

ITU-R P.1411-10 建议书 (08/2019)

300 MHz至100 GHz频率范围内的 短距离室外无线电通信系统 和无线本地网规划所用的 传播数据和预测方法

> P 系列 无线电波传播

前言

无线电通信部门的职责是确保卫星业务等所有无线电通信业务合理、平等、有效、经济地使用无线电频 谱,不受频率范围限制地开展研究并在此基础上通过建议书。

无线电通信部门的规则和政策职能由世界或区域无线电通信大会以及无线电通信全会在研究组的支持下履行。

知识产权政策(IPR)

ITU-R的IPR政策述于ITU-R第1号决议中所参引的《ITU-T/ITU-R/ISO/IEC的通用专利政策》。专利持有人用于提交专利声明和许可声明的表格可从<u>http://www.itu.int/ITU-R/go/patents/zh</u>获得,在此处也可获取《ITU-T/ITU-R/ISO/IEC的通用专利政策实施指南》和ITU-R专利信息数据库。

	ITU-R 系列建议书				
	(也可在线查询 <u>http://www.itu.int/publ/R-REC/zh</u>)				
系列	标题				
BO	卫星传送				
BR	用于制作、存档和播出的录制; 电视电影				
BS	广播业务(声音)				
BT	广播业务(电视)				
F	固定业务				
Μ	移动、无线电测定、业余和相关卫星业务				
Р	无线电波传播				
RA	射电天文				
RS	遥感系统				
S	卫星固定业务				
SA	空间应用和气象				
SF	卫星固定业务和固定业务系统间的频率共用和协调				
SM	频谱管理				
SNG	卫星新闻采集				
TF	时间信号和频率标准发射				
V	词汇和相关问题				

说明:该ITU-R建议书的英文版本根据ITU-R第1号决议详述的程序予以批准。

电子出版 2020年,日内瓦

©国际电联 2020

版权所有。未经国际电联书面许可,不得以任何手段复制本出版物的任何部分。

ITU-R P.1411-10 建议书

300 MHz至100 GHz频率范围内的短距离室外无线电 通信系统和无线本地网规划所用的 传播数据和预测方法

(ITU-R 211/3号课题)

(1999-2001-2003-2005-2007-2009-2012-2013-2015-2017-2019年)

范围

本建议书提供了有关300 MHz-100 GHz频率范围上户外短距离传播的指南。提供了以下 信息:视距(LoS)和非视距(NLoS)环境下的基本传输损耗模型、建筑物入口损耗、街道 峡谷和屋顶环境下的多路径模型、信号成分数量、极化特性和衰落特性。本建议书还可用于 兼容性研究。

关键词

基本传输损耗、时延扩展、凌乱环境中的短距离室外传播

国际电联无线电通信全会,

考虑到

a) 正在大力开发许多新的短距离(工作距离小于1 km)移动和个人通信应用;

b) 对无线本地网(RLAN)和无线本地环路系统有着很高的需求;

c) 采用非常低功率的短距离系统对提供移动和无线本地环路环境中的业务具有许多 优点;

d) 传播特性和由同一地区内多用户导致的干扰的知识对系统的有效设计是非常关键的;

e) 有需要对一般模型(即独立场地)与对初始系统规划和干扰评估的建议以及对确定性模型(或特殊场地)做一些详细的评估,

注意到

a) ITU-R P.1238建议书提供在300 MHz至100 GHz频率范围内的室内传播的指南,且应 对那些己有的室内和室外两种条件进行考虑;

b) ITU-R P.1546建议书提供在30 MHz至3 GHz频率范围内,工作在1 km和更长距离的系统的传播指南;

c) ITU-R P.2040建议书就建筑材料特性和结构对无线电波传播的影响提出指导;

d) ITU-R P.2109建议书提供建筑物入口损耗的统计模型。

附件1中的信息和方法是为确定工作在300 MHz和100 GHz之间的短距离室外无线电系统 传播特性所采用的。

注-ITU-R有关WRC-19不同议项开展的共用研究基于本建议书案文,该案文在这些活动或开展活动时已生效。

附件1

1 引言

在长度小于1 km的路径上的传播主要受建筑物和树木的影响,而不是地面仰角变化的 影响。其中建筑物的影响更突出,这是因为大多数短路径无线电链路都在城市和郊区。移动 终端多半是由步行者手持或位于车辆中。

本建议书规定的类别是针对短传播路径的,并为估算在这些路径上的基本传输损耗、 时延扩展、角度扩展和互相关提供了方法。

这些方法中的传播模型是对称的,因为它们对路径两端的无线终端均予以同样方式的 处理。从模型的角度看,哪个终端是发射机或接收机并不重要。因此,我们分别使用术语 "台站1"和"台站2"来表示传输路径起点和终点处的终端。

2 工作环境和小区类型的规定

本建议书中所描述的环境是单从无线电传播角度而言分类的。无线电波的传播受环境的 影响,即受建筑的结构和高度、移动终端的用法(步行者/车辆)以及天线位置的影响。将5 种不同的环境考虑为最典型的环境。例如未对丘陵地区予以考虑,因为它们在城市地区中不 太典型。表1列出了这5种环境。应该承认每一类中都有很多不同的环境,我们并不想模型化 每种可能的情况,只是对常遇到的具有代表性的环境给出传播模型。

表1

自然工作环境 – 传播损伤

环境	相关的描述和传播损伤					
城市超高层建	- 最繁忙的城市深峡谷,特点是街道两旁有高密度的几十层建筑,导致城市深峡					
筑						
	- 高密度建筑和摩天大楼相互交织,在NLoS中产生丰富的散射传播路径					
	- 一排排高层建筑提供了很长的路径时延的可能性					
	- 该地区大量交通车辆和高流量的游客作为反射器增加了反射波的多普勒					
	- 街道旁的树木提供动态阴影					
城市高层建筑	- 城市峡谷,特点是两边都有多层的高大建筑物的街道					
	- 建筑物的高度对不太可能越过屋顶的传播造成很大的影响					
	- 成排的高大建筑物造成了长路径时延的可能性					
	- 该地区内的大量移动车辆起着增加反射波的多普勒漂移的反射器的作用					
城市低层建筑	- 建筑物的高度通常低于造成可能越过屋顶的衍射的3层					
/郊区	由移动的车辆造成的反射和遮挡会时有发生					
	- 主要的影响是长时延和小的多普勒漂移					
住宅	- 单层和双层的寓所					
	- 道路通常为旁边停着车的双车道宽					
	- 可能有大量的光照植物					
	- 机动车的流量通常较小					
乡村	- 有着大花园的小房子					
	- 地形高度的影响(地形学)					
	- 可能有大量的光照植物					
	- 机动车的流量有时较大					

对移动通信考虑5种不同环境中的每一种内的两种可能的场景。为此用户细分成步行使 用者和车辆用户。对这两种应用,移动的速度导致不同的多普勒漂移的差别是很大的。表2 给出了这些场景的典型速度。

	-	-
环境	步行使用者 的速度 (m/s)	车辆用户的速度
城市高层建筑/ 城市高层建筑	1.5	典型的市区速度50 km/h(14 m/s)左右
城市低层建筑/郊区	1.5	50 km/h(14 m/s)左右 高速路高达100 km/h(28 m/s)
住宅	1.5	40 km/h(11 m/s)左右
乡村	1.5	80-100 km/h (22-28 m/s)

表2

自然工作环境 – 典型的移动速度

ITU-R P.1411-10 建议书

占主导地位的传播机制的类型还取决于基站天线相对于周围建筑物的高度。表3列出了 与室外短路径传播有关的典型的小区类型。

表3

蜂窝类型定义

蜂窝类型	蜂窝半径	基站天线的典型位置		
微蜂窝	0.05-1 km	户外;安装于平均屋顶高度之上,某些周围建筑物的高度可能 高于基站天线的高度		
密集城区微蜂窝	0.05-0.5 km	户外;安装于平均屋顶高度之下		
微微蜂窝	至50 m	户内或户外(安装于屋顶高度之下)		

(注:"密集城区微蜂窝"未在第5研究组的建议书中明确规定。)

3 路径分类

3.1 传播情形的定义

在本建议书中,可针对三种高度的台站位置展开研究,它们是:1)屋顶以上(见图1中的L1);2)屋顶以下但头部以上高度(L2);以及3)与头部平齐或头部以下高度(L3)。综合来看,根据台站的位置,可考虑采用六种不同链路,其中每种链路可以是LoS或NLoS。

城市或郊区的典型传播情形见图 1。当一个台站(A)被安装在屋顶以上高度,而另一 个台站(B或C)位于头部高度时,相应的小区是一个微蜂窝。路径可以是 LoS(A到C) 或 NLoS(A到B)。台站 A和B之间的传播将主要在屋顶上方完成。当一个台站(D)被 安装在屋顶以下但头部以上高度,而另一个台站(E或F)位于城市或郊区环境中的头部高 度时,相应的小区是一个微蜂窝或微微蜂窝环境。在这些小区类型中,传播主要是在街道峡 谷内完成。对移动台到移动台链路而言,可假设链路的两端均在头部高度。路径可以是 LoS (B到E)或 NLoS(E到F)。

3.1.1 越过屋顶的传播,非视距(NLoS)

图2描绘出典型的非视距情况(图1中的链路A-B)。后文中该情况被称为NLoS1。

P.1411-01

NLoS1情况下的参数定义

P.1411-02

对该情况的相应参数是:

- hr: 建筑物的平均高度(m)
- w: 街道宽度(m)
- *b*: 建筑物的平均间距(m)
- φ: 相对于直射路径的街道方位(度)
- *h*₁: 台站1的天线高度(m)
- *h*₂: 台站2的天线高度(m)
- *l*: 被建筑物遮盖的路径长度(m)
- d: 台站1至台站2的距离。

对于所有的小区类型,NLoS1情况经常在住宅/农村环境中发生,且多见于城区/低层/郊 区建筑物环境中的微蜂窝。可从沿着天线之间线路上的建筑物数据中获取参数*h*_r、*b*和*l*。但 是,w和φ的取值需要对移动台站的周围地区进行二维分析。应注意到*l*并不一定与建筑物朝 向垂直。

3.1.2 沿街道峡谷的传播,NLoS

图3描绘出典型的密集城区微蜂窝NLoS情况(图1中的链路D-E)。后文中该情况被称为NLoS2。

图3 NLoS2情况的参数定义

P.1411-03

对该情况的相应参数是:

- w1: 台站1所在位置的街道宽度(m)
- w2: 台站2所在位置的街道宽度(m)
- *x*₁: 台站1至十字路口的距离(m)
- x2: 台站2至十字路口的距离(m)
- α: 街角的角度(弧度)。

NLoS2是在城市高层建筑环境中对所有小区类型的主要路径类型,而在城市低层建筑环境中常见的是密集城区微小区和微微小区。确定NLoS2情况的所有参数需要移动台周围地区的一个二维分析。

6

3.1.3 视距(LoS)路径

图1中的路径A-C、D-F和B-E就是LoS情形的例子。这些类型的LoS路径可以使用相同的 模型。

3.2 数据要求

对于城区中特定地点的计算可使用不同类型的数据。最精确的信息可从高分辨率数据 中得到,其中包含以下信息:

- 建筑物的结构;
- 相对的和绝对的建筑物高度;
- 植物的信息。

数据的形式可以是光量和向量。向量数据的位置精度应为1至2 m的量级。而光量数据的建议的分辨率应为1至10 m。两种形式的数据的高度精度都应在1至2 m量级。

若无可用的高分辨率数据,建议使用低分辨率陆用数据(50 m的分辨率)。根据陆用等级的规定(稠密城市、城市、郊区等)所需参数可认定即为这些陆用等级。可将这些数据连同街道的向量信息用于求出街道方位角。

4 基本传输损耗模型

对城区中的典型情况有一些可用的闭合型的算法。这些传播模型可用于特定场地的计算和一般场地的计算。相应的传播情况在§3.1中已做了规定。模型的类型还取决于频率的范围,如UHF、SHF和EHF(毫米波)。对于UHF传播和毫米波传播必须采用不同的模型。 在UHF频率范围内考虑LoS和NLoS情形。在毫米波传播中仅考虑LoS。此外对后一频率范围内还必须考虑氧气和水分凝结物导致的衰减。

4.1 街道峡谷中的传播模型

4.1.1 一般场地模型

本一般性场地模式适用于发射和接收台站均位于屋顶以下且无论其天线高度的情形。中 等基本传输损耗的提供按以下方程式:

$$L_b(d, f) = 10\alpha \log_{10}(d) + \beta + 10\gamma \log_{10}(f) \, dB \tag{1}$$

带有标准偏差(dB)的零平均高斯任意变量,

其中:

- d: 发射台站和接收台站之间的三维直线距离(米)
- *f*: 工作频率(GHz)
- α: 基本传输损耗的增加与距离的相关系数
- β: 与基本传输损耗补偿值的相关系数
- γ: 基本传输损耗的增加与频率的相关系数

