РЕКОМЕНДАЦИЯ МСЭ-R М.1801

Стандарты радиоинтерфейса для систем широкополосного беспроводного доступа подвижной службы, включая мобильные и кочевые применения, действующих на частотах ниже 6 ГГц

(Вопросы МСЭ-R 212/8 и МСЭ-R 238/8)

(2007)

1 Введение

В настоящей Рекомендации представлены конкретные стандарты для систем широкополосного беспроводного доступа¹ подвижной службы. Эти конкретные стандарты содержат общие характеристики, разработанные организациями по разработке стандартов (ОРС). Использование настоящей Рекомендации должно позволить производителям и операторам определять наиболее приемлемые стандарты для своих нужд.

Эти стандарты поддерживают широкий диапазон применений в городских, пригородных и сельских районах, рассчитанных на передачу общих широкополосных данных интернета и данных в реальном времени, включая такие применения, как голосовая конференцсвязь и видеоконференцсвязь.

2 Сфера применения

В настоящей Рекомендации определены конкретные стандарты радиоинтерфейса для систем ШБД подвижной службы, действующих на частотах ниже 6 ГГц. Включенные в настоящую Рекомендацию стандарты способны обеспечивать пользователям скорость, соответствующую широкополосной передаче данных, с учетом определений МСЭ-R для "беспроводного доступа" и "широкополосного беспроводного доступа", приведенных в Рекомендации МСЭ-R F.1399².

Настоящая Рекомендация не предназначена ни для определения приемлемых полос частот для систем ШБД, ни для решения каких бы то ни было регуляторных вопросов.

3 Соответствующие Рекомендации МСЭ

Следующие существующие Рекомендации имеют значение для разработки данной конкретной Рекомендации:

Рекомендация МСЭ-R F.1399 – Словарь терминов по беспроводному доступу.

Рекомендация МСЭ-R F.1763 – Стандарты радиоинтерфейса для систем широкополосного

беспроводного доступа в фиксированной службе, действующих

в полосах частот ниже 66 ГГц.

Рекомендация MCЭ-R M.1678 — Адаптивные антенны для систем подвижной связи.

¹ Определение "беспроводного доступа" и "ШБД" дано в Рекомендации МСЭ-R F.1399, в которой также приводятся определения терминов "фиксированный", "подвижный" и "кочевой" беспроводной доступ.

² Широкополосный беспроводной доступ определяется как беспроводной доступ, при котором пропускная способность соединения(й) выше, чем при *первичной скорости*, определяемой как скорость передачи битов 1,544 Мбит/с (Т1) или 2,048 Мбит/с (Е1). Беспроводной доступ определяется как радиосоединение(я) с базовыми сетями.

4 Акронимы и сокращения

AA	Adaptive antenna		Адаптивная антенна
ACK	Acknowledgement (channel)		Канал подтверждения
AN	Access network		Сеть доступа
ARQ	Automatic repeat request		Автоматически повторяющийся запрос
AT	Access terminal		Оконечное оборудование доступа
ATM	Asynchronous transfer mode		Режим асинхронной передачи
ВССН	Broadcast control channel		Широковещательный канал управления
BER	Bit-error ratio		Коэффициент ошибок по битам
BRAN	Broadband radio access network		Сеть широкополосного радиодоступа
BS	Base station	БС	Базовая станция
BSR	Base station router		Базовая станция-маршрутизатор
BTC	Block turbo code		Блочный турбокод
BWA	Broadband wireless access	ШБД	Широкополосный беспроводной доступ
CC	Convolutional coding	, ,	Сверточное кодирование
CDMA	Code division multiple access		Многостанционный доступ с кодовым
-	r		разделением
CDMA-MC	Code division multiple access –		Многостанционный доступ с кодовым
	multi carrier		разделением и многими несущими
CI	Comment on Loren		частотами
CL C. mlana	Connection layer	C	Уровень соединения
C-plane CTC	Control plane Convolutional turbo code	С-плоскость	Плоскость контроля
DECT			Сверточный турбокод
DECI	Digital enhanced cordless telecommunications		Усовершенствованная цифровая беспроводная связь
DLC	Data link control		Управление каналом передачи данных
DS-CDMA	Direct-sequence code division		Многостанционный доступ с кодовым
DS-CDIVIA	multiple access		разделением и прямым расширением
			спектра
DSSS	Direct sequence spread spectrum		Прямое расширение спектра
E-DCH	Enhanced dedicated channel		Усовершенствованный выделенный канал
EGPRS	Enhanced general packet radio service		Усовершенствованная служба пакетной радиосвязи общего пользования
ETSI	European Telecommunication Standards Institute	ЕТСИ	Европейский институт стандартизации электросвязи
EV-DO	Evolution data optimized		Эволюционировавшая оптимизированная
	•		передача данных
FC	Forward channel		Прямой канал
FCC	Forward control channel		Прямой канал управления
FDD	Frequency division duplex		Дуплекс с частотным разделением
FEC	Forward-error correction		Упреждающая коррекция ошибок
FER	Frame error rate		Коэффициент ошибок по кадрам
FHSS	Frequency hopping spread spectrum		Расширение спектра со скачкообразной перестройкой частоты
FT	Fixed termination		Завершение вызова на устройство фиксированного доступа
GERAN	GSM edge radio access network		Сеть радиодоступа стандарта GSM/EDGE
GPRS	General packet radio service		Служба пакетной радиосвязи общего
			пользования

