to the terrain profile.
If this method is used to calculate diffraction loss using the terrain profile without clutter, the diffraction loss will be under-estimated in cluttered environments, as opposed to combined representation of terrain and clutter. This method has been developed and validated against digital terrain data, by combining digital terrain data with statistical representative clutter categories. It is important to note that diffraction loss may be over-estimated if the terrain heights , include natural or man-made structures on top of the terrain. If accurate surface-heights are available, an improved estimation of propagation loss may be obtained using the profile calculation method expanded in § 3.2.2, or other techniques such as 3-D ray tracing, which would include the effect of diffraction around buildings, could be explored.
In this method the surface height profile is approximated using the terrain heights with the addition of representative clutter heights based on the clutter categories at each profile point.
The surface heights  are given by: 
		(1d)
When using this method the profile spacing should be no less than the order of 30 m.
The “representative clutter height” referred to in equation (1c) concerns statistical height information associated with ground cover classification, such as vegetation and buildings, i.e. a single height value assigned to each ground cover/clutter class. Adding representative clutter heights to a profile is based on the assumption that the heights hi represent the bare surface of the Earth. If the radio path passes over woodland or urbanization where diffraction or sub-path obstruction occurs, in general the effective profile height will be higher because the radio signal will travel over the clutter. Thus a more suitable representation of the profile can be obtained by adding representative heights to account for the clutter.
The appropriate addition is not necessarily physical, such as rooftop heights in the case of buildings. Where gaps exist between clutter objects, as seen by the radio wave, some energy may travel between rather than over them. In this situation the presence of clutter is expected to increase diffraction loss, but not by as much as raising the profile to the physical clutter height.
This applies particularly to high-rise urban areas. Categories such as “dense urban” or “high-rise urban” tend to be associated with building heights of 30 metres or more. But some high-rise areas have large spaces between the tall buildings, and it is possible for low-loss paths to exist passing around them, rather than over the roofs. Smaller values of representative heights rather than the physical clutter heights may be appropriate in such cases.
At the other extreme, even in areas classified as “open” or “rural” it is unusual for the ground to be completely bare, that is, free of any objects which might add to propagation losses. Thus, small values of representative clutter heights rather than zero, might be appropriate in many cases.
[bookmark: _Hlk199739322]Thus, representative clutter height depends not only on the typical physical height of clutter objects but also on the horizontal spacing of objects and the gaps between them. There is no generally accepted standard as to what a clutter category, such as “urban”, represents in physical terms in different countries. Where available, representative clutter height information based on local clutter height statistics or other sources should be used. Alternatively, clutter classification models developed based on local or regional geospatial data and validated against measurements, are in use in some administrations. Table 2 suggests default values for representative clutter heights which may be used in the absence of region/country-specific information.
TABLE 2
Default representative clutter height values
	Clutter category
	Representative clutter height (m)

	
	Add to profile of equation (1c) 
for i = 2 to n – 1

	Water/sea
	0

	Open/rural
	0

	Suburban
	10

	Urban/trees/forest
	15

	Dense urban
	20



3.2.2	Terrain and surface data
In this method the surface height profile is extracted directly from surface height data.
The surface heights  are given by:
		(1e)
Noting that surface height data should be used with a similar resolution as the profile spacing, when using this method, spacing of less than the order of 10 m may lead to the overestimation of basic transmission loss as the data will describe individual obstacles. Extensive testing has shown that use of profile spacing of greater than the order of 50 m gives no benefit over the method described in § 3.2.1.
[bookmark: _Toc203051689]3.3	Radio-climatic zones
Information is also needed on what lengths of the path are in the radio-climatic zones described in Table 3.
For reference purposes administration might wish to use the coastal contours as contained in the ITU Digitized World Map (IDWM) which is available from the BR: https://www.itu.int/pub/R-SOFT-IDWM. If all points on the path are at least 50 km from the sea or other large bodies of water, then only the inland category applies.
If the zone information is stored in successive points along the radio path, it should be assumed that changes occur midway between points having different zone codes.
TABLE 3
Radio-climatic zones
	Zone type
	Code
	Definition

	Coastal land
	A1
	Coastal land and shore areas, i.e. land adjacent to the sea up to an altitude of 100 m relative to mean sea or water level, but limited to a distance of 50 km from the nearest sea area. Where precise 100 m data are not available an approximate value may be used

	Inland
	A2
	All land, other than coastal and shore areas defined as “coastal land” above

	Sea
	B
	Seas, oceans and other large bodies of water (i.e. covering a circle of at least 100 km in diameter).



[bookmark: _Toc203051690]3.4	Terminal distances from the coast
If the path is over zone B two further parameters are required, dct, dcr, giving the distance of the transmitter and the receiver from the coast (km), respectively, in the direction of the other terminal. For a terminal on a ship or sea platform the distance is zero.
[bookmark: _Toc203051691]3.5	Basic radio-meteorological parameters
The prediction procedure requires two radio-meteorological parameters to describe the variability of atmospheric refractivity.
–	ΔN (N-units/km), the average radio-refractivity lapse-rate through the lowest 1 km of the atmosphere, provides the data upon which the appropriate effective Earth radius can be calculated for path profile and diffraction obstacle analysis. Note that ΔN is a positive quantity in this procedure.
–	N0 (N-units), the sea-level surface refractivity, is used only by the troposcatter model as a measure of variability of the troposcatter mechanism.
If local measurements are not available, these quantities can be obtained from the maps in the integral digital products supplied with this Recommendation. The maps are contained in the files DN50.txt and N050.txt, respectively. The data are from 0o to 360o in longitude and from +90o to −90o in latitude, with a resolution of 1.5o in both latitude and longitude. The data are used in conjunction with the companion data files LAT.txt and LON.txt containing respectively the latitudes and longitudes of the corresponding entries (grid points) in the files DN50.txt and N050.txt. For a location different from the grid points, the parameter at the desired location can be derived by performing a bi-linear interpolation on the values at the four closest grid points, as described in Recommendation ITU‑R P.1144.
TABLE 4
Integral digital products
	Filename
	Origin
	Latitude
	Longitude