对于NLoS城市高层和城市低层/郊区蒙特卡罗仿真,相对于自由空间基本传输损耗 L_{FS} 的超额基本传输损耗将不超过10 log₁₀(10^{0.1A} + 1) (dB),其中A是具有正态分布 $N(\mu,\sigma)$ 的随机变量, $\mu = L_h(d, f) - L_{FS}, L_{FS} = 20 \log_{10}(4 \times 10^9 \pi d f / c), c是光速,单位为米/秒。$

用于城市和郊区环境中低于屋顶传播情形下视距(如图1中的D-F)和非视距(如图1中的D-E)的推荐值,见表4。

表4

视距(LoS)/ 频率范围 距离范围 环境类型 ß α γ σ 非视距 (NloS) (GHz) (米) 城市高层建筑, 0.8-73 5-660 城市低层建筑/ LoS 2.12 29.2 2.11 5.06 郊区 城市高层建筑 0.8-38 NLoS 4.00 2.36 7.60 30-715 10.2 城市低层建筑/ 10-73 30-250 NLoS 5.06 -4.68 2.02 9.33 郊区 0.8-73 30-170 居民区 **NLoS** 3.01 18.8 2.07 3.07

低于屋顶传播的路径损耗系数

4.1.2 视距(LoS)的具体场地模型

此情形的描述见图1中A和C、D和F或B和E之间的路径。

UHF传播

在UHF频率范围,由ITU-R P.341建议书规定的基本传输损耗可由两个斜率和一个折点表示其特性。近似的下界由下式给出:

$$L_{LoS,l} = L_{bp} + \begin{cases} 20 \log_{10} \left(\frac{d}{R_{bp}} \right) & \forall \forall \exists d \leq R_{bp} \\ \\ 40 \log_{10} \left(\frac{d}{R_{bp}} \right) & \forall \forall \exists d > R_{bp} \end{cases}$$
(2)

其中Rbp是折点距离,且由下式计算:

$$R_{bp} \approx \frac{4h_1h_2}{\lambda} \tag{3}$$

其中λ是波长(m)。下界建立在双射线平面大地反射模型基础上。

近似的上界LLoS,u由下式给出:

$$L_{LoS,u} = L_{bp} + 20 + \begin{cases} 25 \log_{10} \left(\frac{d}{R_{bp}} \right) & \forall \ddagger d \leq R_{bp} \\ \\ 40 \log_{10} \left(\frac{d}{R_{bp}} \right) & \forall \ddagger d > R_{bp} \end{cases}$$
(4)

Lbp是在折点处的基本传输损耗值, 定义为:

$$L_{bp} = \left| 20 \log_{10} \left(\frac{\lambda^2}{8\pi h_1 h_2} \right) \right| \tag{5}$$

上界的衰落余量为20 dB。在公式(4)中,折点前的衰减系数设定为2.5,因为短距离产生遮挡效应。

根据自由空间基本传输损耗曲线,中值 LLoS,m由下式给出:

$$L_{LoS,m} = L_{bp} + 6 + \begin{cases} 20 \log_{10} \left(\frac{d}{R_{bp}} \right) & \forall \forall d \leq R_{bp} \\ \\ 40 \log_{10} \left(\frac{d}{R_{bp}} \right) & \forall \forall d > R_{bp} \end{cases}$$
(6)

高达15 GHz的SHF传播

在SHF,当路径长度高至约1km时,道路交通将影响有效道路高度且进而将影响折点距离。该距离*R_{bp}*可按下式估算:

$$R_{bp} = 4 \frac{(h_1 - h_s)(h_2 - h_s)}{\lambda}$$
(7)

其中h_s是由道路上的车辆和道路附近的步行者这样的研究对象引出的有效道路高度。h_s 取决于道路的交通流量。表5和表6给出的h_s值取自于日间和夜间测量值,分别对应忙时和闲 时交通条件。忙时流量对应道路车辆覆盖为10-20%,步行者占用便道的比率是0.2-1%。闲 时流量则指道路覆盖为0.1-0.5%,步行者占用便道的比率低于0.001%。道路宽27 m,包括两 边各6 m宽的便道。

Ξ	E.	5
ィ	र	Э

道路的有效高度h_s(忙时流量)

频率	h_1	<i>h</i> s (m)		
(GHZ)		<i>h</i> ₂ = 2.7	<i>h</i> ₂ = 1.6	
2.25	4	1.3	(2)	
5.55	8	1.6	(2)	
0 15	4	1.6	(2)	
0.43	8	1.6	(2)	
15 75	4	1.4	(2)	
13.75	8	(1)	(2)	

(1) 折点超出1 km。

(2) 不存在折点。

道路的有效高度h_s(闲时流量)

频率	h_1	<i>h</i> s (m)		
(GHZ)		<i>h</i> ₂ = 2.7	$h_2 = 1.6$	
2.25	4	0.59	0.23	
3.35	8	(1)	(1)	
0.45	4	(2)	0.43	
8.45	8	(2)	(1)	
15 75	4	(2)	0.74	
15./5	8	(2)	(1)	

(1) 无可取的测量值。

(2) 折点超出1km。

当 $h_1, h_2 > h_s$ 时, SHF波段的基本传输损耗的上下界近似值可用公式(2)和(4)计算, L_{bp} 由下式给出:

$$L_{bp} = \left| 20 \log_{10} \left\{ \frac{\lambda^2}{8\pi (h_1 - h_s)(h_2 - h_s)} \right\} \right|$$
(8)

另一方面,当 $h_1 \le h_s$ 或 $h_2 \le h_s$ 时不存在折点。当两个终端靠近时($d < R_s$),基本传输损耗类似于UHF范围的基本传播损耗。当两个终端远离时,传播特性使衰减系数呈3次幂。因此当 $d \ge R_s$ 时,近似下界由下式给出:

$$L_{LoS,l} = L_s + 30 \log_{10} \left(\frac{d}{R_s}\right) \tag{9}$$

当*d*≥*R*_s时,近似上界由下式给出:

$$L_{LoS,u} = L_s + 20 + 30 \log_{10} \left(\frac{d}{R_s}\right)$$
(10)

基本传输损耗Ls定义为:

$$L_{s} = \left| 20 \log_{10} \left(\frac{\lambda}{2\pi R_{s}} \right) \right| \tag{11}$$

公式(9)至(11)中*R*_s的经验值确定为20m。 依据测量值,中值由下式给出:

$$L_{LoS,m} = L_s + 6 + 30 \log_{10} \left(\frac{d}{R_s}\right)$$
(12)

毫米波的传播

当频率约在10 GHz以上时,公式(3)中的折点距离*Rbp*远远超过预期的最大小区半径(500 m)。这就意味着在该频带没有所期望的4次幂的规律。因此,幂距离衰变率将接近具有约1.9-2.2次幂的路径损耗的自由空间的规律。

对于定向天线,天线瞄准点统一时的基本传输损耗由下式给出:

$$L_{LoS} = L_0 + 10n \log_{10} \frac{d}{d_0} + L_{gas} + L_{rain} \, \mathrm{dB}$$
(13)

其中n为基本传输损耗幂,d为台站1和台站2之间的距离,L₀为参考距离d₀的基本传输损耗。对于1米的参考距离d₀,假设自由空间传播L₀=20 log₁₀f-28,其中f以MHz为单位。L_{gas}和 L_{rain}是由大气和降雨造成的衰减,可分别使用ITU-R P.676和ITU-R P.530建议书计算得出。

基本传输损耗幂值n列于表7。

+	_
オ	1
11	'

毫米波传播定向基本传输损耗系数

频率	环培米刑	半功率波束	宽度(度)	基本传输损耗幂
(GHz)	小说天宝	发射天线	接受天线	n
28	城市超高层建筑	30	10	2.21
	城市低层建筑	30	10	2.06
60	城市低层建筑	15.4	15.4	1.9

4.1.3 非视距(NLoS)的具体场地模式

图1中D和E之间的路径描述了这种情形。

4.1.3.1 800至2 000 MHz频率范围

对两部天线均低于屋顶高度的NLoS2情形而言,须考虑街道交叉点拐角处的衍射和反射波(见图3)。

$$L_{NLoS2} = -10\log_{10} \left(10^{-L_r/10} + 10^{-L_d/10} \right) \qquad \text{dB}$$
(14)

其中:

L_r: 由下式定义的反射损耗:

$$L_r = 20 \log_{10} (x_1 + x_2) + x_1 x_2 \frac{f(\alpha)}{w_1 w_2} + 20 \log_{10} \left(\frac{4\pi}{\lambda}\right) \qquad \text{dB}$$
(15)

其中:

$$f(\alpha) = \frac{3.86}{\alpha^{3.5}} \qquad \text{dB} \tag{16}$$

其中0.6 <α [rad] <π.

Ld: 由下式定义的衍射损耗:

$$L_{d} = 10 \log_{10} \left[x_{1} x_{2} (x_{1} + x_{2}) \right] + 2D_{a} - 0.1 \left(90 - \alpha \frac{180}{\pi} \right) + 20 \log_{10} \left(\frac{4\pi}{\lambda} \right) \qquad \text{dB} \qquad (17)$$

$$D_a = \left(\frac{40}{2\pi}\right) \left[\arctan\left(\frac{x_2}{w_2}\right) + \arctan\left(\frac{x_1}{w_1}\right) - \frac{\pi}{2} \right] \qquad \text{dB} \tag{18}$$

4.1.3.2 2至38 GHz频率范围

第3.1.2节中所述的拐角角度 $\alpha=\pi/2$ 的NLoS2情形的传播模型基于2至38GHz频率范围的测量结果得出,其中 $h_1, h_2 < h_r$,且 w_2 最长为10 m(或人行道)。基本传输损耗特性可分为两部分:拐角损耗区域和NLoS区域。拐角损耗区域从到LoS街道边缘距离为1 m的点延伸 d_{comer} 后进入NLoS街道。拐角损耗(L_{comer})被表示为 d_{comer} 距离上的附加衰减。NLoS区域位于拐角损耗区域之外,并适用一个系数参数(β)。相关图示见图4中的典型曲线。通过使用图3所示的 $x_1, x_2\pi w_1$,可用下式算出拐角区域以外的总体基本传输损耗(L_{NLoS2})($x_2>w_1/2+1$):

$$L_{NLoS2} = L_{LoS} + L_c + L_{att}$$
⁽¹⁹⁾

$$L_{c} = \begin{cases} \frac{L_{corner}}{\log_{10}(1+d_{corner})} & \log_{10}(x_{2}-w_{1}/2) & w_{1}/2+1 < x_{2} \le w_{1}/2+1+d_{corner} \\ L_{corner} & x_{2} > w_{1}/2+1+d_{corner} \end{cases}$$
(20)

12

$$L_{att} = \begin{cases} 10\beta \log_{10} \left(\frac{x_1 + x_2}{x_1 + w_1/2 + d_{comer}} \right) & x_2 > w_1/2 + 1 + d_{comer} \\ 0 & x_2 \le w_1/2 + 1 + d_{comer} \end{cases}$$
(21)

此处*L*_{Los}是当x₁ (> 20 m)时LoS街道上的基本传输损耗,相关计算见第4.1.2节。在公式 (20)中,*L*_{comer}在城市环境中为20dB,在住宅环境中为30dB。*d*_{comer}在两种环境中为30 m。

在方程式(21)中,图5(1)的例子中所描述的位于城市十字路口四个角的楔形住宅建 筑,β=6。若某建筑如图5的例子(2)中所描述的,是位于城市十字路口的斜面形状建筑, 则β根据方程式(22)进行计算。因为斜面形状建筑的镜面反射路径严重影响非视距区域的 基本传输损耗,因此(2)例中的基本传输损耗与(1)例中的不同。

$$\beta = 4.2 + (1.4 \log_{10} f - 7.8)(0.8 \log_{10} x_1 - 1.0)$$
⁽²²⁾

其中f是频率,单位是兆赫兹(MHz)。

P.1411-04

图5 例子(1)中楔形建筑分布图例子(2)中斜面形状建筑分布图

在住宅环境中,基本传输损耗不会随距离单调增加,因此系数参数值可能会低于城市环 境,原因是在房屋之间存在着小巷和间隙。

若较小宏蜂窝的基站天线较高,则越过屋顶的衍射效果将更加显著。因此,传播特性并 不依赖于拐角损耗。

4.2 越过屋顶的传播模型

4.2.1 一般性场地模型

本一般性场地模型适用于其中一个台站位于屋顶以上,另一个台站位于屋顶以下,且无 论其天线高度的情景。一般性场地模型与方程式(1)中所描述的屋顶以下传播的一般性场 地模型相同(在街道峡谷内)。