GPS	Global positioning system		Глобальная система определения местоположения
HC-SDMA	High capacity-spatial division		Многостанционный доступ с
	multiple access		пространственным разделением и высокой пропускной способностью
HiperLAN	High performance RLAN		Локальная радиосеть высокого качества
HiperMAN	High performance metropolitan area network		Городская радиосеть высокого качества
HRPD	High rate packet data		Высокоскоростная пакетная передача данных
HSDPA	High speed downlink packet access		Высокоскоростной пакетный доступ по линии вниз
HS-DSCH	High speed downlink shared channel		Высокоскоростной совместно используемый канал линии вниз
HSUPA	High speed uplink packet access		Высокоскоростной пакетный доступ по линии вверх
I-CDMA	Internet code division multiple access		Многостанционный доступ с кодовым разделением для доступа к интернету
IEEE	Institute of Electrical and Electronics Engineers		Институт инженеров по электротехнике и радиоэлектронике
IETF	Internet Engineering Task force		Целевая группа по инженерным проблемам интернета
IP	Internet protocol		Протокол Интернет
LAC	Link access control		Управление доступом к каналу
LAN	Local area network		Локальная сеть
LDPC	Low density parity check		Код с малой плотностью проверок на
LDIC	Low density parity effects		четность
LLC	Logic link control		Управление логическим каналом
MAC	Medium access control		Управление доступом к среде передачи
MAN	Metropolitan area network		Городская сеть
MCSB	Multi-carrier synchronous beamforming		Формирование диаграммы направленности в режиме синхронного разделения со многими несущими частотами
MIMO	Multiple input multiple output		Система со многими входами и многими
			выходами
MS	Mobile station	ПС	Подвижная станция
NLOS	Non-line-of-sight		Вне зоны прямой видимости
OFDM	Orthogonal frequency division multiplexing		Мультиплексирование с ортогональным частотным разделением
OFDMA	Orthogonal frequency division multiple access		Многостанционный доступ с ортогональным частотным разделением
OSI	Open systems interconnection		Взаимосвязь открытых систем
PDCP	Packet data convergence protocol		Протокол конвергенции пакетов данных
PHS	Personal handyphone system		Система персональных мобильных телефонов
PHY	Physical layer		Физический уровень
PLP	Physical layer protocol		Протокол физического уровня
PT	Portable termination		Завершение вызова на портативное
			устройство
QAM	Quadrature amplitude modulation		Квадратурная амплитудная модуляция
QoS	Quality-of-service		Качество обслуживания
RAC	Reverse access channel		Обратный канал доступа

RF	Radio frequency		Радиочастота
RLC	Radio link control		Управление радиолинией
RLP	Radio link protocol		Протокол радиолинии
RTC	Reverse traffic channel		Обратный канал трафика
SC	Single carrier		Одна несущая частота
SDMA	Spatial division multiple access		Многостанционный доступ с
			пространственным разделением каналов
SDO	Standards development organization	OPC	Организация по разработке стандартов
SISO	Single input single output		Система с одним входом и одним выходом
SL	Security/session/stream layer		Уровень безопасности/сеанса/потока
SM	Spatial multiplexing		Пространственное мультиплексирование
SNP	Signalling network protocol		Протокол сигнализации сети
TCC	Traffic code channels		Кодовые каналы трафика
TDD	Time-division duplex		Дуплекс с временным разделением
TDMA	Time-division multiple access		Многостанционный доступ с временным разделением
TDMA-SC	TDMA-single carrier		Многостанционным доступ с временным разделением и одной несущей частотой
TD-SCDMA	Time-division-synchronized		Многостанционный доступ с синхронным
	CDMA		кодово-временным разделением
U-plane	User plane	U-плоскость	Плоскость пользователя
WirelessMA N	Wireless metropolitan area network		Беспроводная городская сеть
WWINA	Wireless widebands Internet		Беспроводной широкополосный доступ к
	access		интернету

5 Примечание

В Рекомендации МСЭ-R F.1763 приводятся стандарты радиоинтерфейса для систем широкополосного беспроводного доступа фиксированной службы, действующих на частотах ниже 66 ГГп.

6 Рекомендация

Ассамблея радиосвязи МСЭ

рекомендует

1 представленные в Приложениях 1–5 стандарты радиоинтерфейса в качестве стандартов, приемлемых для систем ШБД подвижной службы, действующих на частотах ниже 6 ГГц.

ПРИМЕЧАНИЕ 1. — В Приложении 6 содержится резюме характеристик стандартов, приведенных в Приложениях 1-5.

Приложение 1

Широкополосные локальные радиосети передачи данных

Локальные радиосети передачи данных (RLAN) предоставляют возможность расширения проводных локальных сетей (LAN) с использованием радио в качестве связующей среды. Эти сети применяются в условиях коммерческой среды, где они могут обеспечить существенную экономию с точки зрения стоимости и времени установки сети; в домашних условиях, где они предоставляют недорогую и гибкую возможность установления соединений для многих компьютеров, используемых дома; в учебных заведениях и общественных учреждениях, в которых растет использование переносимых компьютеров, предназначенных для делового и личного использования, использования в поездках и в связи с увеличением гибкости методов работы. Например, работники, чья работа связана с

поездками, используют портативные персональные компьютеры не только в офисе или дома, но и в гостиницах, центрах конференций, аэропортах, поездах, самолетах и автомобилях. Таким образом, им требуются, в основном, применения для кочевого беспроводного доступа, связанные с пунктом доступа (т. е. если пользователь едет в автомобиле, то пункт доступа также находится в автомобиле).

Стандарты широкополосных локальных радиосетей содержатся в Рекомендации МСЭ-R М.1450, и их можно сгруппировать следующим образом:

- IEEE 802.11
- ETCИ BRAN HIPERLAN
- ARIB HiSWANa

В рамках стандарта **IEEE 802.11** создан набор стандартов RLAN, 802.11-1999 (R2003), которые были гармонизированы со стандартами МЭК/ИСО³. Управление доступом к среде передачи и физические характеристики беспроводных локальных сетей (LAN) определены в стандарте ИСО/МЭК 8802-11:2005, который входит в серию стандартов локальных и городских сетей. Описанный в стандарте ИСО/МЭК 8802-11:2005 блок управления доступом к среде передачи предназначен для поддержки устройств физического уровня по мере их возможного ввода в зависимости от имеющегося спектра. В стандарте ИСО/МЭК 8802-11:2005 предусматривается пять устройств физического уровня: четыре устройства радиосвязи, действующие в полосе 2400–2500 МГц и в полосах 5,15–5,25 ГГц, 5,25–5,35 ГГц, 5,47–5,725 ГГц и 5,725–5,825 ГГц, а также одно устройство инфракрасного излучения (ИК) в основной полосе частот. В одном устройстве радиосвязи используется метод расширения спектра со скачкообразной перестройкой частоты (FHSS), в двух устройствах применяется метод прямого расширения спектра, и еще в одном используется метод мультиплексирования с ортогональным частотным разделением (OFDM).

Стандарт ETCИ BRAN HIPERLAN

Описание стандарта HiperLAN 2 было разработано Техническим комитетом по сетям широкополосного радиодоступа (TC BRAN) ETCИ. HiperLAN 2 представляет собой гибкий стандарт RLAN, предназначенный для обеспечения высокоскоростного доступа со скоростью до 54 Мбит/с на физическом уровне (PHY) к различным сетям, включая сети, базирующиеся на протоколе Интернет (IP), которые обычно используются в системах RLAN. Определены уровни конвергенции, которые обеспечивают взаимодействие сетей Ethernet, IEEE 1394 и ATM. Базовые приложения включают передачу данных, голоса и видео, с учетом конкретных параметров качества обслуживания. Система HiperLAN 2 может развертываться в офисах, классных комнатах, жилых домах, заводских помещениях, "горячих точках", например в выставочных залах и, в более общем смысле, там, где передача по радио эффективно заменяет или дополняет проводные технологии.