	
	
	From
(degree)
	To
(degree)
	Spacing
(degree)
	From
(degree)
	To
(degree)
	Spacing
(degree)

	DN50.txt
	P.453
	90
	−90
	1.5
	0
	360
	1.5

	N050.txt
	P.453
	90
	−90
	1.5
	0
	360
	1.5

	LAT.txt
	P.453
	90
	−90
	1.5
	0
	360
	1.5

	LON.txt
	P.453
	90
	−90
	1.5
	0
	360
	1.5



These digital maps were derived from analysis of a ten-year (1983–1992) global dataset of radiosonde ascents. 
The digital maps are contained in the zip file R-REC-P.1812-8-202509-I!!ZIP-E.zip.
[bookmark: _Toc203051692]3.6	Incidence of ducting
The degree to which signal levels will be enhanced due to anomalous propagation, particularly ducting, is quantified by a parameter β0 (%), the time percentage for which refractivity lapse‑rates exceeding 100 N-units/km can be expected in the first 100 m of the lower atmosphere. The value of 0 is calculated as follows.
Calculate the parameter μ1, which depends on the degree to which the path is over land (inland and/or coastal) and water:

			(2)
where the value of μ1 shall be limited to μ1  1,
and

			(3)
	dtm:	longest continuous land (inland + coastal) section of the great-circle path (km)
	dlm:	longest continuous inland section of the great‑circle path (km).
The radio-climatic zones to be used for the derivation of dtm and dlm are defined in Table 3. If all points on the path are at least 50 km from the sea or other large bodies of water, then only the inland category applies and dtm and dlm are equal to the path length, d.
Calculate the parameter μ4, which depends on μ1 and the latitude of the path centre in degrees:

			(4)
where:
	φ:	path centre latitude (degrees).
Calculate β0:

			(5)
[bookmark: _Toc203051693]3.7	Effective Earth radius
The median effective Earth radius factor k50 for the path is given by:

			(6)
The value of the average radio-refractivity lapse-rate, ΔN, may be obtained from the integral digital map DN50.txt, using the latitude and longitude of the path centre as representative for the entire path.
The median value of effective Earth radius ae is given by:
		                km	(7a)

The effective Earth radius exceeded for 0 time, a, is given by:
		               km	(7b)

where k = 3.0 is an estimate of the effective Earth-radius factor exceeded for 0 time.
A general effective Earth radius is defined, where ap = ae for 50% of time, and ap = aβ for β0% of time.
[bookmark: _Toc203051694]3.8	Parameters derived from the path profile analysis
Values for a number of path-related parameters necessary for the calculations, as indicated in Table 5, must be derived via an initial analysis of the path profile based on the value of ae given by equation (7a). Information on the derivation, construction and analysis of the path profile is given in Attachment 1 to this Annex.
[bookmark: _Toc203051695]4	The prediction procedure
[bookmark: _Toc203051696]4.1	General
The overall prediction procedure is described in this section. First, the basic transmission loss, Lb (dB), not exceeded for the required annual percentage time, p%, and 50% locations is evaluated as described in §§ 4.2 to 4.6 (i.e. the basic transmission losses due to LoS propagation, propagation by diffraction, propagation by tropospheric scatter, propagation by ducting/layer reflection and the combination of these propagation mechanisms to predict the basic transmission loss, respectively). In §§ 4.7 to 4.8, methods to account for the inclusion of the effects of location variability and building entry loss are described. Finally, § 4.10 gives expressions that relate the basic transmission loss to the field strength (dB μV/m) for 1 kW effective radiated power.
TABLE 5
Parameter values to be derived from the path profile analysis
	Parameter
	Description

	d
	Great-circle path distance (km)

	dlt, dlr
	Distance from the transmit and receive antennas to their respective horizons (km)

	θt, θr
	Transmit and receive horizon elevation angles respectively (mrad)

	θ
	Path angular distance (mrad)

	hts, hrs
	Antenna centre height above mean sea level (m)

	htc, hrc
	hts and hrs respectively

	hte, hre
	Effective heights of antennas above the terrain (m) for the ducting/layer-reflection model and as defined in Attachment 1 to Annex 1

	db
	Aggregate length of the path sections over water (km)

	ω
	Fraction of the total path over water:


where d is the great-circle distance (km) calculated using equation (73). For totally overland paths: ω = 0.