视距(LoS)可用于城市和郊区环境下屋顶以上的传播,表8给出了LoS(如图1中A-C)和非视距(NLoS)(如图1中A-B)情景下的推荐值。

频率范围 (GHz)	距离范围 (米)	环境类型	视距(LoS)/ 非视距(NloS)	α	β	γ	σ
2.2-73	55-1200	城市高层建 筑,城市低层 建筑/郊区	LoS	2.29	28.6	1.96	3.48
2.2-66.5	260-1200	城市高层建筑	NLoS	4.39	-6.27	2.30	6.89

表8

屋顶以上传播的基本传输损耗系数

4.2.2 具体场地模型

通过衍射机制或通过多路径(它可能是衍射和反射机制的某种结合),NLoS信号可到 达台站。本节提出了与衍射机制相关的模型。 城区的传播

为图1中所述的A (h₁)到B (h₂)和D (h₁)到B (h₂)路径定义了模型。模型对以下情况是 有效的:

- h_1 : 4-50 m
- *h*₂: 1-3 m
- *f*: 800-5 000 MHz

2-16 GHz, 对于*h_b<h_r*和*w*₂<10 m (或人行道)

d: 20-5 000 m

(注: 虽然到5 km时模型仍有效, 但本建议书针对的是只到1 km的距离。)

郊区的传播

为图1中所述的A(h1)到B(h2)路径定义了模型。模型对以下情况是有效的:

- *hr*: 任何高度(单位: m)
- Δh_1 : 1-100 m
- Δh_2 : 4-10 (小于 h_r) m
- h_1 : $h_r + \Delta h_b$ m
- h_2 : $h_r \Delta h_m$ m
- *f*: 0.8-38GHz
- *w*: 10-25 m
- *d*: 10-5 000 m

(注:虽然到5 km时模型仍有效,但本建议书针对的是只到1 km的距离。)

毫米波传播

只对LoS和NLoS发射情况考虑毫米波信号的覆盖范围,原因是,当障碍物造成传播路径 变成NLoS时,衍射损耗将变得很大。对NLoS情况,最有可能的信号传播方法将是多路径发 射和散射。对于以直波和反射波主导的区域,郊区传播模型的频率范围(f)(第4.2.2.2节)适用至38 GHz。

4.2.2.1 城区

如果所有屋顶都差不多高,那么下面给出的多屏衍射模型是有效的。假定各屋顶之间的 高度只有微小差别,小于长度I路径上的第一菲涅耳区域半径(见图2),那么模型中所用的 屋顶高度为平均屋顶高度。如果各屋顶之间的高度差明显大于第一菲涅耳区域半径,那么在 刃型衍射计算中,首选的方法是使用路径上的最高建筑物,如ITU-R P.526建议书所述,以替 换多屏模型。

当具有类似的屋顶高度时,对NLoS1情况(见图2),在传输损耗模型中,同向天线之间的损耗表示为自由空间基本传输损耗L_{bf}、从屋顶到街道的衍射损耗L_{rts}以及因多屏衍射经过建筑群而引起的衰减L_{msd}之和。

在该模型中,*L_{bf}和L_{rts}*独立于台站天线高度,而*L_{msd}*则依赖于基站天线是低于还是高于建筑物高度。

$$L_{NLoS1} = \begin{cases} L_{bf} + L_{rts} + L_{msd} & \forall f + L_{rts} + L_{msd} > 0 \\ L_{bf} & \forall f + L_{rts} + L_{msd} \le 0 \end{cases}$$
(23)

通过以下公式计算自由空间基本传输损耗:

$$L_{bf} = 32.4 + 20 \log_{10} \left(d / 1 \, 000 \right) + 20 \log_{10} \left(f \right) \tag{24}$$

其中:

f: 频率(MHz)。

术语L_{ns}用于描述沿多屏路径传播到街道(移动站位于街道上)的波的耦合。它考虑到 了街道的宽度及其方向。

$$L_{rts} = -8.2 - 10\log_{10}(w) + 10\log_{10}(f) + 20\log_{10}(\Delta h_2) + L_{ori}$$
(25)

$$L_{ori} = \begin{cases} -10 + 0.354\varphi & \forall f + 0^{\circ} \le \varphi < 35^{\circ} \\ 2.5 + 0.075(\varphi - 35) & \forall f + 35^{\circ} \le \varphi < 55^{\circ} \\ 4.0 - 0.114(\varphi - 55) & \forall f + 55^{\circ} \le \varphi \le 90^{\circ} \end{cases}$$
(26)

其中:

$$\Delta h_2 = h_r - h_2 \tag{27}$$

*L*ori为街道方向修正因子,它考虑到了屋顶一街道到街道的衍射效应,街道不与传播方向垂直(见图2b))。

因传播经过建筑群而引起的、来自BS的多屏衍射损耗依赖于相对建筑物高度的BS天线 高度和入射角。切线入射的准则为"固定的场距离"*d*_s:

$$d_s = \frac{\lambda d^2}{\Delta h_1^2} \tag{28}$$

其中(见图2):

$$\Delta h_{\rm l} = h_{\rm l} - h_r \tag{29}$$

为了计算*L_{msd}*,将*d*_s与距离*l*进行比较,建筑物在该距离上延伸。当建筑物的长度大于或小于"固定的场距离"时,在计算*L_{msd}*时,利用以下程序来消除所用不同模型之间的任何不连续性。

通过以下公式计算总的多屏衍射模型损耗:

$$L_{msd} = \begin{cases} -\tanh\left(\frac{\log(d) - \log(d_{bp})}{\chi}\right) \cdot (L1_{msd}(d) - L_{mid}) + L_{mid} & \forall \exists l > d_s \ \forall \& \& dh_{bp} > 0 \\ \\ \tanh\left(\frac{\log(d) - \log(d_{bp})}{\chi}\right) \cdot (L2_{msd}(d) - L_{mid}) + L_{mid} & \forall \exists l \le d_s \ \forall \& \& dh_{bp} > 0 \\ \\ L2_{msd}(d) & \forall \exists dh_{bp} = 0 \end{cases}$$
(30)
$$L1_{msd}(d) - \tanh\left(\frac{\log(d) - \log(d_{bp})}{\zeta}\right) \cdot (L_{upp} - L_{mid}) - L_{upp} + L_{mid} & \forall \exists l > d_s \ \forall \& \& dh_{bp} < 0 \\ \\ L2_{msd}(d) + \tanh\left(\frac{\log(d) - \log(d_{bp})}{\zeta}\right) \cdot (L_{mid} - L_{low}) + L_{mid} - L_{low} & \forall \exists l \le d_s \ \forall \& \& dh_{bp} < 0 \end{cases}$$

其中:

$$dh_{bp} = L_{upp} - L_{low} \tag{31}$$

$$\zeta = (L_{upp} - L_{low}) \cdot \upsilon \tag{32}$$

$$L_{mid} = \frac{(L_{upp} + L_{low})}{2} \tag{33}$$

$$L_{upp} = L1_{msd} \left(d_{bp} \right) \tag{34}$$

$$L_{low} = L2_{msd} \left(d_{bp} \right) \tag{35}$$

以及

$$d_{bp} = \left| \Delta h_1 \right| \sqrt{\frac{1}{\lambda}}$$

$$\upsilon = [0.0417]$$
(36)

$$\chi = [0.1]$$

其中,单个模型损耗L1_{msd}(d)和L2_{msd}(d)定义如下:

当l>ds时,计算L1_{msd}

$$L1_{msd}(d) = L_{bsh} + k_a + k_d \log_{10} \left(d / 1 \ 000 \right) + k_f \log_{10} \left(f \right) - 9 \log_{10} \left(b \right)$$
(37)

其中:

$$L_{bsh} = \begin{cases} -18 \log_{10}(1 + \Delta h_{1}) & \forall \exists h_{1} > h_{r} \\ 0 & \forall \exists h_{1} \le h_{r} \end{cases}$$
(38)

为损耗项,它取决于天线的高度:

$$k_{a} = \begin{cases} 71,4 & \forall f \neq h_{1} > h_{r} \forall \mathcal{D} f > 2000 \text{ MHz} \\ 73 - 0.8\Delta h_{1} & \forall f \neq h_{1} \leq h_{r}, f > 2000 \text{ MHz} \forall \mathcal{D} d \geq 500 \text{ m} \\ 73 - 1.6\Delta h_{1} d / 1000 & \forall f \neq h_{1} \leq h_{r}, f > 2000 \text{ MHz} \forall \mathcal{D} d < 500 \text{ m} \\ 54 & \forall f \neq h_{1} > h_{r} \forall \mathcal{D} f \leq 2000 \text{ MHz} \\ 54 - 0.8\Delta h_{1} & \forall f \neq h_{1} \leq h_{r}, f \leq 2000 \text{ MHz} \forall \mathcal{D} d \geq 500 \text{ m} \\ 54 - 1.6\Delta h_{1} d / 1000 & \forall f \neq h_{1} \leq h_{r}, f \leq 2000 \text{ MHz} \forall \mathcal{D} d \leq 500 \text{ m} \\ \forall f \neq h_{1} \leq h_{r}, f \leq 2000 \text{ MHz} \forall \mathcal{D} d \leq 500 \text{ m} \\ \forall f \neq h_{1} \leq h_{r}, f \leq 2000 \text{ MHz} \forall \mathcal{D} d \leq 500 \text{ m} \end{cases}$$
(39)

$$k_{d} = \begin{cases} 18 & \overrightarrow{\text{MT}} \quad h_{1} > h_{r} \\ 18 - 15 \frac{\Delta h_{1}}{h_{r}} & \overrightarrow{\text{MT}} \quad h_{1} \le h_{r} \end{cases}$$
(40)

当l < ds 时,计算L2msd

在这种情况下,依据天线和屋顶的相对高度,须做进一步区分:

$$L2_{msd}(d) = -10 \log_{10}\left(Q_M^2\right)$$
(42)

其中:

$$Q_{M} = \begin{cases} 2.35 \left(\frac{\Delta h_{1}}{d} \sqrt{\frac{b}{\lambda}}\right)^{0.9} & \forall \overrightarrow{T} \quad h_{1} > h_{r} + \delta h_{u} \\ \frac{b}{d} & \forall \overrightarrow{T} \quad h_{1} \le h_{r} + \delta h_{u} \quad \forall \overrightarrow{\Delta} \quad h_{1} \ge h_{r} + \delta h_{l} \\ \frac{b}{2\pi d} \sqrt{\frac{\lambda}{\rho}} \left(\frac{1}{\theta} - \frac{1}{2\pi + \theta}\right) & \forall \overrightarrow{T} \quad h_{1} < h_{r} + \delta h_{l} \end{cases}$$
(43)

以及

$$\theta = \arctan\left(\frac{\Delta h_1}{b}\right) \tag{44}$$

$$\rho = \sqrt{\Delta h_1^2 + b^2} \tag{45}$$

以及
$$\delta h_u = 10^{-\log_{10}\left(\sqrt{\frac{b}{\lambda}}\right) - \frac{\log_{10}(d)}{9} + \frac{10}{9}\log_{10}\left(\frac{b}{2.35}\right)}$$
 (46)

$$\delta h_l = \frac{0.00023 \, b^2 - 0.1827 \, b - 9.4978}{\left(\log_{10}(f)\right)^{2.938}} + 0.000781 \, b + 0.06923 \tag{47}$$

4.2.2.2 郊区

~

对NLoS1情况,一个基于几何光学(GO)的传播模型如图2所示。该图指明了台站2处 到达波的组成随台站1-台站2距离的变化而变化。只有当台站1-台站2距离非常短时直接波才 能到达台站2处。当台站1-台站2间隔比较短时,具有较强电平的几次(一次、二次或三次) 反射波可以到达台站2处。当台站1-台站2间隔很大时,几次反射波不能到达,只有多次反射 波(除了来自建筑物屋顶的衍射波,它们的电平微弱)才能到达台站2处。基于这些传播机 制,依据台站2处的主到达波,因同向天线之间的距离而引起的损耗可划分为三个区域。它 们是直接波主区域、反射波主区域和衍射波主区域。基于几何关学(GO),各区域中的损 耗表示如下:

$$L_{NLoS1} = \begin{cases} 20 \cdot \log_{10} \left(\frac{4\pi d}{\lambda} \right) & \text{ is } d < d_0 & (\text{if Bigitizity}) \\ L_{0n} & \text{ is } d_0 \le d < d_{RD} & (\text{for Bigitizity}) \\ 32.1 \cdot \log_{10} \left(\frac{d}{d_{RD}} \right) + L_{d_{RD}} & \text{ is } d \ge d_{RD} & (\text{for Bigitizity}) \end{cases}$$
(48)