Стандарт HiperLAN 2 предназначен для работы в полосах 5,15–5,25 ГГц, 5,25–5,35 ГГц и 5,47–5,725 ГГц. К базовым описаниям относятся: ТS 101 475 (физический уровень), ТS 101 761 (уровень управления каналом передачи данных) и TS 101 493 (уровни конвергенции). Все стандарты ЕТСИ можно получить в электронной форме по адресу: http://pda.etsi.org/pda/queryform.asp, указав номер стандарта в окне ввода поискового запроса.

Для стандартов HIPERLAN 2 техническим комитетом BRAN ETCИ также разработаны описания испытаний на соответствие, призванных гарантировать функциональную совместимость устройств и продуктов, выпущенных различными производителями. Описания испытаний включают в себя испытания радиоканала и протокола.

ТС BRAN ЕТСИ работает в тесном контакте с Рабочей группой 802.11 IEEE-SA, а также с японским Форумом ММАС (Рабочая группа по сетям высокоскоростного беспроводного доступа) с целью гармонизации систем для диапазона 5 ГГц, разработанных этими тремя форумами.

³ ИСО/МЭК 8802-11:2005, Информационные технологии – Электросвязь и информационный обмен между системами – Локальные и городские сети – Конкретные требования – Часть 11: Описания управления доступом к среде передачи (МАС) и физического уровня (РНУ) для беспроводных локальных сетей.

 ${
m MMAC^4~HSWA^5}$ разработан, а ${
m ARIB^6}$ утвержден и опубликован стандарт системы связи широкополосного подвижного доступа. Этот стандарт называется HiSWANa (ARIB STD-T70). Сфера применения технических описаний ограничивается радиоинтерфейсом, интерфейсами к услугам подсистем беспроводной связи, функциями уровня конвергенции и возможностями поддержки, необходимыми для реализации услуг.

В технических описаниях содержатся уровни PHY и MAC/DLC, которые не зависят от базовой сети, а также уровень конвергенции, который зависит от базовой сети. Типовая скорость передачи данных составляет 6–36 Мбит/с. Используются метод мультиплексирования с ортогональным частотным разделением (OFDM) и схема TDMA-TDD. Стандарт способен поддерживать мультимедийные приложения с помощью механизма управления качеством обслуживания (QoS). В пределах локальной зоны обслуживания поддерживается ограниченная мобильность пользователя. В настоящее время поддерживается обслуживание только в стандарте Ethernet.

Система HiSWANa действует в диапазоне 5 ГГц (4,9–5,0 ГГц и 5,15–5,25 ГГц).

Приложение 2

Наземные радиоинтерфейсы системы ІМТ-2000

Названия разделов взяты из п. 5 Рекомендации МСЭ-R М.1457. В этой Рекомендации можно найти дополнительную уточненную информацию.

1.1 IMT-2000 CDMA с прямым расширением спектра⁷

В схеме организации радиодоступа в сети UTRAN используется метод CDMA с прямым расширением спектра (DS-CDMA), при котором спектр информации расширяется до полосы шириной приблизительно 5 МГц с использованием чиповой скорости 3,84 Мчипа/с. Для обеспечения высокоскоростного пакетного доступа используются усовершенствованные методы модуляции (16-QAM) и кодирования (турбокоды).

Каждый радиокадр длительностью 10 мс делится на 15 интервалов (2560 чипов/интервал при чиповой скорости 3,84 Мчипа/с). Таким образом, физический канал определяется кодом (рядом кодов). Для канала HS-DSCH (высокоскоростной пакетный доступ по линии вниз, HSDPA), усовершенствованного выделенного канала (E-DCH) (высокоскоростной пакетный доступ по линии вверх, HSUPA) и связанных с ними каналами передачи сигналов, определяются субкадры длительностью 2 мс, состоящие из 3 временных интервалов. Эта технология обеспечивает скорость передачи в канале свыше 14 Мбит/с.

Радиоинтерфейс предназначен для доставки широкого диапазона услуг с целью эффективной поддержки услуг сетей с коммутацией каналов (т. е. сетей на базе КТСОП и ЦСИС), а также услуг сетей с коммутацией пакетов (т. е. сетей, базирующихся на протоколе IP). Разработан гибкий протокол радиосвязи, предназначенный для тех случаев, когда пользователь может использовать несколько различных услуг, например передачу речи, данных и мультимедиа, объединенных в одной несущей. Определенные услуги радиоканала обеспечивают поддержку услуг как в реальном времени, так и не в реальном времени, путем использования прозрачной и/или непрозрачной транспортировки данных. Имеется возможность регулирования качества обслуживания (QoS) с точки зрения задержки, вероятности принятия ошибочного бита и коэффициента ошибок по кадрам (FER).

Архитектура сети радиодоступа также обеспечивает поддержку услуг мультимедийного вещания и многоадресной передачи, т. е. позволяет осуществлять распределение мультимедийного контента группам пользователей по каналу связи пункта со многими пунктами.

⁴ Совет по продвижению мультимедийных систем связи подвижного доступа (в настоящее время называется "Форум по мультимедийным системам связи подвижного доступа" или "Форум ММАС").

⁵ Комитет по высокоскоростному беспроводному доступу.

⁶ Ассоциация промышленных и коммерческих предприятий в области радио.

⁷ См. п. 5.1 Рекомендации МСЭ-R М.1457.

1.2 ІМТ-2000 CDMA со многими несущими частотами⁸

Радиоинтерфейс стандарта CDMA-2000 предоставляет две возможности работы: в режиме nX, в котором используется много несущих с шириной полосы 1,25 МГц, либо в режиме высокоскоростной пакетной передачи данных 1X-EV-DO, в котором используется один выделенный канал 1X RF.

В режиме работы пХ предоставляется полоса шириной 1,25 МГц с использованием чиповой скорости 1,2288 Мчипа/с, либо ведется работа со многими несущими с использованием несущих 1,25 МГц. Радиоинтерфейс предназначен для доставки широкого диапазона услуг с целью эффективной поддержки услуг сетей с коммутацией пакетов (т. е. сетей на базе КТСОП и ЦСИС), а также услуг сетей с коммутацией пакетов (т. е. сетей, базирующихся на протоколе IP). Разработан протокол радиосвязи, предназначенный для тех случаев, когда пользователь может одновременно использовать гибким образом несколько различных услуг, например передачу речи, данных и мультимедиа, объединенных в одной несущей. Определенные услуги радиоканала обеспечивают поддержку услуг как в реальном времени, так и не в реальном времени, путем использования прозрачной и/или непрозрачной транспортировки данных. Имеется возможность регулирования качества обслуживания (QoS) с точки зрения задержки, вероятности принятия ошибочного бита и коэффициента ошибок по кадрам (FER).