[bookmark: _Toc398118788][bookmark: _Toc107034035]
[bookmark: _Toc203051697]4.2	Line-of-sight propagation (including short-term effects)
The following should all be evaluated for both LoS and trans-horizon paths.
The basic transmission loss due to free-space propagation is given by:
		   dB	(8)
where:
	f :	frequency (GHz)
	dfs :	distance between the transmit and receive antennas (km):
			(8a)
	d :	great-circle path distance (km)
	hts :	transmit antenna height above sea level (masl)
	hrs :	receive antenna height above sea level (masl).
Corrections for multipath and focusing effects at p and 0 percentage times, respectively, are given by:

		    dB	(9a)

		   dB	(9b)
Calculate the basic transmission loss not exceeded for time percentage, p%, due to LoS propagation (regardless of whether or not the path is actually LoS), as given by:

		                dB	(10)
Calculate the basic transmission loss not exceeded for time percentage, 0%, due to LoS propagation (regardless of whether or not the path is actually LoS), as given by:

		                dB	(11)
[bookmark: _Toc107034036][bookmark: _Toc203051698]4.3	Propagation by diffraction
Diffraction loss is calculated by the combination of a method based on the Bullington construction and spherical-Earth diffraction. The Bullington part of the method is an expansion of the basic Bullington construction to control the transition between free-space and obstructed conditions. This part of the method is used twice: for the actual path profile, and for a zero-height smooth profile with modified antenna heights referred to as effective antenna heights. The same effective antenna heights are also used to calculate spherical-earth diffraction loss. The final result is obtained as a combination of three losses calculated as above. For a perfectly smooth path the final diffraction loss will be the output of the spherical-Earth model.
This method provides an estimate of diffraction loss for all types of path, including over-sea or over-inland or coastal land, and irrespective of whether the path is smooth or rough, and whether LoS or transhorizon.
This diffraction method is always used for median effective Earth radius. If an overall prediction is required for p = 50%, no further diffraction calculation is necessary. 
In the general case where p < 50%, the diffraction calculation must be performed a second time for an effective Earth-radius factor equal to 3. This second calculation gives an estimate of diffraction loss not exceeded for β0% time, where β0 is given by equation (5).
The diffraction loss not exceeded for p% time, for 1% ≤ p ≤ 50%, is then calculated using a limiting or interpolation procedure described in § 4.3.5.
The method uses an approximation to the single knife-edge diffraction loss as a function of the dimensionless parameter, ν, given by:

			(12)
Note that J(−0.78) ≈ 0, and this defines the lower limit at which this approximation should be used. J(ν) is set to zero for ν ≤ −0.78.
The overall diffraction calculation is described in sub-sections as follows:
Section 4.3.1 describes the Bullington part of the diffraction method. For each diffraction calculation for a given effective Earth radius this is used twice. On the second occasion the antenna heights are modified and all profile heights are zero.
Section 4.3.2 describes the spherical-Earth part of the diffraction model. This is used with the same antenna heights as for the second use of the Bullington part in § 4.3.1.
Section 4.3.3 describes how the methods in § 4.3.1 and § 4.3.2 are used in combination to perform the complete diffraction calculation for a given effective Earth radius. Due to the manner in which the Bullington and spherical-earth parts are used, the complete calculation has come to be known as the “delta-Bullington” model.
Section 4.3.4 describes the complete calculation for diffraction loss not exceeded for a given percentage time p%.
4.3.1	The Bullington part of the diffraction calculation
In the following equations slopes are calculated in m/km relative to the baseline joining sea level at the transmitter to sea level at the receiver. The distance and height of the i-th profile point are di kilometres and gi metres above sea level respectively, i takes values from 1 to n where n is the number of profile points, and the complete path length is d kilometres. For convenience the terminals at the start and end of the profile are referred to as transmitter and receiver, with heights in metres above sea level hts and hrs, respectively. Effective Earth curvature Ce km–1 is given by 1/ap where ap is effective earth radius in kilometres. Wavelength in metres is represented by . Values to be used for ap are given in § 4.3.5.
Find the intermediate profile point with the highest slope of the line from the transmitter to the point.
		              m/km	(13)
where the profile index i takes values from 2 to n – 1.
Calculate the slope of the line from transmitter to receiver assuming a LoS path:

		                m/km	(14)
Two cases must now be considered.
Case 1. Diffraction path is LoS
If Stim < Str the diffraction path is LoS. 
Find the intermediate profile point with the highest diffraction parameter :

			(15)
where the profile index i takes values from 2 to n – 1.
In this case, the knife-edge loss for the Bullington point is given by:

		                dB	(16)
where the function J is given by equation (12) for b greater than –0.78, and is zero otherwise.
Case 2. Diffraction path is transhorizon
If Stim  Str the diffraction path is transhorizon.
Find the intermediate profile point with the highest slope of the line from the receiver to the point.

		                m/km	(17)
where the profile index i takes values from 2 to n – 1.
Calculate the distance of the Bullington point from the transmitter:

		                km	(18)
Calculate the diffraction parameter, b, for the Bullington point:

			(19)
In this case, the knife-edge loss for the Bullington point is given by:

		                dB	(20)
For Luc calculated using either equation (16) or (20), Bullington diffraction loss for the path is now given by:

		                dB	(21)
4.3.2	Spherical-Earth diffraction loss
The spherical-Earth diffraction loss for effective antenna heights htesph and hresph (m), Ldsph, is calculated as follows.
Calculate the marginal LoS distance for a smooth path:

		                km	(22)
Values to be used for ap are given in § 4.3.5. Effective antenna heights htesph and hresph are defined in equations (38a) and (38b).
If d ≥ dlos calculate diffraction loss using the method in § 4.3.3 below for adft = ap to give Ldft, and set Ldsph equal to Ldft. No further spherical-Earth diffraction calculation is necessary.
Otherwise continue as follows:
Calculate the smallest clearance height between the curved-Earth path and the ray between the antennas, hse, given by:

		                m	(23)
where:

		                km	(24a)

		                km	(24b)

			(24c)
where the arccos function returns an angle in radians

			(24d)