其中:

$$L_{0n} = \begin{cases} L_{d_{k}} + \frac{L_{d_{k+1}} - L_{d_{k}}}{d_{k+1} - d_{k}} \cdot (d - d_{k}) & \stackrel{\text{if}}{=} & d_{k} \leq d < d_{k+1} < d_{RD} \\ & (k = 0, 1, 2...) \\ L_{d_{k}} + \frac{L_{d_{RD}} - L_{d_{k}}}{d_{RD} - d_{k}} \cdot (d - d_{k}) & \stackrel{\text{if}}{=} & d_{k} \leq d < d_{RD} < d_{k+1} \end{cases}$$

$$(49)$$

$$\frac{d_{k}}{d_{k}} = \sqrt{\left(\frac{B_{k}}{\sin \varphi}\right)^{2} + (h_{1} - h_{2})^{2}}$$
(50)

$$L_{d_k} = 20 \cdot \log_{10} \left\{ \frac{4\pi d_{kp}}{0.4^k \cdot \lambda} \right\}$$
(51)

$$d_{RD}(f) = (0.25 \cdot d_3 + 0.25 \cdot d_4 - 0.16 \cdot d_1 - 0.35 \cdot d_2) \cdot log_{10}(f) + 0.25 \cdot d_1 + 0.56 \cdot d_2 + 0.10 \cdot d_3 + 0.10 \cdot d_4$$
(52)
$$(0.8 \,\text{GHz} \le f \le 20 \,\text{GHz})$$

$$L_{d_{RD}} = L_{d_k} + \frac{L_{d_{k+1}} - L_{d_k}}{d_{k+1} - d_k} \cdot \left(d_{RD} - d_k\right) \quad \left(d_k \le d_{RD} \le d_{k+1}\right)$$
(53)

$$d_{kp} = \sqrt{\left(\frac{A_k}{\sin \varphi_k}\right)^2 + (h_1 - h_2)^2}$$
(54)

$$A_{k} = \frac{w \cdot (h_{1} - h_{2}) \cdot (2k + 1)}{2 \cdot (h_{r} - h_{2})}$$
(55)

$$B_{k} = \frac{w \cdot (h_{1} - h_{2}) \cdot (2k+1)}{2 \cdot (h_{r} - h_{2})} - k \cdot w$$
(56)

$$\varphi_k = \tan^{-1} \left(\frac{B_k}{A_k} \cdot \tan \varphi \right) \tag{57}$$

4.3 位置低于屋顶高度到接近街道高度的终端之间的传播模型

下面所述模型针对的是计算城区或住宅环境中、低高度的两个终端之间的基本传输损耗。这种情形被描述为图1中D和F、D和E、B和E或E和F之间的路径。有关城市环境位置一般性场地模型的描述见第4.3.1段。街道峡谷内的具体模型描述见第4.3.2段,住宅环境模型描述见第4.3.3段。建议将这些模型用于低高度终端之间的传播,而且两个终端天线的高度接近街道水平,远低于屋顶高度,但未做另外规定。它对发射机和接受机正好相反。

4.3.1 一般性场地模型

模型包括视距(LoS)和非视距(NLoS)区域,并对视距(LoS)与非视距(NLoS)区 域之间拐角处观测到的信号电平急剧下降建模。模型包括视距(LoS)和非视距(NLoS)区 域中位置可变性的统计结果,并为视距(LoS)与非视距(NLoS)区域之间的拐角距离提供 一个统计模型。图6描绘了视距(LoS)区域、非视距(NLoS)区域和拐角区域,以及通过 模型预测的统计可变性。

该模型对300-3 000 MHz范围内的频率是有效的。模型基于在UHF频段上所做的测量结果,天线高度在地面之上1.9-3.0 m之间,发射机一接收机之间的距离可达3 000 m。

图6 不超过1%、10%、50%、90%和99%位置的基本传输损耗曲线 (频率=400 MHz,郊区)

所需参数为频率f(MHz)以及终端之间的距离d(m)。 步骤1:计算视距损耗中值:

$$L_{LoS}^{\#\underline{d}}(d) = 32.45 + 20 \log_{10} f + 20 \log_{10} (d/1\ 000)$$
(58)

步骤2:对要求的位置百分比p(%),计算LoS位置修正值:

$$\Delta L_{LoS}(p) = 1.5624 \,\sigma \left(\sqrt{-2\ln(1 - p/100)} - 1.1774 \right) \quad \ddagger \, \oplus \, \sigma = 7 \, \mathrm{dB}$$
(59)

可选地,对*p*=1,10,50,90和99%,在表9中给出了LoS修正值。 步骤3:将LoS位置修正值加至LoS损耗中值:

$$L_{LoS}(d,p) = L_{LoS}^{\#\underline{a}}(d) + \Delta L_{LoS}(p)$$
(60)

步骤4: 计算NLoS损耗中值:

$$L_{NLoS}^{\#\underline{\ell}\underline{\ell}}(d) = 9.5 + 45 \log_{10} f + 40 \log_{10} (d/1\ 000) + L_{\underline{k}\underline{k}\underline{k}}$$
(61)

*L*_{域区}取决于城区类别,对郊区为0 dB,对城区为6.8 dB,对密集城区/高楼为2.3 dB。 步骤5:对要求的位置百分比*p*(%),加NLoS位置修正值:

ITU-R P.1411-10 建议书

 $N^{-1}(.)$ 为正态累积分布的反向函数。对1-99%之间的p,该函数一个比较好的近似由 ITU-R P.1546建议书的位置可变性函数 $Q_i(x)$ 给出。可选地,对p = 1%、10%、 50%、90%和99%,在表9中给出了NLoS位置修正值。

表9

LoS和NLoS位置可变性修正表

р (%)	$\frac{\Delta L_{LoS}}{(\mathbf{dB})}$	$\frac{\Delta L_{NLoS}}{(\mathbf{dB})}$	d _{LoS} (m)
1	-11.3	-16.3	976
10	-7.9	-9.0	276
50	0.0	0.0	44
90	10.6	9.0	16
99	20.3	16.3	10

步骤6:将NLoS位置修正值加至NLoS损耗中值:

$$L_{NLoS}(d,p) = L_{NLoS}^{\mathcal{P}\underline{d}\underline{d}}(d) + \Delta L_{NLoS}(p)$$
(63)

步骤7:对要求的位置百分比p(%),计算距离 d_{Los} ,此时LoS的一小部分 F_{Los} 等于p:

对p=1,10,50,90和99%,在表9中给出了 d_{Los} 值。对p<0.1%,未对该模型进行检验。从英国的两个城市获得了统计结果,它们可能有别于其它国家的结果。可选地,如果在某个特例中已知拐角距离,那么将 d_{Los} (p)设为该距离。

步骤8: 然后给出距离d上的路径损耗, 如下所示:

a) 如果 $d < d_{LoS}$, 那么 $L(d, p) = L_{LoS}(d, p)$

- c) 否则线性插入值 L_{Los} (d_{Los} , p) 与 L_{NLos} ($d_{Los} + w$, p) 之间:

$$L_{LoS} = L_{LoS}(d_{LoS}, p)$$

$$L_{NLoS} = L_{NLoS}(d_{LoS} + w, p)$$

$$L(d, p) = L_{LoS} + (L_{NLoS} - L_{LoS})(d - d_{LoS})/w$$

引入宽度w,以便在LoS与NLoS区域之间提供一个过渡区域。在数据中可看到该过渡区域,典型的宽度为:w=20m。

4.3.2 城区环境中的具体场地模型

该具体场地模型包括直线街道网格环境中的LoS、1-Turn NLoS和2-Turn NLoS情况。该模型基于在430、750、905、1834、2400、3705和4860 MHz频率上所做的测量数据,天线高度在地面之上1.5至4.0 m之间。终端之间的最大距离可达1000 m

4.3.2.1 LoS情形

这种情形被描述为图1中B和E,或D和F之间的路径。传播损耗与第4.1.2段相同。

4.3.2.2 NLoS情形

NLoS的情况对应于城区环境中天线高度为L2和L3的E-F和D-E之间的路径。

1-Turn NLoS传播

由于台站1和台站2路由之间的拐角,图7描述了台站1和台站2之间的1-Turn NLoS情形。 拐角与台站1之间的距离用x₁表示,而拐角与台站2之间的距离用x₂表示。

该情形中的基本传输损耗可由下式计算得出:

$$L_{1-Turn} = L_{LoS} + 10\log_{10}\frac{x_1x_2}{x_1 + x_2} - 20\log_{10}S_1 \text{ (dB), } x_2 > \max(S_1^2, d_{corner})$$
(65)

其中*L*_{Los}为按照第4.1.1段计算得出的基本传输损耗,距离*d* = *x*₁ + *x*₂, *S*₁为由下式计算得出的散射/衍射参数:

$$S_1 = (3.45 \times 10^4) \cdot f^{-0.46} \tag{66}$$

*f*为操作频率(Hz)。*S*₁和*f*之间的关系在430 MHz至4 860 MHz频率范围内使用回归拟 合所做的测量数据获得。*d_{comer}*是由街道布局(包括街道宽度和LoS间隔长度*x*₁)所确定的环 境变量,以便考虑到公式(65)有效距离范围的较低边界。以第4.1.2.2段为例,30 m可用于 城区。拐角过渡区域的基本传输损耗可由止于位置(如*x*₂=0)的LoS与*x*₂=max(*S*₁²,*d_{comer})之 间基本传输损耗的差值确定。* 2-Turn NLoS传播

与LoS和1-Turn NLoS路径不同,如图8所示,2-Turn NLoS链路可以建立多重传输路径。因此,接收信号功率增益(从台站1到台站2)在计算中考虑到所有2-Turn路由路径。由于接收功率增益和基本传输损耗具有对数和相反关系,接收功率增益可写为:

$$\frac{1}{10^{L_{2-Tium}/10}} = \sum_{n} \frac{1}{10^{L_{2-Tium,n}/10}}$$
(67)

其中 L_{2-Turn} 为从台站1到台站2的总体路径损耗, $L_{2-Turn,n}$ 表示n个2-Turn路由路径的基本传输损耗。因此,

$$L_{2-Turn} = -10 \log_{10} \sum_{n} \frac{1}{10^{L_{2-Turn,n}/10}} \, \mathrm{dB}$$
(68)

为计算n个路由路径的基本传输损耗,即 $L_{2-Turm,n}$ equation (68),我们认为图9描述了NLoS 情形。该链路路径情形的特点表现在三个距离上: x_1 、 x_2 和 x_3 。其中:

- x1 表示台站1和第一个拐角之间的距离,
- x2 表示第一个拐角与第二个拐角之间的距离,
- x3 表示第二个拐角与台站2之间的距离。

25

P.1411-09

因此,台站1和台站2之间的传播基本传输损耗由下式计算得出:

$$L_{2-Turn,n} = L_{LoS} + 10\log_{10}\frac{x_{1,n}x_{2,n}x_{3,n}}{x_{1,n} + x_{2,n} + x_{3,n}} - 20\log_{10}S_1 - 20\log_{10}S_2 \quad x_{3,n} > \max(S_2^2, d_{corner})$$
(69)

其中,按照第4.1.2段的计算,*L*_{Los}是在距离为*d*=*x*_{1,n}+*x*_{2,n}+*x*_{3,n}时的路径损耗。*S*₁为使用 (66)获得的第一个拐角转弯的散射斜线衍射参数,*S*₂为使用下式计算得出的第二个拐角转 弯效应参数:

$$S_2 = 0.54 f^{0.076} \tag{70}$$

与 S_1 相同,通过回归拟合在430 MHz到4 860 MHz频率范围内进行的测量所得数据获得的 S_2 与f (Hz)之间的关系可在1-Turn NLoS情形下同样得到确定。拐角过渡区域路径损耗,即 $0 \le x_{3,n} \le \max(S_2^2, d_{corner})$,亦可由1-Turn NLoS终止位置(i.e. $x_{3,n}=0$)和 $x_{3,n}=\max(S_2^2, d_{corner})$ 之间的路 径损耗差值确定。

4.3.3 住宅环境中的具体场地模型

图10通过使用道路Lr沿线路径损耗预测住宅环境中两个低高度终端之间总体路径损耗的 传播模型,见公式(71)。房屋Lb之间的路径损耗以及屋顶基本传输损耗Lv、Lr、Lb、和Lv分别 使用公式(72)-(74)、(75)、和(76)-(81)计算得出。适用的区域包括LoS和NLoS两种区域,其中 包括具有两个或多个拐角的地区。道路Lr沿途的路径损耗在只有少量拐角的接近发射机处尤 为突出,而房屋Lb之间的路径损耗随着终端距离的加大而明显,因为Lr随着拐角数量的增加 而增大。屋顶基本传输损耗Lv在远离发射机的情况下相对突出,在此情况下,建筑物和房屋 的多重屏蔽造成Lb升高。

该模型建议用于2-26 GHz频率范围。终端之间的最大距离d可达1 000 m。适用的街角范围为0-90度。适用的终端天线高度确定为1.2 m到*h_{Bmin}*,其中*h_{Bmin}*为区域内最低建筑物高度(居民区中独立房屋的高度通常为6 m)。