Описание радиоинтерфейса содержит усовершенствованные характеристики для одновременной высокоскоростной пакетной передачи данных и других услуг, например передачи речи с использованием одной несущей. В частности, включены характеристики усовершенствованной обратной линии, дающие возможность повышения емкости и покрытия, передачи данных с более высокой скоростью, по сравнению с существующей максимальной скоростью на линии вверх, и сокращения задержки и ее колебания в обратной линии.

Архитектура сети радиодоступа также обеспечивает поддержку услуг мультимедийного вещания и многоадресной передачи, т. е. позволяет осуществлять распределение мультимедийного контента группам пользователей по каналу связи пункта со многими пунктами.

В режиме высокоскоростной пакетной передачи данных (1X-EV-DO) прямой канал CDMA, организованный на базе выделенного канала 1X RF, состоит из следующих каналов с временным разделением: пилотного канала, прямого канала управления доступом к среде передачи (MAC), канала управления и прямого канал трафика. В прямом канале трафика передаются пакеты данных пользователя. В канале управления передаются управляющие сообщения, а также может передаваться трафик пользователя. Далее каждый канал разделяется на квадратурные каналы с разделением на основе кодов Уолша.

Канал МАС состоит из двух подканалов: обратного канала регулирования мощности (RPC) и канала обратной активности (RA). В канале RA передается поток битов, содержащих информацию об активности обмена трафиком в обратном канале (RAB). Каждый символ канала МАС модулируется методом двоичной фазовой манипуляции (BPSK) с использованием одного из шестидесяти четырех 64-ричных кодовых слов Уолша.

Прямой канал трафика является каналом пакетной передачи с переменной скоростью. Данные пользователя, поступающие с оконечного оборудования доступа, передаются со скоростью, которая изменяется в пределах 38,4 кбит/с – 3,1 Мбит/с. Данные прямого канала трафика и прямого канала управления кодируются, скремблируются и перемежаются. С выходов канального устройства перемежения данные поступают на модулятор QPSK/8-PSK/16-QAM. При необходимости, модулированные последовательности символов повторяются прореживаются. результирующие последовательности модулированных символов разделяются, образуя 16 пар (синфазных и квадратурных) параллельных потоков. К каждому параллельному потоку применяется отдельная 16-ричная функция Уолша с чиповой скоростью, с тем чтобы довести скорость передачи символов Уолша до 76,8 ксимвол/с. Символы всех потоков, кодированные с помощью функций Уолша, объединяются, образуя единые синфазный и квадратичный потоки с скоростью 1,2288 Мчипа/с. Получившиеся в результате чипы подвергаются временному уплотнению с чипами преамбулы, пилотного канала и канала МАС, образуя результирующую последовательность чипов для операции квадратурного расширения.

Пакеты физического уровня для прямого канала трафика могут передаваться в интервалах, число которых составляет от 1 до 16. Если выделяется несколько интервалов, то при их передаче

⁸ См. п. 5.2 Рекомендации МСЭ-R М.1457.

выполняется перемежение в пределах четырех интервалов. То есть, передаваемые интервалы, содержащие пакеты, делятся на три промежуточных временных интервала, а интервалы, содержащие другие пакеты, передаются в промежутках между этими передаваемыми интервалами. Оставшиеся временные интервалы, которые не были переданы, не передаются, и следующий выделяемый интервал используется для передачи временного интервала следующего пакета физического уровня.

Обратный канал в формате 1X-EV-DO организуется на базе выделенного канала 1X RF, содержащего канал доступа и обратный канал трафика. Канал доступа используется оконечным оборудованием доступа для инициирования процесса связи с сетью доступа или для ответа на сообщение, отправленное этим оборудованием. Канал доступа содержит пилотный канал и канал данных. Обратный канал трафика используется подвижной станцией для передачи пользовательского трафика или сигнальной информации в сеть доступа. Обратный канал трафика содержит пилотный канал, канал указателя скорости в обратном канале (RRI), канал управления скоростью передачи данных (DRC), канал подтверждения (ACK) и канал передачи данных. Канал RRI используется для указания скорости данных, передаваемых в канале обратного трафика. Канал RRI подвергается временному уплотнению с пилотным каналом. Канал DRC используется подвижной станцией для указания сети доступа скорости передачи данных, которая поддерживается в прямом канале трафика, а также наилучший сектор обслуживания для прямого канала CDMA. Канал ACK используется оконечным оборудованием доступа в целях информирования сети доступа о том, успешно ли приняты пакетные данные, передаваемые в прямом канале трафика.

При усовершенствованном доступе HRPD применяются гибридный автоматически повторяющийся запрос (H-ARQ), кадры меньшего размера, быстрое планирование/управление скоростью передачи, адаптивные модуляция и кодирование, увеличивающие пиковую скорость передачи данных и пропускную способность системы в обратном канале передачи.

1.3 IMT-2000 CDMA TDD⁹

Радиоинтерфейс для универсального наземного радиодоступа (UTRA) на основе дуплекса с временным разделением (TDD) предназначен для работы в двух отличающихся режимах, а именно 1,28 Мчипа/с TDD (TD-SCDMA) и 3,84 Мчипа/с TDD.

Радиоинтерфейс UTRA TDD разработан в соответствии с четкой задачей его гармонизации с сегментом на базе дуплекса с частотным разделением (см. п. 5.1) для достижения максимальной унификации. Такая унификация была достигнута путем гармонизации важных параметров физического уровня и определения общего набора протоколов на более высоких уровнях для сегментов FDD и TDD, при которых в режиме 1,28 Мчипа/с TDD имеется существенная унификация с режимом 3,84 Мчипа/с TDD. Радиоинтерфейс UTRA TDD с двумя режимами обеспечивает возможность гибкого удовлетворения различных потребностей разных Регионов, и он определен в общем наборе описаний.

Радиодоступ осуществляется по схеме многостанционного доступа с кодовым разделением и прямым расширением спектра. Существуют два варианта чиповой скорости: 3,84 Мчипа/с TDD, в котором занимаемая информацией полоса расширяется приблизительно до уровня свыше 5 МГц с чиповой скоростью 3,84 Мчипа/с, а также вариант 1,28 Мчипа/с TDD, в котором занимаемая информацией полоса расширяется приблизительно до уровня свыше 1,6 МГц с чиповой скоростью 1,28 Мчипа/с.