			(24e)
Calculate the required clearance for zero diffraction loss, hreq, given by:

		                m	(25)
If hse > hreq the spherical-Earth diffraction loss Ldsph is zero. No further spherical-Earth diffraction calculation is necessary.
Otherwise continue as follows:
Calculate the modified effective Earth radius, aem, which gives marginal LoS at distance d given by:

		                km	(26)
Use the method in § 4.3.3 for adft = aem to give Ldft.
If Ldft is negative, the spherical-Earth diffraction loss Ldsph is zero, and no further spherical-Earth diffraction calculation is necessary.
Otherwise continue as follows:
Calculate the spherical-Earth diffraction loss by interpolation:

		                dB	(27)
4.3.3	First-term part of spherical-Earth diffraction loss
This sub-section gives the method for calculating spherical-Earth diffraction using only the first term of the residue series. It forms part of the overall diffraction method described in § 4.3.2 above to give the first-term diffraction loss Ldft for a given value of effective Earth radius adft. The value of adft to use is given in § 4.3.2.
Set terrain electrical properties typical for land, with relative permittivity εr = 22.0 and conductivity σ = 0.003 S/m and calculate Ldft using equations (29) to (36) and call the result Ldftland.
Set terrain electrical properties typical for sea, with relative permittivity εr = 80.0 and conductivity σ = 5.0 S/m and calculate Ldft using equations (29) to (36) and call the result Ldftsea.
First-term spherical diffraction loss is now given by:
			(28)
where  is the fraction of the path over sea.
Start of calculation to be performed twice, as described above:
Normalized factor for surface admittance for horizontal and vertical polarization:

   (horizontal)	(29a)
and

		   (vertical)	(29b)
If the polarization vector contains both horizontal and vertical components, e.g. circular or slant, decompose it into horizontal and vertical components, calculate each separately and combine the results by a vector sum of the field amplitude. In practice this decomposition will generally be unnecessary because above 300 MHz a value of 1 can be used for βdft in equation (30).
Calculate the Earth ground/polarisation parameter:

			(30)
where K is KH or KV according to polarisation.
Normalized distance:

			(31)
Normalized transmitter and receiver heights:

			(32a)

			(32b)
Calculate the distance term given by:

			(33)
Define a function of normalized height given by:

			(34)
where:
			(35)

Limit G(Y) such that 
The first-term spherical-Earth diffraction loss is now given by:

		                dB	(36)
4.3.4	Complete “delta-Bullington” diffraction loss model
Use the method in § 4.3.1 for the path profile heights (gi) and antenna heights (htc, hrc). Set the resulting Bullington diffraction loss for the actual path, Lbulla = Lbull as given by equation (21).
Attachment 3 to this Annex provides an alternative method to calculate Lbulls without using terrain profile analysis.
Use the method in § 4.3.1 for a second time, with all profile heights, gi, set to zero, and modified antenna heights given by:

		    m	(37a)

		    m	(37b)
where the smooth-Earth heights at transmitter and receiver, hstd and hsrd, are given in § 5.6.2 of Attachment 1 to this Annex. Set the resulting Bullington diffraction loss for this smooth path,
 Lbulls = Lbull as given by equation (21).
Use the method in § 4.3.2 to calculate the spherical-Earth diffraction loss Ldsph for the actual path length d km and with:

		    m	(38a)

		    m	(38b)
Diffraction loss for the general path is now given by:

		                dB	(39)
4.3.5	The diffraction loss not exceeded for p% of the time 
Use the method in § 4.3.4 to calculate diffraction loss Ld for median effective Earth radius ap = ae as given by equation (7a). Set median diffraction loss Ld50 = Ld.
If p = 50% the diffraction loss not exceeded for p% time, Ldp, is given by Ld50.
If p < 50%, the diffraction loss not exceeded for p% time, Ldp, should be calculated as follows.
Use the method in § 4.3.4 to calculate diffraction loss Ld for effective Earth radius not exceeded for 0% time ap = a as given by equation (7b). Set diffraction loss not exceeded for 0% time 
Ld = Ld.
The application of the two possible values of effective Earth radius factor is controlled by an interpolation factor, Fi, based on a log-normal distribution of diffraction loss over the range β0%≤ p ≤ 50%, given by:
			(40)
where I(x) is the inverse complementary cumulative normal distribution as a function of the probability x. An approximation for I(x) which may be used with confidence for x ≤ 0.5 is given in Attachment 2 to this Annex.
The diffraction loss, Ldp, not exceeded for p% time, is now given by:
		                dB	(41)
Fi is defined by equation (40), depending on the values of p and 0.
The median basic transmission loss associated with diffraction, Lbd50, is given by:
		               dB	(42)
where Lbfs is given by equation (8).
The basic transmission loss associated with diffraction not exceeded for p% time is given by:
		                dB	(43)
where Lb0p is given by equation (10). 
[bookmark: _Toc203051699][bookmark: _Hlk136440251]4.4	Propagation by tropospheric scatter
NOTE 1 – At time percentages much below 50%, it is difficult to separate the true tropospheric scatter mode from other secondary propagation phenomena which give rise to similar propagation effects. The “tropospheric scatter” model adopted in this Recommendation is therefore an empirical generalization of the concept of tropospheric scatter which also embraces these secondary propagation effects. This allows a continuous consistent prediction of basic transmission loss over the range of time percentages p from 0.001% to 50%, thus linking the ducting and layer reflection model at the small time percentages with the true “scatter mode” appropriate to the weak residual field exceeded for the largest time percentage.
NOTE 2 – This troposcatter prediction model has been derived for interference prediction purposes and is not appropriate for the calculation of propagation conditions above 50% of time affecting the performance aspects of trans‑horizon radio‑relay systems.
The basic transmission loss due to troposcatter,  (dB), not exceeded for any time percentage, p, below 50%, is given by:
	 dB	(44)
where:
	:	frequency dependent loss:
		            dB	(45)
	:	path centre sea-level surface refractivity from the integral digital map N050.txt
[bookmark: _Toc107034038][bookmark: _Toc203051700][bookmark: _Toc107034039][bookmark: _Ref163015904][bookmark: _Ref163015925]4.5	Propagation by ducting/layer reflection
The basic transmission loss associated with ducting/layer-reflection not exceeded for p% time, Lba (dB), is given by:
		                dB	(46)
where:
	Af  :	total of fixed coupling losses between the antennas and the anomalous propagation structure within the atmosphere:

	         dB	(47)
	Alf  :	empirical correction to account for the increasing attenuation with wavelength in ducted propagation

			(47a)
	Ast, Asr :	site-shielding diffraction losses for the transmitting and receiving stations respectively:

		(48)
where:

			(48a)
	Act, Acr:	over-sea surface duct coupling corrections for the transmitting and receiving stations respectively:

	                dB      for        0.75

	(49)
It is useful to note the limited set of conditions under which equation (49) is needed.
	Ad (p):	time percentage and angular-distance dependent losses within the anomalous propagation mechanism:

		                dB	(50)
where:
	γd:	specific attenuation:

		                dB/mrad	(51)

	:	angular distance (corrected where appropriate (via equation (48a)) 
to allow for the application of the site shielding model in equation (46)): 

			(52)

			(52a)
	A(p):	time percentage variability (cumulative distribution):

			(53)

		(53a)
		    %	(54)
	μ2:	correction for path geometry:

			(55)
		The value of μ2 shall not exceed 1.

			(55a)
where:
	: 	3.5
	:	is defined in equation (3), and the value of  shall not be allowed to decrease below −3.4
	μ3:	correction for terrain roughness:

			(56)
and:

		                km	(56a)
The remaining terms have been defined in Tables 1 and 2 and Attachment 1 to this Annex.
[bookmark: _Toc107034040][bookmark: _Toc203051701]4.6	Basic transmission loss not exceeded for p% time and 50% locations
The following procedure should be applied to the results of the foregoing calculations for all paths, in order to compute the basic transmission loss not exceeded for p% time and 50% locations. In order to avoid physically unreasonable discontinuities in the predicted notional basic transmission losses, the foregoing propagation models must be blended together to get modified values of basic transmission losses in order to achieve an overall prediction for p% time and 50% locations.
Calculate an interpolation factor, Fj, to take account of the path angular distance:

			(57)
where:
	Θ :	fixed parameter determining the angular range of the associated blending; set to 0.3 mrad
	ξ :	fixed parameter determining the blending slope at the end of the range; set to 0.8
	θ :	path angular distance (mrad) defined in Table 7.
Calculate an interpolation factor, Fk, to take account of the path great-circle distance:

			(58)
where:
	d :	great circle path length defined in Table 3 (km)
	dsw :	fixed parameter determining the distance range of the associated blending; set to 20
	κ :	fixed parameter determining the blending slope at the ends of the range; set to 0.5.
Calculate a notional minimum basic transmission loss, Lminb0p (dB), associated with LoS propagation and over-sea sub-path diffraction:

			(59)
where:
	Lb0p:	notional LoS basic transmission loss not exceeded for p% time, given by equation (10)
	Lb0:	notional LoS basic transmission loss not exceeded for 0% time, given by equation (11)
	Ldp:	diffraction loss not exceeded for p% time, given by equation (41)
	Lbd50:	median basic transmission loss associated with diffraction, given by equation (42)
	Fi:	Diffraction interpolation factor, given by equation (40).
Calculate a notional minimum basic transmission loss, Lminbap (dB), associated with LoS and transhorizon signal enhancements:

		                dB	(60)
where:
	Lba :	ducting/layer reflection basic transmission loss not exceeded for p% time, given by equation (46)
	Lb0 :	notional LoS basic transmission loss not exceeded for p% time, given by equation (10)
	η = 	2.5.
Calculate a notional basic transmission loss, Lbda (dB), associated with diffraction and LoS or ducting/layer-reflection enhancements:

		                dB	(61)
where:
	Lbd :	basic transmission loss for diffraction not exceeded for p% time from equation (43)
	Lminbap :	notional minimum basic transmission loss associated with LoS propagation and trans-horizon signal enhancements from equation (60)
	Fk :	interpolation factor given by equation (58), according to the value of the path great-circle distance, d. 
Calculate a modified basic transmission loss, Lbam (dB), which takes diffraction and LoS or ducting/layer-reflection enhancements into account:
		       dB	(62)
where:
	Lbda :	notional basic transmission loss associated with diffraction and LoS or ducting/layer-reflection enhancements, given by equation (61)
	Lminb0p :	notional minimum basic transmission loss associated with LoS propagation and over-sea sub-path diffraction, given by equation (59)
	Fj :	interpolation factor given by equation (57), according to the value of the path angular distance, θ.
Calculate the basic transmission loss not exceeded for p% time and 50% locations, Lbc (dB), as given by:
		                 dB	(63)
where:
	Lbs :	basic transmission loss due to troposcatter not exceeded for p% time, given by equation (44)
	Lbam :	modified basic transmission loss taking diffraction and LoS ducting/
layer-reflection enhancements into account, given by equation (62).
[bookmark: _Toc203051702]4.7	Location variability of losses
In this Recommendation, and generally, location variability refers to the spatial statistics of local ground cover variations. This is a useful result over scales substantially larger than the ground cover variations, and over which path variations are insignificant. As location variability is defined to exclude multipath variations, it is independent of system bandwidth.
In the planning of radio systems, it will also be necessary to take multipath effects into account. The impact of these effects will vary with systems, being dependent on bandwidths, modulations and coding schemes. Guidance on the modelling of these effects is given in Recommendation ITU‑R P.1406.
Extensive data analysis suggests that the distribution of local mean field strength due to ground cover variations is approximately lognormal.
Values of the standard deviation are dependent on the prediction resolution and frequency, and empirical studies have shown a spread. Representative values, which relate to the 50th percentile of the distribution of standard deviation of location variability, are given by the following expression:
		             dB	(64)
where:
	f :	required frequency (GHz)
	wa :	prediction resolution (m).
The prediction resolution is the width of the square area over which the variability applies. The percentage locations, pL%, can vary between 1% and 99%. This model is not valid for percentage locations less than 1% or greater than 99%.
The values given in Table 6 have been found appropriate for the planning of digital terrestrial television (DTT) services. They were found to be equivalent to the 93rd percentile of the measurement cumulative distribution function for a rooftop height antenna in a 100 × 100 m area.
TABLE 6
Values of location variability standard deviations used in certain planning situations
	