图10 低于屋顶的终端之间的路径传播模型

P.1411-10

$$L = -10\log(1/10^{(L_r/10)} + 1/10^{(L_b/10)} + 1/10^{(L_v/10)})$$
(71)

$$L_r = \begin{cases} L_{rbc} & (拐角前) \\ L_{rac} & (拐角后) \end{cases}$$
(72)

$$L_{rbc} = 20 \log(4\pi d / \lambda) \tag{73}$$

$$L_{rac} = L_{rbc} + \sum_{i} (7.18 \log(\theta_i) + 0.97 \log(f) + 6.1) \cdot \left\{ 1 - \exp\left(-3.72 \cdot 10^{-5} \theta_i x_{1i} x_{2i}\right) \right\}$$
(74)

$$L_b = 20 \log(4\pi d / \lambda) + 30.6 \log(d / R) + 6.88 \log(f) + 5.76$$
(75)

$$L_{v} = 20 \log(4\pi d / \lambda) + L_{1} + L_{2} + L_{c}$$
(76)

$$L_1 = 6.9 + 20 \log \left(\sqrt{(v_1 - 0.1)^2 + 1} + v_1 - 0.1 \right)$$
(77)

$$L_2 = 6.9 + 20 \log \left(\sqrt{(v_2 - 0.1)^2 + 1} + v_2 - 0.1 \right)$$
(78)

$$v_1 = \left(h_{bTx} - h_{Tx}\right) \sqrt{\frac{2}{\lambda} \left(\frac{1}{a} + \frac{1}{b}\right)}$$
(79)

$$v_2 = \left(h_{bRx} - h_{Rx}\right) \sqrt{\frac{2}{\lambda} \left(\frac{1}{b} + \frac{1}{c}\right)} \tag{80}$$

$$L_{c} = 10 \log \left[\frac{(a+b)(b+c)}{b(a+b+c)} \right]$$
(81)

该模型相关参数包括:

- d: 两个终端之间的距离(m)
- λ: 波长(m)
- *f*:频率(GHz)
- θ_i: i个拐角的街角(度)
- x_{1i}: 从发射机到i个拐角的道路距离(m)
- x2i: 从i个拐角到接收机的道路距离(m)
- R: 平均可见距离(m)
- *h_{bTx}*: 接收机方向距离发射机最近的建筑物高度(m)
- *h_{bRx}*:发射机方向距离接收机最近的建筑物高度(m)
- *h_{Tx}*: 发射机天线高度(m)
- *h_{Rx}*: 接收机天线高度(m)
- a: 发射机与距离发射机最近建筑物之间的距离(m)
- b: 距离发射机和接收机最近建筑物之间的距离(m)
- c: 接收机与距离接收机最近建筑物之间的距离(m)

以下图11和12分别描述了几何图形和参数。平均可见距离R是由公式(82)-(85)计算得出的。在这些公式中,*n*为建筑物密度(每平方公里建筑物),*m*为3层以下建筑物的平均高度(m),*l*为最低建筑物高度(通常为6m),*l*₃为3层建筑物高度(通常为12m)。

$$R = \frac{1000\,\gamma}{nw_p\,(1-e^{-\gamma})} \exp\left[\frac{h_{Rx}-l}{m-l}\right] \tag{82}$$

$$w_{p} = \frac{4}{\pi} w_{0} \left\{ 1 - \frac{\alpha (1 - e^{-\delta \gamma})}{\delta^{2} (1 - e^{-\gamma})} \exp[-\beta h_{Rx}] \right\}$$
(83)

$$\gamma = \frac{l_3 - h_{Rx}}{m - l}, \ \delta = 1 + \beta(m - l)$$
(84)

$$w_0 = 15 \ [m], \ \alpha = 0.55, \ \beta = 0.18 \ [m^{-1}]$$
 (85)

图11 道路几何图形和参数(以两个拐角为例)

图12 建筑物几何图形和参数侧图

4.4 用于一般性场地计算的缺省参数

如果不知道建筑物结构和道路的数据(一般性场地的情形),建议使用以下缺省值:

 $h_r = 3 \times (层数) + 屋顶高度(m)$

- 屋顶高度 = 3 m 对于斜坡屋顶
 - = 0 m 对于平顶
 - w = b/2
 - $b = 20 \cong 50 \text{ m}$
 - $\phi = 90^{\circ} \, \cdot \,$

4.5 附加损耗

4.5.1 植物的影响

对于室外短路径预测穿过植物(主要是树木)对传播造成的影响是十分重要的。可确 定两种主要的传播机制:

- 穿过树木(不是在周围或越过)的传播;
- 越过树木的传播。

第一种占主导的机制是地理上两副天线都低于树顶且穿过树木的距离较小,而后一种 机制在地理上一副天线架设得高于树顶。由越过和穿过树木结构的信号能量的衍射产生的多 径屏蔽对衰减造成了极强的影响。对穿过树木的传播,特殊衰减可参考ITU-R P.833建议书。 在越过树木传播的情形,越过最靠近低天线的树缘的主要传播模式是衍射。尽管刃型模型由 于忽略了树顶造成的多屏蔽可能会低估了场强,但通过辐射转换理论可模型化的一种机制, 该传播模式可通过采用一个理想刃型衍射模型(参见ITU-R P.526建议书)最简捷地模型化。

4.5.2 建筑物进入损耗

在评估从室外系统到室内终端的无线电覆盖时应考虑建筑物进入损耗。在考虑室外系 统和室内系统之间的干扰问题时建筑物进入损耗也是十分重要的。 定义、理论模型和实践结果可查阅ITU-R P.2109建议书和ITU-R P.2040建议书。

5 多径模型

多径传播的描述和术语的定义由ITU-R P.1407建议书提供。

1 920-1 980 MHz

2 110-2 170 MHz

5.1 时延分布

城市

5.1.1 越过屋顶传播环境的时延扩展

对在城市高层环境的小的宏小区内的LoS和NLoS情况(如表3中规定的),多径时延扩 展的特性已根据在1920-1980 MHz、2110-2170 MHz和3650-3750 MHz采用全向天线测得的 数据研究得出。该环境的中间r.m.s.时延扩展S由下式给出:

$$S_{\mu} = \exp(A \cdot L + B) \qquad \text{ns} \tag{86}$$

0.038

其中, A和B是r.m.s和时延扩展的系数, L是基本传输损耗 (dB)。表10列出城市区域中测 量的100m-1km距离系数典型值。

	兴 密的[.m.s.的延扩度值		
	测量条件		r.m.s.时延	扩展系数
地区	频率 (GHz)	范围 (m)	А	В
	3 650-3 750 MHz	100-1 000	0.031	2.09

表10

城市环境下3.7 GHz频段的多径时延特性的分布,测量得出每个台站1天线高度为40 m 和60m,台站2天线高度为2m。郊区环境下3.7GHz和5.2GHz频段的多径时延特性的分布, 测量得出台站1天线高度为20m,台站2天线高度为2.0m和2.8m。表11列出了在1.9GHz至 73 GHz频段测量的r.m.s.时延扩展,其中累计概率是50%和95%。除另有说明,否则计算均方 根时延扩展均采用20 dB的门限值。

100-1 000

2.091

2.3

表11 典型均方根时延扩展值

测量条件										均方根.时	延扩展(ns)		
区域	情境	f (GHz)	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	范围 (米)	发射机 波束宽度 (度)	接收机 波束宽度 (度)	时延分 辨度 (毫微秒)	极化	50%	95%		
城市超 高层建	LoS	2.5	100	2	100-1000	ULA ⁽⁴⁾	UCA ⁽⁵⁾	10	VV	208(1)	461 ⁽¹⁾		
筑	NLoS	2.5	100	2	100-1000	ULA ⁽⁴⁾	UCA ⁽⁵⁾	10	Dual ⁽⁶⁾	407(1)	513(1)		
		2.7	60	2	100-1000	omni	omni	10	VV	232(1)	408(1)		
		3./	40	2	100-1000	omni	omni	10	VV	121(1)	357(1)		
		25.5- 28.5	20	1.6	54-142	33	omni	0.5	VV HV	$2.2^{(2)}$ $9.8^{(2)}$	6.9 ⁽²⁾ 28.1 ⁽²⁾		
		51-57 13							VV/HH	1.6 ⁽²⁾	40.2(2)		
										VH/HV	2.7(2)	37.9(2)	
	LoS		18.2	1.6	50-180	56.3	18.4	0.5	VV/HH	7.5 ⁽³⁾	92.1 ⁽³⁾		
城市高 尾建筑										VH/HV	4.8(3)	81.9(3)	
広廷巩		67-73 1	67-73 18.2					VV/HH	1.7 ⁽²⁾	31.3(2)			
				67-73	67-73	18.2	1.6	50-180	40	14.4	0.5	VH/HV	2(2)
									VV/HH	6 ⁽³⁾	78.7 ⁽³⁾		
		67-73	20	1.6	54-142	40	omni	0.5	vv	2	9.8		
		1.9-2.1	46	1.7	100-1000	omni	omni	16.6	VV	490(1)	1490(1)		
	NLoS	25.5- 28.5	20	1.6	61-77	33	omni	0.5	VV	74.5	159.1		
		2.5	12	1	200-1000	30	omni	100	VV	158	469		
		3.5	12	1	200-1000	30	omni	100	VV	161	493		
郊区	LoS	3.7	20	2	100-1000	omni	omni	10	VV	125(1)	542(1)		
		5.2	20	2.8	100-1000	omni	omni	18.3	VV	189(1)	577(1)		
		5.8	12	1	200-1000	120	omni	100	vv	168	415		

(1) 计算均方根.时延扩展时,采用30dB的门限值。

(2) 接收机天线的旋转范围为360度。其数值代表何时接收机天线的视轴与发射机的方向相一致。

(3) 接收机天线的旋转范围为360度,一次可旋转5度。其数值代表接收机天线的视轴在发射机的方向不一致时的方向时延扩展。

(4) 均等圆阵列天线。

(5) 均等圆阵列天线。

⁽⁶⁾ VV、VH、HV和HH的平均值。

5.1.2 低于屋顶传播环境的时延扩展

5.1.2.1 全向天线情况

LoS全向天线情况下多径时延扩展的特性,在城市高层建筑环境中对密集城区微小区和 微微小区 (如表3中规定的)来说,已根据在频率从2.5至15.75 GHz和距离从50至400 m的测量数据中研究得出。在距离d m的r.m.s.时延扩展S遵循具有由下式给出的平均值的正态分 布:

$$a_s = C_a d^{\gamma_a} \qquad \text{ns} \qquad (87)$$

而标准偏移由下式给出:

$$\sigma_s = C_{\sigma} d^{\gamma_{\sigma}} \qquad \text{ns} \qquad (88)$$

其中*C_a、γ_a、C_o*和γ_o取决于天线高度和传播环境。表12列出了根据城市和住宅区内得到 的测量值对50-400 m距离的一些系数的典型值。

	测量条件			а	s	c	55
地区	f (GHz)	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	Ca	γa	Cσ	γσ
城市(1)	0.781	5	5	1 254.3	0.06	102.2	0.04
	2.5	6.0	3.0	55	0.27	12	0.32
城市(2)	2 25 15 75		2.7	23	0.26	5.5	0.35
- 外以 111 、 /	5.55-15.75	4.0	1.6	10	0.51	6 1	0.20
	3.35-8.45		0.5	10	0.31	0.1	0.39
	8.05	5	2.5	0.97	0.78	1.42	0.52
住宅(2)	3.35	4.0	2.7	2.1	0.53	0.54	0.77

表12

r.m.s.时延扩展的距离特性的典型系数

(1) 计算r.m.s.时延扩展时采用了20dB的门限值。

⁽²⁾ 计算r.m.s.时延扩展时采用了30 dB的门限值。

从2.5 GHz的测量数据,可求出时延曲线的平均形态为:

$$P(t) = P_0 + 50(e^{-t/\tau} - 1) \qquad \text{dB}$$
(89)

其中:

*P*₀: 峰值功率(dB)

τ: 衰落因子

且t以ns为单位。

根据测量数据,对r.m.s.时延扩展S,τ可估算如下:

$$\tau = 4 S + 266$$
 ns (90)

τ和S之间的线性关系仅对LoS情况有效。

对同样的测量设置,时延曲线的瞬时特性也已描绘出来。前40 ns到达的能量具有约6至 9 dB的*K*因子的Rician分布,而之后到达的能量具有高达约3 dB的*K*因子的瑞利分布或Rician 分布。(见ITU-R P.1057建议书中的概率分布定义。)

5.1.2.2 定向天线的情况

在固定无线接入系统和无线网状网络系统的接入点之间的通信中,定向天线被作为发射器和接收天线。以下给出使用定向天线的典型效果。到达时延波被使用定向天线作为发射器和接收器天线的天线模式所抑制。因此,时延扩展变小。此外,当定向天线被用作发射机和接收机天线时,所接收的功率随天线增益而增加。基于这些事实,定向天线在无线系统中使用。因此,重要的是在多径模型中理解天线的方向性的效果。