Радиоинтерфейс предназначен для доставки широкого диапазона услуг с целью эффективной поддержки услуг сетей с коммутацией каналов (т. е. сетей на базе КТСОП и ЦСИС), а также услуг сетей с коммутацией пакетов (т. е. сетей, базирующихся на протоколе IP). Разработан гибкий протокол радиосвязи, для тех случаев, когда пользователь может использовать несколько различных услуг, например передачу речи, данных и мультимедиа, объединенных в одной несущей. Определенные услуги радиоканала обеспечивают поддержку услуг как в реальном времени, так и не в реальном времени, путем использования прозрачной и/или непрозрачной транспортировки данных. Имеется возможность регулирования качества обслуживания (QoS) с точки зрения задержки, BER и FER.

Описание радиоинтерфейса содержит усовершенствованные характеристики для высокоскоростного пакетного доступа по линии вниз (HSDPA), позволяющие осуществлять высокоскоростную пакетную передачу данных по каналу линии вниз и одновременно обеспечивать высокоскоростную пакетную

-

⁹ См. п 5.3 Рекомендации МСЭ-R М.1457.

передачу данных и других услуг, например речи с использованием одной несущей. Эта технология обеспечивает скорость передачи в канале свыше 10 Мбит/с.

Архитектура сети радиодоступа также обеспечивает поддержку услуг мультимедийного вещания и многоадресной передачи, т. е. позволяет осуществлять распределение мультимедийного контента группам пользователей по каналу связи пункта со многими пунктами.

1.4 IMT-2000 TDMA с одной несущей ¹⁰

Этот радиоинтерфейс предоставляет два варианта ширины полосы для передачи данных с высокой скоростью, и в них обоих используется технология TDMA. В варианте с шириной полосы несущей, равной 200 кГц (EDGE), используется модуляция 8-PSK с гибридным ARQ. При этом наряду с обеспечением высокой мобильности, достигается скорость передачи в режиме с двойной модуляцией несущей, равная 1,625 Мбит/с. Во втором варианте предоставляется полоса шириной 1,6 МГц для условий применения с более низкой мобильностью, в котором используется двоичная и четверичная модуляция QAM со сдвигом частоты и гибридным ARQ. При данном варианте с полосой 1,6 МГц обеспечивается гибкое распределение временных интервалов и обеспечивается скорость передачи в канале, равная 5,2 Мбит/с.

Предоставляется услуга многофункционального вещания или связи пункта со многими пунктами, называемая услугой мультимедийного вещания/многоадресной передачи (MBMS). В настоящее время существуют услуги связи пункта со многими пунктами, которые позволяют передавать данные от одного источника во много оконечных пунктов. Услуга MBMS эффективно реализует эту возможность. Такие услуги мультимедийного вещания/многоадресной передачи предоставляются поставщиками услуг в домашних условиях, а также поставщиками других услуг за дополнительную плату (VASP).

MBMS является однонаправленной услугой по переносу информации из пункта в много пунктов, при которой данные передаются от одного источника многим получателям. Она также имеет возможность расширения для поддержки других услуг, обладающих этими возможностями по переносу информации.

Режим многоадресной передачи функционально совместим с режимом многоадресной передачи по протоколу IP, разработанным IETF. Эта дает возможность использования наилучшим образом платформ услуг на базе протокола IP, чтобы максимально увеличить доступность применений и контента. Таким образом, существующие и будущие услуги можно будет доставлять более эффективным образом с точки зрения использования ресурсов.

1.5 IMT-2000 FDMA/TDMA¹¹

Радиоинтерфейс IMT-2000 для технологии FDMA/TDMA называется усовершенствованной цифровой беспроводной связью (DECT).

Данный радиоинтерфейс определяет радиоинтерфейс TDMA с использованием дуплекса с временным разделением (TDD). Скорости передачи в канале для указанных схем модуляции составляют 1,152 Мбит/с, 2,304 Мбит/с, 3,456 Мбит/с, 4,608 Мбит/с и 6,912 Мбит/с. Этот стандарт поддерживает симметричные и асимметричные соединения, транспортировку данных с установлением соединения и без установления соединения. Использование режима со многими, например тремя, несущими позволяет достигать скорости передачи битов до 20 Мбит/с. Имеются протоколы сетевого уровня, предназначенные для управления вызовом, дополнительными услугами, услугами по передаче сообщений с установлением соединения, услуги по передачи сообщений без установления соединения, и управления мобильностью, включая услуги по обеспечению безопасности и конфиденциальности.

Определены частотные каналы радиодоступа, а также временная структура. Разнос частот между несущими составляет 1,728 МГц. Для своевременного доступа к среде, используется регулярная структура ТDMA с длительностью кадра 10 мс. В рамках данного кадра создается 24 полных временных интервала, каждый из которых состоит из двух половинных временных интервалов.

¹⁰ См. п. 5.4 Рекомендации МСЭ-R М.1457.

¹¹ См. п. 5.5 Рекомендации МСЭ-R М.1457.

Двойной временной интервал имеет длительность, равную длительности двух полных временных интервалов, и начинается одновременно с полным временным интервалом.

В качестве метода модуляции используется гауссова частотная манипуляция (GFSK), с номинальным значением произведения ширины полосы на длительность посылки, равным 0,5, либо дифференциальная фазовая манипуляция (DPSK), либо фазово-импульсная модуляция (QAM). Разрешается применение оборудования, в котором используется 4-уровневая и/или 8-уровневая и/или 16-уровневая и 64-уровневая модуляция, наряду с двухуровневой модуляцией. Такая модуляция увеличивает скорость передачи битов одного радиооборудования в 2, 3 4 или 6 раз. 4-уровневая модуляция называется дифференциальной квадратурной фазовой манипуляцией со сдвигом $\pi/4$, 8-уровневая модуляция называется D-8 QAM со сдвигом $\pi/8$, 16-уровневая модуляция называется 16-QAM, а 64-уровневая модуляция — 64-QAM.

На уровне МАС предоставляется три группы услуг для верхних уровней и объекта управления:

- управление передачей широковещательных сообщений (ВМС);
- управление передачей сообщений без установления соединений (СМС);
- контроль многоканальной работы (MBC).

Услуга ВМС предоставляет набор непрерывных услуг связи пункта со многими пунктами без установления соединений. Эти услуги используются для переноса внутренних логических каналов, а также предоставляются для более высоких уровней. Эти услуги оказываются в направлении FT – PT, и доступны для всех устройств РТ в пределах радиуса действия.

Услуга СМС обеспечивает возможность предоставления услуги связи пункта со многими пунктами без установления соединений. Эти услуги могут оказываться FT и одним или несколькими PT.

Каждая реализация услуги MBC обеспечивает один из наборов услуг связи пункта с пунктом для более высоких уровней. Для любой из услуг MBC могут использоваться несколько каналов для предоставления одной услуги.