	Standard deviation (dB)

	
	100 MHz
	600 MHz
	2 000 MHz

	Broadcasting, DTT
	5.5
	5.5
	5.5



When the receiver/mobile is located on land and outdoors but its height above ground is greater than or equal to the height of representative clutter, it is reasonable to expect that the location variability will decrease monotonically with increasing height until, at some point, it vanishes. In this Recommendation, the location variability height variation, u(h), is given by:

			(65)
where R (m) is the height of representative clutter at the receiver/mobile location. Therefore, for a receiver/mobile located outdoors, the standard deviation of the location variability, σL, as given by either equation (64) or Table 6, should be multiplied by the height variation function, u(h), given in equation (65), when computing values of the basic transmission loss for values of pL% different from 50%.
[bookmark: _Toc203051703]4.8	Building entry loss
Definitions, theoretical models and references to empirical results relating to building entry loss can be found in Recommendation ITU-R P.2040.
The field-strength variation for indoor reception is the combined result of the outdoor variation, L, and the variation due to building attenuation, be (see Recommendation ITU-R P.2040). These variations are likely to be uncorrelated. The standard deviation for indoor reception, i can therefore be calculated by taking the square root of the sum of the squares of the individual standard deviations.

		     dB	(66)
where L is the 	standard deviation of location variability, as given by equation (64) or Table 6.
[bookmark: _Toc203051704]4.9	Basic transmission loss not exceeded for p% time and pL% locations
In order to compute the desired percentage locations, the median loss, Lloc, and the standard deviation, σloc, are given by:

		     (outdoors)     dB	(67a)

		     (indoors)     dB	(67b)
and:

		     (outdoors)     dB	(68a)

		     (indoors)      dB	(68b)
where the median building entry loss, Lbe, is given in Recommendation ITU-R P.2040, the height function, u(h), is given by equation (65) and the standard deviations, σL and σi, are given by equation (64) (or Table 6) and equation (66), respectively.

The basic transmission loss not exceeded for p% time and pL% locations, (dB), is given by:

		  dB	(69)
where:
	Lb0p:	basic transmission loss not exceeded for p% time and 50% locations associated with LoS with short term enhancements, given by equation (10)
	Lbc:	basic transmission loss not exceeded for p% of time and 50% locations, including the effects of terminal clutter losses, given by equation (63)
	Lloc:	median value of the location loss, as given by equations (67a) and (67b)
	I(x):	inverse complementary cumulative normal distribution as a function of probability, x. An approximation for I(x) which may be used for 0.000001 ≤ x ≤ 0.999999 is given in Attachment 2 to this Annex
	loc:	combined standard deviation (i.e. building entry loss and location variability), given by equations (68a) and (68b).
The percentage locations, pL%, can vary between 1% and 99%. This model is not valid for percentage locations less than 1% or greater than 99%.
[bookmark: _Toc203051705]4.10	The field strength exceeded for p% time and pL% locations
The field strength normalized to 1 kW effective radiated power exceeded for p% time and pL% locations, Ep dB(μV/m), may be calculated using:

		 	dB(μV/m)	(70)
where:
	Lb :	basic transmission loss not exceeded for p% time and pL% locations calculated by equation (69)
	f :	required frequency (GHz).


[bookmark: _Toc107034051][bookmark: _Toc203051706]Attachment 1
to the Annex

Path profile analysis
[bookmark: _Toc398118806][bookmark: _Toc107034052][bookmark: _Toc203051707]1	Introduction
For path profile analysis, a path profile of terrain heights above mean sea level is required. The parameters that need to be derived from the path profile analysis for the purposes of the propagation models are given in Table 7.
[bookmark: _Toc398118807][bookmark: _Toc107034053][bookmark: _Toc203051708]2	Construction of path profile
Based on the geographical coordinates of the transmitting (φt, ψt) and receiving (φr, ψr) stations, terrain heights (above mean sea level) along the great-circle path should be derived from a topographical database or from appropriate large‑scale contour maps. The distance resolution of the profile should be as far as is practicable to capture significant features of the terrain. Typically, a distance increment of 30 m to 1 km is appropriate. In general, it is appropriate to use longer distance increments for longer paths. The profile should include the ground heights at the transmitting and receiving station locations as the start and end points. The equations of this section take Earth curvature into account where necessary, based on the value of ae found in equation (7a).
Although equally spaced profile points are considered preferable, it is possible to use the method with non-equally spaced profile points. This may be useful when the profile is obtained from a digital map of terrain height contours. However, it should be noted that the Recommendation has been developed from testing using equally spaced profile points; information is not available on the effect of non-equally spaced points on accuracy.
For the purposes of this Recommendation the point of the path profile at the transmitting station is considered as point 1, and the point at the receiving station is considered as point n. The path profile therefore consists of n points. Figure 1 gives an example of a path profile of terrain heights above mean sea level, showing the various parameters related to the actual terrain.
FIGURE 1
Example of a (trans-horizon) path profile
[image: FIGURE 1 shows Example of a (trans-horizon) path profile
]
Table 7 defines parameters used or derived during the path profile analysis.
TABLE 7
Path profile parameter definitions
	Parameter
	Description