毫米波无线电系统将使用采用单极化或双极化的定向天线。表12给出了使用双极化天线 在30 GHz以及使用台站1和台站2的纵向极化天线在60 GHz获得的r.m.s.时延扩展值。当天线 统一且r.m.s.值按照交叉极化天线(HV和VH)以及同极化天线(HH和VV)分组时, 30 GHz值代表LoS情况。对于60 GHz, r.m.s.时延扩展代表使用台站1和台站2纵向极化天线的 两种情况。在LoS的情况中,天线是统一的。在NLoS情况中,台站2天线以5°为单位进行 360°旋转,不包括天线统一时的数值。

表13

典型的r.m.s.时延扩展值

测量条件									r.m.s.时延扩展 (ns)				
地区	情形	f (GHz)	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	范围 (m)	发射机 波束宽度 (度)	接收机 波束宽度 (度)	时延 分 辨 率 (ns)	极化	50%	95%		
		25.5- 28.5	3	1.6	18-140	33	Omni	0.5	VV	3.5	43.6		
									HV	8.7	57		
		28	4	1.5	100- 400	30	10	2	VV	1.9(1)	5.9(1)		
		29.3-	3	1.3	6-60	35	35	0.45	VV/HH	1.5 ⁽¹⁾	5(1)		
		31.5							VH/HV	6(1)	14.3(1)		
		38	4	1.5	50-400	30	10	2	VV	1.2(1)	4.8(1)		
			51-57 2						VV/HH	0.74 ⁽¹⁾	3(1)		
	LoS 51-57 切 挫	LoS 51.57		16	11-180	563	18.4	0.5	VH/HV	1.7 ⁽¹⁾	7.5(1)		
		51-57	5	1.0		50.5	10.4	0.5	VV/HH	11.2(2)	72.9(2)		
城市									VH/HV	8.5(2)	40.9(2)		
低铵		58.7-	2.4	1.5	20-200	15.4	15.4	0.22	VV	0.6 ⁽¹⁾	1.2(1)		
		63.1	3	1.6	6-60	15.4	2.2	0.9	VV	6.6 ⁽²⁾	40.7(2)		
											VV/HH	0.6 ⁽¹⁾	3.5 ⁽¹⁾
	67-73			3	16	11-180	40	14.4	0.5	VH/HV	1.6 ⁽¹⁾	5.9(1)	
		5	1.0	11-180	40	14.4	0.5	VV/HH	8.9(2)	80(2)			
										VH/HV	5(2)	39.8 ⁽²⁾	
			3	1.6	18-140	40	Omni	0.5	VV	2.6	36		
		25.5- 28.5	3	1.6	40-84	33	Omni	0.5	VV	13.4	30.3		
	NLoS	28	4	1.5	90-350	30	10	2	VV	48.5 ⁽³⁾	112.4 ⁽³⁾		
		38	4	1.5	90-250	30	10	2	VV	25.9 ⁽³⁾	75.0(3)		
		67-73	3	1.6	40-84	40	Omni	0.5	VV	10	23.7		
住宅		25.5-	3	1.6	37-167	33	Omni	0.5		5.3	13.6		
楼	NLoS	28.5 67-73	3	1.6	37-167	40	Omni	0.5	HV VV	9.1 7.4	15.5		
城主		28	4	1.5	50-350	30	10	2	vv	1.7(1)	7.8(1)		
- 城印 超高	LoS	38	4	1.5	20-350	30	10	2	vv	1.6 ⁽¹⁾	7.4(1)		
层建		28	4	1.5	90-350	30	10	2	VV	67.2 ⁽³⁾	177.9(3)		
筑	NLoS	38	4	1.5	90-350	30	10	2	VV	57.9 ⁽³⁾	151.6 ⁽³⁾		

(1) 测量中接收机天线的可旋转角度为360度。数值代表当接收机天线的视轴与发射机的方向一致时的定向时延扩展数。

⁽²⁾ 测量中接收机天线的可旋转角度为360度,每次旋转5度。数值代表当接收机天线的视轴与发射机的方向不一致时的定向时延扩展数。

(3) 测量中接收机天线的可旋转角度为360度。数值代表定向时延扩展数,而无论天线校准的情况。

5.1.3 街面终端之间传播的时延扩展

基于测量数据已制定了街面终端之间传播的多路径时延扩展特性。表14列出了累计概率为50%和95%情况下测量得到的r.m.s.时延扩展值。通过对3.7 GHz频段内城市超高层建筑、

ITU-R P.1411-10 建议书

高层建筑和低层建筑地区进行的测量已得出LoS和NLoS在1至250 m距离情况下的多路径时延分布特性。

-=	-	1	4
-	ァ		Δ.
v	\sim	т	т.

典型的r.m.s.时延扩展值

	r.m.s.时延扩展 (ns)						
		瓶家	天线高度		な国		
地区	情形	/妖平 (GHz)	<i>h</i> ₁ (m)	$\begin{array}{c c} h_1 & h_2 \\ (m) & (m) \end{array}$		50%	95%
城市超高	LoS					29	87
层建筑(1)	NLoS					247	673
城市高层	LoS	27	1.0	1.0	1 250	24 153	153
建筑(1)	NLoS	5.7	1.9	1.9	1-230	145	272
城市低层	LoS					15	131
建筑(1)	NLoS					64	89

(1) 计算r.m.s.时延扩展时采用了20 dB的门限值。

5.2 角度分布

5.2.1 低于屋顶传播环境的角扩展

在城区微小区或微微小区环境中,在水平方向上由ITU-R P.1407建议书中定义的r.m.s.角度扩展是从8.45 GHz频率时进行的测量中得到的。接收基站采用了半功率波束宽度为4°的抛物面天线。

测量在在城市区域中密集城区微蜂窝环境中进行。在频率为0.781 GHz的LoS情况下,角扩散系数在城市地区基础上测量,距离为10~1000 m。采用Bartlett波束形成方法的四元素全方位线性阵列用于推导角分布。

r.m.s.角扩展系数如表15所示。

	测量条例	牛		平均	std		
地区	f (GHz)	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	(度)	(度)	注释	
城市	0.781	5	1.5	28.15	13.98	LoS	
城市	8.45	4.4	2.7	30	11	LoS	
城市	8.45	4.4	2.7	41	18	NLoS	

表15

角扩展距离特性的典型系数

5.2.2 街面终端之间传播的角扩展

根据测量数据已确定了街面终端之间传播的角扩展特性。表16列出了累计概率为50%和 95%情况下测量的r.m.s.角扩展值。根据对城市超高层建筑、高层建筑和低层建筑地区 3.7 GHz频率范围的测量得出了LoS和NLoS在1至250 m距离情况下多路径方位角分配特性。 在获取角分布的过程中,发射机和接收机均使用了8元素统一圆型天线阵。

	r.m.s.角扩展 (度)						
	天			高度	公国		
地区	情形	/妖平 (GHz)	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	そ日 (m)	50%	95%
城市	LoS					17	46
超高层建筑(1)	NLoS					31	50
城市	LoS	27	1.0	1.0	1 250	12 37	37
高层建筑(1)	NLoS	5.7	1.9	1.9	1-230	33	61
城市	LoS					12	40
低层建筑(1)	NLoS					25	55

表16 典型的**r.m.s.**角扩展值

(1) 计算r.m.s.角扩展采用了20 dB的门限值

5.3 天线波束宽度的影响

毫米波无线电系统通常应使用高度定向天线和/或不同的利用大型天线阵的波束形成技术,以克服相对高的传播损耗并建立可靠的通信连接。由于多径传播分量的到达角呈分布式,所以使用定向天线后,空间上过滤掉了天线射束宽度以外的那些分量,从而可以减小时延扩展和角扩展。

5.3.1 天线波束宽度造成的接收功率损耗

当以某一天线波束宽度接收信号时,与全向接收天线相比,多径信号分量的数量变得更少。这会导致额外的功率损耗,其计算方法如下:

$$L^{\text{beamforming}}(d, f, W_{\Phi}) = L^{\text{omni}}(d, f) + \Delta L(W_{\Phi}) \quad (\text{dB})$$
(91)

其中 Lomni 为全向基本传输损耗且 ΔL 可以计算如下:

. . .

$$\Delta L(W_{\phi}) = \eta \left(\frac{1}{W_{\phi}} - \frac{1}{360^{\circ}}\right) \quad (\mathrm{dB}), \ 10^{\circ} \le W_{\phi} \le 360^{\circ} \tag{92}$$

其中W_φ i为定向天线(波束成形)的半功率波束宽度(HPBW)。表17列出了在城市高楼 环境中收集的、28 GHz和38 GHz测量获得的η值。

王	Ξ.	1	7
r	¢	I	1

因W_φ-波束宽度波束成形造成的额外功率损耗的恒定 η

环境	频率 (GHz)	链路类别	η
	29	LOS	17.70
出主言株	28	NLOS	64.03
州山回伎	29	LOS	16.44
	38	NLOS	46.49

5.3.2 时延扩展和角扩展特性

对于密集城区微蜂窝和微微蜂窝(表3中定义),在城市升高环境中的LoS定向天线情况下,多径时延的传播特性的开发基于从10到500 m距离内5.2 GHz频带测得的数据。天线被配置为一个天线的最大天线增益方向面对另一个。对于公式(87),表17列出方程推导出相对于天线半功率波束的系数,在城市区距离为10到500 m的基础上测量。这些方程只取决于天线半功率波束和有效的任何道路宽度。

表18

在定向天线情况下r.m.s.时延扩展的距离特性的典型系数

测量条件					a_s
地区	f (GHz)	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	C_a	γa
城市	5.2	3.5	3.5	$9.3 + 1.5\log(\theta)$	$3.3 imes 10^{-2} + 4.6\theta imes 10^{-2}$

注 1-计算r.m.s.时延扩展时采用了20 dB的门限值。

其中, θ表示天线在两个发送和接收天线上的半功率波束宽度,以及单位为弧度。注, 当全向天线用于发射和接收天线时, θ应设置为2π。

基于28 GHz和38 GHz的典型城市环境所做的测量,已开发了时延和角的多径扩展有关天 线波束宽度的预测方法。为了从窄天线波束到宽天线波束宽度中导出时延和角的扩展,通过 旋转窄波天线10°而收集的通道脉冲整合到功率、时延和角度域之中。

r.m.s.时延扩展DS取决于天线θ的半功率波束宽度(度):

$$DS(\theta) = \alpha \times log_{10} \theta$$
 ns (93)

其中α是r.m.s.时延扩展的系数,θ的范围定义为10°≤θ ≤120°。表18列出了基于每种测量 条件下各系数和标准偏差σ的典型值。时延扩展的系数分别代表各天线视轴分别调至LoS和 NLoS情景下最大接收功率的状况。

r.m.s.时延扩展的类型系数

		r.m.s.时延扩展 的系数							
f (GHz)	环境	情景	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	范围 (m)	发射机 波束宽度 (度)	接收机 波束宽度 (度)	α	σ (毫微秒)
	城市低	LoS		1.5	20-400		10	2.32	5.83
28	层建筑	NLoS			20-300	30		35.1	43
	城市超 高层 建筑	LoS	4		40-300			3.67	7.07
		NLoS			80-340			43.19	38.62
	城市低	LoS			20-400			2.14	7.3
	层建筑	NLoS			20-200		10	30.01	35.51
38	城市超 高层 建筑	LoS	4	1.5	20-340	30		1.61	3.15
		NLoS			80-210			26.93	27.95

r.m.s.角扩展AS取决于天线θ半功率的波束宽度(度):

其中α和β分别是r.m.s.角扩展的系数和天线θ的定义范围10°≤θ≤120°。表20列出了基于每种测量条件的系数和标准偏差σ等典型数值。角扩展系数代表的是天线视轴分别调至 LoS和NLoS下最大接收功率的情况。

r.m.s. 角扩展的典型系数

	测量条件									r.m.s.角扩展系数		
f (GHz)	环境	情景	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	范围 (m)	发射机 波束宽度 (度)	接收机 波束宽度 (度)	α	β	σ (度)		
	城市低 层建筑	LoS			20-400			1.84	0.39	2.1		
		NLoS			20-300			0.42	0.84	3.42		
28	城市超	LoS	4 1.5	40-300	30	10	1.98	0.34	1.45			
	高层 建筑	NLoS			80-340			0.38	0.89	2.47		

表20(完)

	测量条件									r.m.s.角扩展系数			
f (GHz)	环境	情景	<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	范围 (m)	发射机 波束宽度 (度)	接收机 波束宽度 (度)	α	β	σ (度)			
	城市低 层建筑	LoS		4 1.5	20-400	30	10	1.76	0.36	1.5			
		NLoS	4		20-200			0.33	0.91	3.39			
38 城市 高川 建分	城市超	LoS			20-340			1.7	0.38	1.95			
	高层 建筑	NLoS			80-210			0.23	1.03	3.3			