Определены четыре типа каналов передачи МАС:

- Симплексный канал передачи: симплексный канал передачи образуется путем выделения одного физического канала для передач в одном направлении.
- Дуплексный канал передачи: дуплексный канал передачи образуется парой симплексных каналов передачи, действующих в противоположных направления, на основе двух физических каналов.
- Двойной симплексный канал передачи: двойной симплексный канал передачи образуется парой длинных симплексных каналов передачи, действующих на одном и то же направлении, на основе двух физических каналов.
- Двойной дуплексный канал образуется парой дуплексных каналов, относящихся к одному и тому же соединению MAC.

Канал передачи может находиться в одном из трех рабочих состояний:

- Неинформационный канал передачи, в котором, как правило, осуществляются непрерывные передачи (т. е. одна передачи в каждом кадре).
- Канал передачи трафика, в котором осуществляются непрерывные передачи из пункта в пункт. Канал передачи трафика является дуплексным каналом передачи, либо двойным симплексным каналом передачи, либо двойным дуплексным каналом передачи.
- Канал передачи без установления соединения, в котором осуществляется прерывистая передача. Канал передачи без установления соединения является либо симплексным, либо дуплексным каналом передачи.

Уровень MAC определяет логическую структуру физических каналов. Скорость передачи данных пользователя зависит от выбранного типа временного интервала, схемы модуляции, уровня защиты, числа несущих.

Обязательные мгновенные сообщения и процедуры, касающиеся динамического выбора канала, обеспечивают возможность эффективной совместной работы нескоординированных частных систем и систем общего пользования в общей присвоенной полосе частот и позволяют избежать необходимости в традиционном частотном планировании. Каждое устройство имеет доступ ко всем каналам (с комбинированным частотно-временным разделением). При необходимости установления

соединения выбирается тот канал, который в данный момент времени и в данном месте является наименее подверженным влиянию помех из всех каналов общего доступа. При этом отпадает необходимость в традиционном частотном планировании и существенно упрощаются установки. Данная процедура также обеспечивает все более высокую емкость за счет все более близкого расположения друг к другу устанавливаемых базовых станций, наряду с сохранением высокого качества радиолинии. Отсутствие необходимости в разделении частотного ресурса между различными услугами или пользователями обеспечивает эффективное использование спектра.

В последних описаниях содержатся уточненные данные к описанию стандарта "DECT нового поколения", в которых основное внимание уделяется поддержке услуг на базе IP. Использование широкополосного кодирования приводит к дальнейшему повышению качества речевых услуг. Для обеспечения функциональной совместимости радиоинтерфейсов обязательным является использование кодека G.722. Может также обсуждаться вопрос об использовании дополнительных необязательных кодеков. Помимо передачи голоса по протоколу IP в описании стандарта "DECT нового поколения" могут предоставляться услуги передачи аудио- и видеосигнала, а также другие услуги на базе IP.

Приложение 3

Гармонизированные стандарты радиоинтерфейсов IEEE и ЕТСИ для систем широкополочного беспроводного доступа (ШБД) мобильной службы, включая мобильные и кочевые применения

1 Обзор радиоинтерфейса

Стандарт IEEE 802.16 (включая поправку 802.16e-2005) и стандарты ETCИ НірегМАN определяют гармонизированные радиоинтерфейсы для физических уровней (PHY) и уровня MAC (управление доступом к среде передачи)/DLC (управление каналом передачи данных) систем с OFDM и OFDMA. Однако стандарт ETCИ BRAN НірегМАN рассчитан только на кочевые применения, в то время как стандарт IEEE 802.16 предназначен также для полнофункциональных автомобильных применений.

Использование полос частот ниже 6 ГГц предполагает, что любая система доступа будет создаваться в соответствии с этими стандартизованными радиоинтерфейсами, обеспечивающими диапазон применений, включая полнофункциональные мобильные применения, применения для предприятий и применения в городских, пригородных и сельских районах. Этот интерфейс оптимизирован для динамически распределяемых радиоканалов для подвижной связи и обеспечивает поддержку улучшенных методов эстафетной передачи вызовов и полный набор энергосберегающих режимов. В этих описаниях может свободно поддерживаться передача общих данных интернета и данных в реальном времени, включая такие приложения, как голосовая конференцсвязь видеоконференцсвязь.

Этот тип систем называется беспроводными городскими сетями (WirelessMAN в IEEE и HiperMAN в BRAN ЕТСИ). Слово "городской" относится не к применению, а к масштабу. Эти системы, в основном, являются системами связи пункта со многими пунктами, при этом базовая станция обслуживает абонентов в ячейке, размер которой может достигать нескольких километров. Пользователи могут иметь доступ к различным видам терминалов, например портативным телефонам, смартфонам, РDA, портативным ПК и ноутбукам в мобильной среде. Радиоинтерфейс поддерживает предоставление каналов различной ширины, например 1,25, 3,5, 5, 7, 8,75, 10, 14, 15, 17,5 и 20 МГц на рабочих частотах ниже 6 ГГц. Использование мультиплексирования с ортогональным частотным разделением (OFDM) и многостанционного доступа с ортогональным частотным разделением (OFDMA) улучшает эффективность использования ширины полосы за счет сочетания временного и частотного планирования и гибкости при управлении различными устройствами пользователей со многими типами антенн и форм-факторами. Такое использование приводит к снижению помех устройствам пользователей с ненаправленными антеннами и улучшенными возможностями связи вне зоны прямой видимости, что является важным при обеспечении поддержки подвижных пользователей. При формировании подканалов определяются подканалы, которые могут распределяться различным пользователям в зависимости от условий в канале и предъявляемым требованиям в отношении данных. Это позволяет поставщику услуг более гибко управлять шириной полосы и мощностью передачи и приводит к более эффективному использованию ресурсов, включая ресурсы спектра.

Радиоинтерфейс поддерживает предоставление каналов с различной шириной полосы и рабочими частотами, обеспечивая пиковую спектральную эффективность до 3,5 бит/с/Гц в конфигурации с одной приемо-передающей антенной (SISO).

Радиоинтерфейс включает уровни PHY и MAC/DLC. Уровень MAC/DLC базируется на методе многостанционного доступа с предоставлением каналов по требованию, при котором передачи планируются в соответствии с приоритетом и наличием каналов. Такая схема обусловлена необходимостью обеспечения операторского класса доступа к сетям общего пользования путем поддержки различных подуровней конвергенции, например на базе протокола Интернет (IP) и Ethernet с полным качеством обслуживания (QoS).