	a
	Average physical Earth’s radius (6 371 km)

	ae
	Effective Earth’s radius (km)

	d
	Great-circle path distance (km)

	di
	Great-circle distance of the -th profile point from the transmitter

	dii
	Incremental distance for regular (i.e. equally spaced) path profile data (km)

	f
	Frequency (GHz)

	λ
	Wavelength (m)

	hts
	Transmitter antenna height (m) above mean sea level (amsl)

	hrs
	Receiver antenna height (m) (amsl)

	θt
	For a trans-horizon path, horizon elevation angle above local horizontal (mrad), measured from the transmitting antenna. For a LoS path this should be the elevation angle of the receiving antenna

	θr
	For a trans-horizon path, horizon elevation angle above local horizontal (mrad), measured from the receiving antenna. For a LoS path this should be the elevation angle of the transmitting antenna


TABLE 7 (end)
	Parameter
	Description

	θ
	Path angular distance (mrad)

	hst
	Height of the smooth-Earth surface (amsl) at the transmitting station location (m)

	hsr
	Height of the smooth-Earth surface (amsl) at the receiving station location (m)

	hi
	Height of the i-th terrain point amsl (m)
h1: ground height of the transmitter
hn: ground height of receiver

	hm
	Terrain roughness (m)

	hte
	Effective height of transmitting antenna (m)

	hre
	Effective height of receiving antenna (m).


[bookmark: _Toc398118808][bookmark: _Toc107034054]
[bookmark: _Toc203051709]3	Path length
The path length can be obtained using great-circle geometry (based on the average physical Earth radius a) from the geographical coordinates of the transmitting (φt, ψt) and receiving (φr, ψr) stations. Alternatively the path length can be found from the path profile. For general cases, the path length, d (km), can be found from the path profile data:
			km	(71)
For regularly spaced path profile data it is also true that:
			km	(72)
for i = 1, …, n, where dii is the incremental path distance (km).
[bookmark: _Toc398118809][bookmark: _Toc107034055][bookmark: _Toc203051710]4	Path classification
The path must be classified into LoS or transhorizon only for the determination of distances dlt and dlr, and elevation angles θt and θr, see below.
The path profile must be used to determine whether the path is LoS or trans-horizon based on the median effective Earth’s radius of ae, as given by equation (7a).
A path is trans-horizon if the physical horizon elevation angle as seen by the transmitting antenna (relative to the local horizontal) is greater than the angle (again relative to the transmitter's local horizontal) subtended by the receiving antenna.
The test for the trans-horizon path condition is thus:
			mrad	(73)
where:

		                mrad	(74)
	θi:	elevation angle to the i- th terrain point
		          mrad	(75)
where:
	hi:	height of the i-th terrain point amsl (m)
	hts:	transmitter antenna height amsl (m)
	di:	distance from transmitter to the i-th terrain element (km).
			mrad	(76)
where:
	hrs:	receiving antenna height amsl (m)
	d:	total great-circle path distance (km)
	ae:	median effective Earth’s radius appropriate to the path (see equation (7a)).
[bookmark: _Toc398118812][bookmark: _Toc107034058][bookmark: _Toc203051711]5	Derivation of parameters from the path profile
The parameters to be derived from the path profile are those contained in Table 7.
[bookmark: _Toc398118814][bookmark: _Toc203051712]5.1	Transmitting antenna horizon elevation angle above the local horizontal, θt
The transmitting antenna’s horizon elevation angle relative to the local horizontal is given by:
		                mrad	(77)
with θmax as determined in equation (74). Thus for a LoS path the transmitting antenna's horizon elevation angle is considered to be the elevation angle of the line to the receiving antenna.
[bookmark: _Toc398118815][bookmark: _Toc203051713]5.2	Transmitting antenna horizon distance, dlt
The horizon distance is the minimum distance from the transmitter at which the maximum antenna horizon elevation angle is calculated from equation (74).
[bookmark: _Toc398118816]			(78)
For a LoS path, the index i should be the value which gives the maximum diffraction parameter :

			(78a)
where the profile index i takes values from 2 to n – 1, and Ce is effective Earth curvature as defined in § 4.3.1 of Annex 1.
[bookmark: _Toc203051714]5.3	Receiving antenna horizon elevation angle above the local horizontal, θr
For a LoS path, θr is given by:
		                mrad	(79)
Otherwise, r is given by:

[bookmark: _Toc398118817]		                mrad	(80)
		                mrad	(80a)
[bookmark: _Toc203051715]5.4	Receiving antenna horizon distance, dlr
The horizon distance is the minimum distance from the receiver at which the maximum antenna horizon elevation angle is calculated from equation (80).
[bookmark: _Toc398118818]			(81)
For a LoS path, dlr is given by:
		                km	(81a)
[bookmark: _Toc203051716]5.5	Angular distance θ (mrad)