5.4 信号分量的数目

对于带有多径分离和合成技术的高数据速率系统的设计,估算到达接收机的信号分量(即主要分量加多径分量)的数目是十分重要的。信号分量的数目可从时延曲线描绘出的那些幅度高于噪声基线且在最高峰A dB之内的峰值的数目得知,相关定义见ITU-R P.1407建议书。

5.4.1 越过屋顶的传播环境

表21为通过不同方案在越过屋顶环境中所测得的信号成分数量结果,这些方案涉及不同 环境类型、频段和天线高度。

环境类型	时延	频率	天线高度 (m)		距离	成分最大数量						
	分辨率	(GHz)	h_1	h	(m)	3 dB		5 (dB	10 dB		
				n_2		80%	95%	80%	95%	80%	95%	
城市	200 ns	1.9-2.1	46	1.7	100-1 600	1	2	1	2	2	4	
	20 ns	3.35	55	2.7	150-590	2	2	2	3	3	13	
	20 ns	8.45	55	2.7	150-590	2	2	2	3	3	12	
	175 ns	2.5	12	1	200-1 500	1	2	1	2	2	4	
郊区	175 ns	3.5	12	1	200-1 500	1	2	1	2	1	5	
	50 ns	3.67	40	2.7	0-5 000	1	2	1	3	3	5	
	100 ns	5.8	12	1	200-1 500	1	2	3	5	4	5	

表21 越过屋顶环境中的信号分量最大数量

对第5.1.1段中所述的测量结果,在表22中给出了有关最先到达成分及其相对振幅的、 最强四个成分的微分时延窗口。

ITU-R P.1411-10 建议书

有关最先到达成分及其相对振幅的、最强四个成分的微分时延窗口

环境类型	时延 分辨率	频率	天线高度 (m)		距离	超额时延 (µs)							
		(GHz)	h.	h_2	(m)	第一		第二		第三		第四	
			<i>n</i> 1			80%	95%	80%	95%	80%	95%	80%	95%
城区	200 ns	1.9-2.1	46	1.7	100-1 600	0.5	1.43	1.1	1.98	1.74	2.93	2.35	3.26
有关最强成分的相对功率(dB)					0	0	-7.3	-9	-8.5	-9.6	-9.1	-9.8	

5.4.2 低于屋顶的传播环境

表23为通过不同方案在低于屋顶环境中所测得的信号成分数量结果,这些方案涉及不同 环境类型、频段和天线高度。

表23

低于屋顶环境中的信号分量最大数量

环境类型	时延 分辨率	频率 (GHz)	天线高度 (m)		距离	分量最大数量						
			h	h_2	(m)	3 (3 dB		5 dB		10 dB	
			n_1			80%	95%	80%	95%	80%	95%	
	20 ns	3.35	4	1.6	0-200 0-1 000	2 2	3 3	2 2	4 4	5 5	6 9	
城市	20 ns	8.45	4	1.6	0-200 0-1 000	1 1	3 2	2 2	3 4	4 4	6 8	
	20 ns	15.75	4	1.6	0-200 0-1 000	1 2	3 3	2 2	3 4	4 6	5 10	
住宅	20 ns	3.35	4	2.7	0-480	2	2	2	2	2	3	

5.5 衰落特性

定义为接收信号电平在累积概率为50%和1%数值之间的差别的衰落深度,被表示为接收带宽2 Δf MHz和传播路径长度最大差别 ΔL_{max} m的乘积(2 $\Delta f \Delta L_{max}$ MHz·m)的函数,如图13所示。 ΔL_{max} 是那些电平高于门限,而比直射波的最高电平低20dB的分量之间在传播路径长度上的最大差值,如图14所示。该图中,*a*是以分贝为单位的直射波与非直射波总和的功率之比,且*a* = -∞ dB时代表非视距的情形。当2 $\Delta f \Delta L_{max}$ 小于10 MHz·m时,视距和非视距情况的接收信号电平遵循瑞利分布和Nakagami-Rice分布,对应窄带衰落区。当该值大于10 MHz·m时,它对应宽带衰落区,衰落深度变小且接收信号电平既不是瑞利分布也不是Nakagami-Rice分布。

图14 计**算∆Lmax的模型**

6 极化特性

正如ITU-R P.310建议书所规定的,在SHF密集城市微蜂窝环境中LoS和NLoS地区之间的 交叉极化隔离(XPD)是不同的。测量值表明对LoS路径的XPD中间值为13dB,而对NLoS 路径则为8 dB,且在SHF对LoS路径的标准偏移为3dB而对NLoS路径则为2dB。开阔地区和 城区的中间值XPD符合ITU-R P.1406建议书中的UHF值。在ITU-R P.2406号报告中,对于51-57 GHz与67-73 GHz毫米波段在城市低层建筑环境中所测的XPD来说,LoS分量的方差为 3dB,中值为16 dB;NLoS路径的方差是6 dB,中值为9 dB。

7 路径形态方法的传播数据和预测方法

7.1 路径形态方法的分类

在除农村地区外的区域,无线信道路径形态方法可分为9类,如表24所示。分类完全基于真正的波传播环境,利用GIS(地理信息系统)数据库,通过分析各种有代表性的位置的建筑高度和密度分布。

表24

MIMO信道路径形态方法的分类

路名	形态方法	密度
	高密度(HRHD)	超过35%
局层 (高干 25 m)	中密度(HRMD)	20 ~ 35%
	低密度(HRLD)	低于20%
+ D	高密度(HRHD)	超过35%
甲层 (12 m~25 m)	中密度(HRMD)	20 ~ 35%
(12 m 23 m)	低密度(HRLD)	低于20%
	高密度(HRHD)	超过35%
低层 (低于12 m)	中密度(HRMD)	20 ~ 35%
(IKN J 12 III /	低密度(HRLD)	低于20%

7.2 统计数据建模方法

通常情况下,测量的数据是非常有限且不全面的。因此,对于具体的形态和特定的工作 频率,下列方法可以用于导出MIMO信道模型的参数。对3.705 GHz信道上9种典型的形态的 信道特性的测量相比建模方法显示了良好的统计协议。

在 $h_1 > h_r$.情况下定义模型。参数f、d、 h_r 、 h_1 、Δ h_1 和 h_2 的定义见图2, B_d 表示建筑物密度。路径形态方法对于下列情况有效:

f: 800 -6 000 MHz

- *d*: 100 800 m
- h_r : 3 60 m
- h_1 : $h_r + \Delta h_b$
- Δ*h*₁: 最高至20m
- *h*₂: 1-3 m
- *B*_d: 10 45%

在统计建模中,建筑物对完全随机的方式产生。众所周知建筑高度h的分布很适合参数 为μ 的统计瑞利分布*P*(*h*)。

$$P(h) = \frac{h}{\mu^2} \exp(\frac{-h^2}{2\mu^2})$$
(93)

42

对于给定的形态,为了得出瑞利分布的统计参数,建议利用现有的GIS数据库。对于建 筑物的水平位置,可以被假定为均匀分布。

使用射线追踪法对每一个建筑的分布计算波传播。建议采用15倍的反射和2倍衍射进行 模拟。建筑物的穿透力也很重要,建议设立接收功率阈值,适当考虑建筑物穿透。为获得模 型参数,应为每个形态进行足够数目的实现模拟。建议至少实现4次。对于每一个实现,计 算区域中应设置足够数目的接收机,以得到统计上有意义的数据。建议至少应有50台接收 机,保持每10米的间隔距离。发射天线高度和接收天线应设置适当的值。建议介电常数和电 导率的值设置在,对建筑物 ϵ_r = 7.0, σ = 0.015 S/m,对地面 ϵ_r = 2.6, σ = 0.012 S/m。

典型的情况下建筑物高度分布的参数值在表25中给出。建筑物尺寸的高、中和低层分别为30×20 m²、25×20 m²和20×20 m²。建筑物密度的高、中低密度分别为40%、30%和20%。

路径形态方法	瑞利参数μ	建筑高度分布 的距离 (m)	平均建筑 高度 (m)
HRHD		12.3~78.6	34.8
HRMD	18	12.5~70.8	34.4
HRLD		13.2~68.0	34.2
MRHD		7.3~41.2	19.5
MRMD	10	7.2~39.0	19.6
MRLD		7.4~40.4	19.4
LRHD		2.1~23.1	9.1
LRMD	6	2.5~22.2	9.4
LRLD		2.5~23.5	9.5

表25

建筑高度分布的统计模型的参数

7.3 基本传输损耗模型

本建议书给出基本传输损耗模型如下:

$$L_b = L_0 + 10 \cdot n \cdot \log_{10}(d) + S$$
 (dB) (96)

$$L_0 = -27.5 + 20 \cdot \log_{10}(f) \qquad (dB) \tag{97}$$

其中n为基本传输损耗指数。S是一个随机变量,代表正态分布的回归线周围的随机散射,标准差S表示为os。f和d的单位分别为MHz的米。

对于统计模型的9类路径形态的典型情况,在3.705 GHz的基本传输损耗参数在表26中总结。表中的值适用于所有位于距离从100米到800米的路径上的高度为2米的接收器。

丰	26
衣	26

3.705 GHz上9类路径形态的基本传输损耗参数

路径形态方法	发射天线高度 (m)	平均建筑密度 (%)	n	σ
HRHD	50	40	3.3	9.3
HRMD	50	30	2.9	6.3
HRLD	50	20	2.5	3.6
MRHD	30	40	2.8	4.7
MRMD	30	30	2.6	4.9
MRLD	30	20	2.3	2.7
LRHD	20	40	2.4	1.3
LRMD	20	30	2.3	1.8
LRLD	20	20	2.2	1.8

7.4 时延扩展模型

r.m.s.时延扩展可作为距离的函数进行建模。在距离100 m到800 m的NLoS-主导路径上的 r.m.s.时延扩展的建模取决于距离如下:

$$DS = A \cdot d^B \tag{98}$$

在3.705 GHz上,统计模型的9类路径形态的典型情况的时延扩展参数在表27中概述,接收机高度为2米,适当地去除异常值得到的拟合参数。

表27
1

在3.705 GHz上9类路径形态的时延扩展参数

路径形态方法	发射天线高度	平均建筑密度	时延扩展 (ns)		
	(11)	(%)	A	В	
HRHD	50	40	237	0.072	
HRMD	50	30	258	0.074	
HRLD	50	20	256	0.11	
MRHD	30	40	224	0.095	
MRMD	30	30	196	0.12	
MRLD	30	20	172	0.19	
LRHD	20	40	163	0.18	
LRMD	20	30	116	0.23	
LRLD	20	20	90	0.29	

7.5 角扩展模型

距离100 m到800 m,沿路径出发的角扩展(ASD)和到达的角扩展(ASA)可以建模为距离依赖模型,由下式给出:

$$ASD = \alpha \cdot d^{\beta} \qquad (\texttt{B}) \tag{99}$$

$$ASA = \gamma \cdot d^{\delta} \qquad (\textcircled{B}) \qquad (100)$$

在3.705 GHz上统计建模的9类路径形态典型情况的ASD和ASA参数概述于表28和表29。

表28

在3.705 GHz上统计建模的9类路径形态的ASD参数

路径形态方法	发射天线高度 (m)	平均建筑密度 (%)	α	β
HRHD	50	40	107	-0.13
HRMD	50	30	116	-0.18
HRLD	50	20	250	-0.31
MRHD	30	40	115	-0.22
MRMD	30	30	232	-0.33
MRLD	30	20	264	-0.37
LRHD	20	40	192	-0.33
LRMD	20	30	141	-0.29
LRLD	20	20	113	-0.24

表29

在3.705 GHz上统计建模的9类路径形态的ASA参数

路径形态方法	发射天线高度 (m)	平均建筑密度 (%)	γ	δ
HRHD	50	40	214	-0.27
HRMD	50	30	147	-0.17
HRLD	50	20	140	-0.14
MRHD	30	40	127	-0.15
MRMD	30	30	143	-0.16
MRLD	30	20	132	-0.13
LRHD	20	40	109	-0.09
LRMD	20	30	124	-0.11
LRLD	20	20	94	-0.06

8 多链路信道的互相关模型

8.1 参数定义

基于距离为50至600 m、频率为3.7 GHz的测量数据,我们已在住宅环境中开发了多链路 信道的互相关模型。图15为多链路信道的几何图。在对多链路信道进行几何建模时,我们使 用了分离角和相对距离这两个参数。

分离角 θ 是台站1-台站2的直达链路和台站3-台站2的直达链路之间的夹角。相对距离 \tilde{d} 的 定义为:

$$\tilde{d} = \log_{10} \frac{d_1}{d_2} \tag{101}$$

其中 d_1 和 d_2 分别代表台站1和台站2以及台站3和台站2之间的距离。当台站2与台站1和台站3的距离相同时, $\tilde{d}=0$ 。

 θ 和 \tilde{d} 的范围定义如下,

$$0^{\circ} < \theta < 180^{\circ}, -0.3 \le \tilde{d} \le 0.3 \tag{102}$$

8.2 长期时间-空间参数的互相关

用于互相关模型的长期时间-空间参数包括:

— 阴影衰落(**SF**)

- K因子 (KF)

— 时延扩展 (**DS**)

- 到达角扩展(ASA)
- 出发角扩展(ASD)。

台站1-台站2链路和台站3-台站2链路之间的长期时间-空间参数的互相关性模型由以下等式给出。

46

相对于分离角的两条链路之间的SF、KF、DS、ASA和ASD的互相关模型定义(p)被定义 如下,

$$\rho_{(\text{SF, KF, DS, ASA})}(\theta) = A \cdot \exp(-\theta^2/B)$$
(103)

$$\rho_{\text{ASD}}(\theta) = A \cdot \ln(\theta) + B \tag{104}$$

相对于分离角的各互相关模型的典型系数是分别基于典型住宅环境中3.7 GHz的测量数据获得的,如表30所示。

表30	
1230	

相对于分离角的长期时间-空间参数的互相关模型典型系数

参数 地	地区	频率 (GHz)	天线高度		互相关系数			
			h ₁ 和h ₃ (m)	<i>h</i> ₂ (m)	A		В	
					平均值	标准偏差	平均值	标准偏差
阴影衰落			25	2	0.749	4.3×10 ⁻²	619	89
K-因子		3.7			0.295	4.9×10 ⁻³	2 129	6
时延扩展	住宅				0.67	7.0×10^{-2}	1 132	119
到达角扩展					0.582	2.1×10^{-3}	1 780	484
出发角扩展					-0.0989	9.2×10 ⁻⁴	0.483	0.016

相对于相对距离的两条链路之间的SF、KF、DS、ASA和ASD的互相关模型(p)被定义如下:

$$\rho_{(\text{SF,KF,DS,ASA})}(\tilde{d}) = A \cdot \exp(-|\tilde{d}|/B)$$
(105)

$$\rho_{\rm ASD}(\tilde{d}) = A \cdot \left| \tilde{d} \right| + B \tag{106}$$

相对于相对距离的各互相关模型的典型系数是分别基于典型住宅环境中3.7 GHz的测量数据获得的,如表31所示。

相对于相对距离的长期时间 – 空间参数的互相关模型典型系数

参数		频率 (GHz)	天线高度		互相关系数			
	地区		h ₁ 和h ₃ (m)	<i>h</i> ₂ (m)	A		В	
					平均值	标准偏差	平均值	标准偏差
阴影衰落			25	5 2	0.572	1.4×10^{-2}	0.38	4.9×10 ⁻²
K-因子					0.429	2.8×10 ⁻³	0.27	7.1×10^{-3}
时延扩展	住宅	3.7			0.663	4.6×10 ⁻²	0.38	1.6×10^{-1}
到达角扩展					0.577	1.1×10^{-2}	0.38	2.1×10^{-2}
出发角扩展					0.51	1.9×10 ⁻¹	0.196	4.2×10^{-2}

相对于分离角和相对距离的两条链路之间的SF、KF、DS、ASA和ASD的互相关模型(p) 由下式给出:

$$\rho_{(\text{SF, KF, DS, ASA, ASD})}(\theta, \tilde{d}) = A \cdot \exp(-\frac{\theta^2}{B^2}) \cdot \exp(-\frac{\tilde{d}^2}{C^2})$$
(107)

相对于分离角和相对距离的互相关模型的典型系数是基于典型住宅环境中3.7 GHz的测量数据获得的,如表31所示。

表32

相对于分离角和相对距离的长期时间-空间参数的互相关模型典型系数

		频率 (GHz)	天线高度		互相关系数												
参数 地	地区		h ₁ 和 h ₃ (m) (h2	A		В		С								
				(m)	平均值	标准偏差	平均值	标准偏差	平均值	标准偏差							
阴影衰落					0.53	7.1×10^{-3}	29.31	4.6	0.42	9.2×10^{-2}							
K-因子									0.28	6.4×10^{-2}	22.48	5.9	0.21	4.2×10^{-2}			
时延扩展	住宅	3.7	25	25 2	0.46	9.2×10 ⁻²	29.31	3.7	0.21	7.1×10^{-5}							
到达角扩展												0.49	4.9×10^{-2}	29.31	0.15	0.21	2.1×10^{-2}
出发角扩展					0.34	6.4×10 ⁻²	29.31	2.5	0.21	2.1×10 ⁻²							

8.3 时延域中短期衰落的互相关

链路台站1-台站2信道脉冲响应h_i(τ_i)在时延τ_i和链路台站3-台站2信道脉冲响应h_j(τ_j)在时 延τ_i的互相关可计算如下:

$$c_{h_i h_j}(\tau_i, \tau_j) = \operatorname{Real}\{ \operatorname{E}[(h_i(\tau_i) - \overline{h}_i(\tau_i))(h_j(\tau_j) - \overline{h}_j(\tau_j))^*] \}$$
(108)

其中(•)表示给定参数的期望。请注意,只有功率属于动态范围(5 dB)的信道脉冲响应的时延样本才会被当作计算互相关的成分。此外,取值范围为-1到1的互相关系数通过归一化获得,即

$$c_{h_{i}h_{j}}(\tau_{i},\tau_{j}) = \operatorname{Real}\{\frac{\operatorname{E}[(h_{i}(\tau_{i}) - \overline{h_{i}}(\tau_{i}))(h_{j}(\tau_{j}) - \overline{h_{j}}(\tau_{j}))^{*}]}{\sqrt{\operatorname{E}[(h_{i}(\tau_{i}) - \overline{h_{i}}(\tau_{i}))^{2}]}\sqrt{\operatorname{E}[(h_{j}(\tau_{j}) - \overline{h_{j}}(\tau_{j}))^{2}]}\}}$$
(109)

在针对短期衰落 $c_{h_ih_i}(\tau_i,\tau_j)$ 的互相关建模时,我们将考虑以下三个参数:

– 短期衰落 $c_{h_i h_i}(\tau_i, \tau_i)$ 的互相关最大值

$$\rho_{Fmax} = \max\{c_{h_i h_j}(\tau_i, \tau_j)\}$$
(110)

– 短期衰落 $c_{h,h_i}(\tau_i,\tau_j)$ 的互相关最小值

$$\rho_{Fmin} = \min\{c_{h_i h_j}(\tau_i, \tau_j)\}$$
(111)

– 短期衰落 $c_{h_ih_i}(\tau_i, \tau_j)$ 的互相关标准偏差

$$\rho_{Fstd} = \sqrt{\frac{1}{T_i T_j} \int (c_{h_i h_j}(\tau_i, \tau_j) - c_{h_i h_j, \text{mean}})^2 d\tau_i d\tau_j}$$
(112)

其中*T_i*和*T_j*分别代表时长τ*i*和τ*j*。*c_{h_ih_j*,mean}代表短期衰落的互相关平均值。该值接近于 零,且方差较小,同时与分离角和相对距离无关。

相对于分离角的两条链路之间的小规模衰落的互相关模型(pF)由下式给出:

$$\rho_F(\theta) = A \cdot \ln(\theta) + B \tag{113}$$

相对于分离角的各互相关模型的典型系数是基于典型住宅环境中3.7 GHz的测量数据获得的,如表33所示。

ITU-R P.1411-10 建议书

表33

相对于分离角的短期衰落的互相关模型典型系数

			天线高度		互相关系数						
参数	地区	频率 (GHz)	h_1 和 h_2		F	1	1	8			
		$\begin{array}{c}h_3\\(\mathbf{m})\end{array}$ (m	(m)	平均值	标准偏差	平均值	标准偏差				
最大值					-1.09×10^{-2}	2.5×10^{-3}	0.635	3.5×10 ⁻³			
最小值	住宅	3.7	25	2	1.62×10^{-2}	6.4×10 ⁻⁴	-0.659	1.1×10^{-2}			
标准偏差								-9.71×10 ⁻³	7.1×10^{-5}	0.417	7.1×10^{-5}

相对于相对距离的两条链路之间的短期衰落的互相关模型由下式给出:

$$\rho_F(\tilde{d}) = A \cdot \exp(-|\tilde{d}|/B) \tag{114}$$

相对于相对距离的各互相关模型的典型系数是基于典型住宅环境中3.7 GHz的测量数据获得的,如表34所示。

表34

相对于相对距离的短期衰落的互相关模型典型系数

			天线高度		互相关系数				
参数	地区	频率 (GHz)	h_1 和 h_2			A		В	
	``´´	<i>h</i> ₃ (m)	(m)	平均值	标准偏差	平均值	标准偏差		
最大值					0.628	2.8×10^{-3}	5.1	7.1×10^{-5}	
最小值	住宅	3.7	25	2	-0.626	5.7×10 ⁻³	3.75	1.0×10^{-1}	
标准偏差					0.401	7.1×10^{-4}	5.1	7.1×10 ⁻⁵	

9 高多普勒环境的传播特性

平均功率时延的距离分布以及相关信道参数(如r.m.s.时延扩展)可相对于车辆速度和 测量带宽进行估算。

9.1 高速火车情形

时速为200 km/h(55 m/s)行驶的高速火车导致多普勒位移以及链路随机信号特性可被 视为静止的短距离。

火车无线电链路包括车内天线的直接链路或天线置于车顶的中继链路。为估算信道可被 视为静止的距离以及相应的信道参数,使用无线电通信网发送的金码18 MHz分辨率或 2 350 MHz带宽的信道测量仪分析了对2 650 MHz和1 890 MHz范围内中国北京铁路沿线进行 的无线电信道测量情况。火车具有多种特殊情形,其中包括高架桥(铁路桥)、路堑陡坡 (狭窄半封闭结构,火车一侧陡壁由植被覆盖)、火车站和隧道。

表35给出了将直接链路或中继链路中高架桥和路堑陡坡情形估算为静止信道的距离和相应的平均距离。

表35

两种情形下可视为静止信道的距离总结

测量情形	覆盖方案	频率 (MHz)	火车速度 (km/h)	静止距离 (m)	平均距离 (m)
高架桥	直接链路(1)	2 650	285	3.4-5	4.2
	中继链路(1)	1 890	285	1.9-3.5	2.8
路堑陡坡	中继链路(2)	2 350	200	0.51	0.51

⁽¹⁾ 测量带宽为18 MHz。

⁽²⁾ 测量带宽为50 MHz。

这些测量用来评估20 dB门限的r.m.s.时延扩展值以及表36列出的有关高架桥和路堑陡坡的小型K-因子。

测量条件							n.s. 扩展 is)	K-[(d	因子 B)
		天线高度							
情形	覆盖方案	颁华 (MHz)	h1 (m)	h2 (m)	(m)	50%	95%	50%	95%
高架桥	直接链路	2 650	30	10	200-1 000	101	210	4	9
高架桥	中继链路	1 890	30	10	200-1 000	29	120	8	15
路堑陡坡	中继链路	2 350	14	3	100-1 000	38	171	4	11

表36

r.m.s.时延扩展和K-因子

9.2 高速车辆情形

在高速公路环境中,车辆可以以100公里/小时(27.8米/秒)以上的速度行驶。许多这样的高速车辆充当移动散射体,影响高多普勒频移。

ITU-R P.1411-10 建议书

与高速列车一样,车辆与基础设施通信情形中的无线电链路可以是直接的,也可以是中继的,这分别取决于天线是在车内还是在车顶上。

表37给出了高速公路环境中估计中继链路信道静止的距离。

测量是在韩国丽水市的高速公路环境中进行的,频率为5.9 GHz(100 MHz带宽)和28 GHz(500 MHz带宽)。应当注意,这两个频段测量是独立的。

表 37

高速环境的静止距离

测量情形	覆盖方案	频率 (GHz)	车辆速度 (公里/小时)	静止距离 (米)	平均距离 (米)
宣油八败	中继链路	5.9	100	0.38-1.68 ⁽¹⁾	0.86 ⁽¹⁾
局速公路		28	100	0.06-0.25 ⁽²⁾	0.12 ⁽²⁾

⁽¹⁾ 带宽测量为100 MHz。

⁽²⁾ 带宽测量为500 MHz。

对于5.9 GHz的测量,门限值为20 dB。对于28 GHz的测量,r.m.s.时延扩展门限为25 dB。小范围K因数 r.m.s.时延扩展列在表38中。

表 38

高速公路环境下的r.m.s.时延扩展和 K 因数

测量条件						r.m.s. 时延扩展 (ns)		K 因数 (dB)	
情形	覆盖方案	频率 (MHz)	天线高度		が国				
			<i>h</i> ₁ (m)	<i>h</i> ₂ (m)	(m)	50%	95%	50%	95%
高速	中继链路	5.9	7	1.7	30-1 000	13	552	7.5	15.7
		28	11	2	100-500	6.3	293.5	10.2	13.1