Гармонизированные уровни MAC/DLC поддерживают режимы OFDM (мультиплексирование с ортогональным частотным разделением) и OFDMA (многостанционный доступ с ортогональным частотным разделением) для уровня PHY.

На рисунке 1 графически изображены гармонизированные описания на функциональную совместимость для стандартов IEEE WirelessMAN и ETCИ HiperMAN, которые включают описания физических уровней с OFDM и OFDMA, а также весь уровень MAC, включая аспекты безопасности.

 Совместимости на частотах ниже 6 ГГц

 IEEE 802.16
 Гармонизированные описания
 ETSI HiperMAN

 Общий уровень МАС
 MAC (§6, §7, ...)
 DLC (TS 102 178)

 Физический уровень
 OFDM (§8.3)
 PHY (TS 102 177)

 OFDMA (§8.4)
 SCa (§8.2)

РИСУНОК 1

Стандарты ШБД, гармонизированные для обеспечения функциональной совместимости на частотах ниже 6 ГГп

1801-01

Форум WiMAXTM, IEEE 802.16 и ETCИ HiperMAN определяют профили рекомендованных параметров функциональной совместимости. Профили IEEE 802.16 содержатся в основном документе по стандартам, в то время как профили HiperMAN включены в отдельный документ. Ассоциация по технологиям электросвязи (TTA) определяет профили для услуги WiBro (беспроводная широкополосная связь), которая относится к профилям WiMAX Forum.

ТТА ведет стандарт TTAS.KO-06.0082/R1 на услугу WiBro, представляющую собой услугу доступа в интернет с использованием портативного устройства, которая предоставляется в Корее. Этот стандарт является подгруппой стандарта IEEE 802.16, включая поправку IEEE 802.16e-2005 и исправление IEEE 802.16-2004/Cor.1.

2 Подробное описание радиоинтерфейса

2.1 IEEE 802.16

Стандарт IEEE для локальных и городских сетей, часть 16: Радиоинтерфейс для систем фиксированного и подвижного широкополосного беспроводного доступа.

Стандарт IEEE 802.16 является стандартом радиоинтерфейса для систем широкополосного беспроводного доступа (ШБД). В базовом стандарте IEEE 802.16-2004 рассматриваются только системы фиксированного и кочевого доступа. Поправка IEEE 802.16e-2005 дает возможность работы в комбинированном режиме фиксированного и подвижного доступа в разрешенных полосах частот ниже 6 ГГц. Существующий стандарт IEEE 802.16 (включая поправку IEEE 802.16e) предназначен

для радиосети с высокой пропускной способностью и пакетной передачей данных, способной поддерживать несколько классов применений и услуг на базе IP, в зависимости от видов использования, мобильности и бизнес-моделей. Для обеспечения такого разнообразия радиоинтерфейс IEEE 802.16 разработан с высокой степенью гибкости и имеет расширенный набор вариантов.

Технология подвижной широкополосной беспроводной связи на основе стандарта IEEE 802.16 обеспечивает гибкое развертывание сети и предложение услуг. Ниже приводится ряд основных характеристик стандарта:

Пропускная способность, эффективность использования спектра и покрытие

Для обеспечения максимально возможной пропускной способности и покрытия системы используются усовершенствованные методы, основанные на применении многих антенн, в сочетании с передачей сигналов методом OFDMA. При передаче сигналов OFDM происходит преобразование широкополосного канала с частотно-селективными замираниями в много узкополосных поднесущих с плавными затуханиями и, следовательно, работа интеллектуальной антенны может осуществляться на поднесущих типа плоский вектор. Ниже приводятся основные технические характеристики метода с использованием многоэлементных антенн:

- Система со многими входами и многими выходами (MIMO) 2-го, 3-го и 4-го порядков и пространственное разделение (SM) на линиях вверх и вниз;
- адаптивное переключение системы с MIMO между пространственным разделением/ блочными методами пространственно-временного кодирования для достижения максимальной эффективности использования спектра без уменьшения зоны покрытия;
- совместное пространственное разделение сигналов на линии вверх (UL) для устройств с одной передающей антенной;
- усовершенствованное формирование диаграммы направленности и управление нулевым положением диаграммы направленности.

На линиях вверх и вниз поддерживается модуляция QPSK, а также QAM 16-го и 64-го порядков. Усовершенствованные схемы кодирования, включая сверточное кодирование, коды CTC, BTC и LDPC, а также использование управляемого комбинирования, гибридного ARQ с увеличенной избыточностью и механизма адаптивной модуляции и кодирования позволяют этой технологии обеспечивать надежную радиолинию с высокими показателями работы.

Поддержка мобильности

В этом стандарте поддерживается оптимизированная эстафетная передача сигнала с кратковременным прерыванием соединения, инициируемая БС и ПС, при которой обеспечивается эффективное использование ширины, а также сокращение задержки при эстафетной передаче до величины, не превышающей 50 мс. Этот стандарт также поддерживает методы быстрого переключения базовой станции (FBSS) и эстафетной передачи сигнала с макро-разнесением (МDHO), дающие возможность дальнейшего сокращения задержки при эстафетной передаче.

Поддерживаются различные режимы энергосбережения, включая ждущий режим и нерабочий режим многих классов энергосбережения.

Предложение услуг и классы обслуживания

Используется набор вариантов QoS, например предоставление канала без дополнительного запроса (UGS), переменная скорость для применений в реальном времени, переменная скорость для применений не в реальном времени, негарантированное качество и расширенная возможность переменной скорости для применений в реальном времени с подавлением пауз (в основном, для услуг VoIP), с тем чтобы обеспечить поддержку гарантированных уровней обслуживания, включая гарантированную и пиковую скорости передачи информации, минимальную зарезервированную скорость, максимальную устойчивую скорость, максимальный допуск на время ожидания, допуск на дрожание, приоритет трафика для различных типов интернет-приложений и приложений в режиме реального времени, например VoIP.

Выделение для линии вверх и линии вниз субкадров разной продолжительности обеспечивает возможность передачи по этим линиям трафика, имеющего изначально асимметричный характер.

В данной технологии использование режимов выделения многих соседних и чередующихся поднесущих с OFDMA обеспечивает компромисс между мобильностью и пропускной способностью,

обеспечиваемых в рамках сети в целом, а также в зависимости от конкретного пользователя. Применение режима OFDMA с перестановкой соседних поднесущих дает возможность выделения подгруппы поднесущих для подвижных пользователей в зависимости от относительной мощности сигнала.

Разделение на подканалы и использование схем сигнализации на базе MAP обеспечивает механизм оптимального планирования пространственных, частотных и временных ресурсов для одновременного управления и распределения данных (многоадресной передачи, широковещательной передачи и одноадресной передачи) по радиоинтерфейсу на покадровой основе.