[bookmark: _Toc398118819]		                mrad	(82)
[bookmark: _Toc203051717]5.6	“Smooth-Earth” model and effective antenna heights
A “smooth-Earth” surface is derived from the profile to calculate effective antenna heights both for the diffraction model, and for an assessment of path roughness required by the ducting/
layer-reflection model. The definitions of effective antenna heights differ for these two purposes.
Section 5.6.1 fits a smooth-Earth surface to the profile, from which are obtained the heights of this surface at the terminals, hst, and hsr.
In § 5.6.2, hst, and hsr are used to calculate modified smooth-Earth heights at the terminals, hstd and hsrd, which in § 4.3.4 of Annex 1 are used to calculate effective antenna heights for the diffraction model. Depending on the profile, hstd and hsrd may have different values from hst, and hsr respectively.
In § 5.6.3, hst, and hsr are used to calculate effective antenna heights hte, and hre and a terrain roughness parameter hm which are required in the ducting/layer-reflection model described in § 4.5 of Annex 1.
[bookmark: _Toc398118822]5.6.1	Deriving the smooth-Earth surface
Calculate the smooth-Earth heights at the terminals, hst and hsr, as follows:

			(83)

			(84)

			(85)

			(86)
where:
	hst :	height amsl (m), of the smooth-Earth surface at the path origin, i.e. at the transmitter
	hsr :	height amsl (m), of the smooth-Earth surface at the end of the path, i.e. at the receiver.
5.6.2	Smooth-surface heights for the diffraction model
Find the highest obstruction height above the straight-line path from transmitter to receiver hobs, and the horizon elevation angles αobt, αobr, all based on flat-Earth geometry, according to:
		                m	(87a)

		                mrad	(87b)

		                mrad	(87c)
where:

		                m	(87d)
and the profile index i takes values from 2 to (n – 1).
Calculate provisional values for the heights of the smooth surface at the transmitter and receiver ends of the path:
If hobs is less than or equal to zero, then:

		   m amsl	(88a)

		   m amsl	(88b)
otherwise:

		   m amsl	(88c)

		   m amsl	(88d)
where:

			(88e)

			(88f)
Calculate final values for the heights of the smooth surface at the transmitter and receiver ends of the path as required by the diffraction model:
If hstp is greater than h1 then:

		      m amsl	(89a)
otherwise:

		      m amsl	(89b)
If hsrp is greater than hn then:

		      m amsl	(89c)
otherwise:

		     m amsl	(89d)
5.6.3	Parameters for the ducting/layer-reflection model
Calculate the smooth-Earth heights at transmitter and receiver as required for the roughness factor given by:

		                m	(90a)

		                m	(90b)
The slope, m, of the smooth-Earth surface should be calculated as:

[bookmark: _Toc398118823]		                m/km	(91)
The terminal effective heights for the ducting/layer-reflection model, hte and hre, are given by:

			m	(92a)

			m	(92b)
The terrain roughness parameter, hm (m) is the maximum height of the terrain above the smooth‑Earth surface in the section of the path between, and including, the horizon points:

		                m	(93)
where:
	ilt :	index of the profile point at distance dlt from the transmitter
	ilr :	index of the profile point at distance dlr from the receiver.
The smooth-Earth surface and the terrain roughness parameter hm are illustrated in Fig. 2.
FIGURE 2
An example of the smooth-Earth surface and terrain roughness parameter
[image: FIGURE 2 shows An example of the smooth-Earth surface and terrain roughness parameter
]
[bookmark: _Toc203051718]Attachment 2
to the Annex

An approximation to the inverse complementary cumulative 
normal distribution function 
The following approximation to the inverse complementary cumulative normal distribution function is valid for 0.000001  x  0.999999 and is in error by a maximum of 0.00054. If x < 0.000001, which implies β0 < 0.0001%, x should be set to 0.000001. Similar considerations hold for x > 0.999999. This approximation may be used with confidence for the interpolation function in equations (40) and (59) and in equation (69). For the latter equation, however, the value of x must be limited: 0.01  x  0.99.
The function I(x) is given by:

		                          for 0.000001  x  0.5	(94a)
and, by symmetry:

		                for 0.5 < x  0.999999	(94b)
where:

			(95a)

			(95b)
			(95c)
			(95d)
			 (95e)
			 (95f)
			 (95g)
			 (95h)


[bookmark: _Toc203051719]Attachment 3
to the Annex

An alternative method to calculate the spherical earth diffraction loss Lbulls
This Attachment gives an alternative method to calculate Lbulls without using terrain profile analysis. 

If d < dlos (LoS), calculate the diffraction parameter for the smallest clearance height hse (equation (23)) between the curved-Earth path and the ray between the antennas with the distance  (equation (24a)):
			(96)
The knife-edge loss for this point is given by:
		                dB	(97)
If d ≥ dlos (non-line-of-sight (NLoS)), find the highest slope of the line from the transmitter antenna to the curved-Earth path.

		                m/km	(98)
Then find the highest slope of the line from the receiver antenna to the curved-Earth path.

		                m/km	(99)
Use these two slopes to calculate the Bullington point as:

		                km	(100)
Calculate the diffraction parameter s for the Bullington point:

			(101)
The knife-edge loss for the Bullington point is given by:
		                dB	(102)
For Lus calculated using either equation (97) or equation (102), the Bullington diffraction loss for the smooth path is given by:

			(103)
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