Возможность масштабирования

Стандарт IEEE-802.16 рассчитан на изменение ширины полосы различных каналов от 1,25 МГц до 28 МГц, с тем чтобы удовлетворять отличающимся во всем мире требованиям.

Масштабируемый физический уровень, основанный на принципах масштабирования OFDMA, позволяет этой технологии оптимизировать качественные показатели мобильной среды при многолучевых замираниях, которая характеризуется задержкой при распространении и допплеровским сдвигом. При этом обеспечивается минимальное перекрытие в широком диапазоне размеров полос, занимаемых каналами. Возможность масштабирования достигается путем приведения размера функции быстрого преобразования Фурье (FFT) в соответствие с шириной полосы канала, наряду с закреплением разнесения частот поднесущих.

Планирование с повторным использованием частот

На физическом уровне стандарта IEEE 802.16 с OFDMA поддерживаются различные режимы выделения подканалов и структуры кадров, например частичное использование подканалов (PUSC), полное использование подканалов (FUSC) и усовершенствованные методы модуляции и кодирования (AMC). Эти варианты позволяют поставщику услуг гибко осуществлять планирование с повторным использованием частот в сети беспроводной связи, обеспечивая коэффициент повторного использования с точки зрения эффективности использования спектра, равный 1, коэффициент повторного использования с точки зрения устойчивости к помехам, равный 3 или оптимальные сценарии развертывания с частичным повторным использованием частот.

В случае, если коэффициент повторного использования частот равен 1, то, несмотря на то, что, как правило, емкость может быть увеличена, пользователи на краю ячейки могут столкнуться с низким качеством соединения, связанным с сильными помехами. В связи с тем, что в методе OFDMA пользователи работают с использованием подканалов, которые занимают лишь малую часть ширины полосы канала, проблему помехи на краю ячейки можно легко разрешить путем изменения конфигурации используемого подканала или коэффициента использования в кадре (таким образом, применяется принцип частичного повторного использования), не прибегая к традиционному частотному планированию. При такой конфигурации для центральных пользователей 12, имеющих каналы передачи с более высоким качеством, достигается коэффициент повторного использования частот при полной нагрузке, равный 1, с тем чтобы добиться максимального значения эффективности использования спектра, в то время как для краевых пользователей¹³ обеспечивается частичное повторное использование спектра, чтобы улучшить качество соединения и пропускную способность. Планирование повторного использования подканалов можно адаптивно оптимизировать по секторам и ячейкам, исходя из нагрузки в сети, распределения пользователей по различным типам (стационарные и мобильные) и помеховой обстановки на покадровой основе. Все сектора/ячейки могут работать в одном радиочастотном канале, и никакого традиционного частотного планирования осуществлять не требуется.

Подуровень безопасности

Стандарт IEEE 802.16 поддерживает протоколы управления конфиденциальностью данных и ключами защиты: PKMv1 – RSA, HMAC, AES-CCM и PKMv2 – EAP, CMAC, AES-CTR, безопасность MBS.

Стандарт

Этот стандарт IEEE представлен в электронной форме по следующему адресу:

¹² Пользователи, которые находятся в середине сектора, вдали от соседних секторов.

¹³ Пользователи, которые находятся по краям сектора, вблизи от соседних секторов.

Базовый стандарт: http://standards.ieee.org/getieee802/download/802.16-2004.pdf Поправка 802.16e: http://standards.ieee.org/getieee802/download/802.16e-2005.pdf

2.2 Стандарты ЕТСИ

Содержащиеся в настоящем разделе описания включены в следующие стандарты ШБД. К числу последних имеющихся версий относятся:

- ETCИ TS 102 177 v1.3.2: сети широкополосного радиодоступа (BRAN); HiperMAN; физический уровень (PHY).
- ETCИ TS 102 178 v1.3.2: сети широкополосного радиодоступа (BRAN); HiperMAN; уровень управления каналом передачи данных (DLC).
- ETCИ TS 102 210 v1.2.1: сети широкополосного радиодоступа (BRAN); HiperMAN; системные профили.

Резюме: стандарт НірегМАN призван обеспечить функциональную совместимость систем ШБД, действующих на частотах ниже 11 ГГц, с тем чтобы добиться больших размеров ячеек при работе вне зоны прямой видимости (NLOS). Этот стандарт обеспечивает поддержку методов FDD и TDD, высокую эффективность использования спектра и скорости передачи данных, адаптивную модуляцию, большие радиусы ячеек, поддержку усовершенствованных антенных систем, алгоритмы шифрования высокой криптостойкости. В существующих профилях стандарта определен разнос частот между каналами, составляющий 1,75 МГц, 3,5 МГц и 7 МГц, приемлемый для диапазона 3,5 ГГц.

Основные характеристики стандартов HiperMAN, которые полностью гармонизированы со стандартом IEEE 802.16, являются следующими:

- все улучшения на физическом уровне, связанные с режимами OFDM и OFDMA, включая метод МІМО для режима OFDMA;
- гибкое формирование каналов, включая структуру с каналами 3,5 МГц, 7 МГц и 10 МГц (вплоть до 28 МГц);
- режим масштабирования OFDMA, включая размеры функций быстрого преобразования Фурье, составляющие 512, 1024 и 2048 точек, которые должны использоваться в функции от ширины канала таким образом, чтобы разнос между поднесущими оставался постоянным;
- Применение метода OFDMA (формирование подканалов) на линиях вверх и вниз в режимах OFDM и OFDMA;
- поддержка адаптивных антенн в режимах OFDM и OFDMA.

Стандарты: Все стандарты ЕТСИ можно получить в электронной форме по адресу: http://pda.etsi.org/pda/queryform.asp, указав номер стандарта в окне ввода поискового запроса.

Приложение 4

Стандарт ATIS WTSC радиоинтерфейса для систем широкополосного беспроводного доступа (ШБД), действующих в подвижной службе

Стандарт ATIS WTSC беспроводного широкополосного доступа к интернету (WWINA) и другие стандарты

Комитет по технологиям и системам беспроводной связи (WTSC, прежнее название T1P1) Альянса по отраслевым решениям в области электросвязи (ATIS), являющийся организацией по разработке стандартов, аккредитованной Американским национальным институтом стандартов (ANSI), разработал три американских национальных стандарта, которые тесно связаны с принятыми им требованиями к системам беспроводного широкополосного доступа к интернету (WWINA). Комитетом также разработаны другие стандарты, применимые к кочевому беспроводному доступу. Стандарты радиоинтерфейсов для систем WWINA обеспечивают возможность работы переносимых беспроводных систем и оказания услуг для кочевых пользователей, которые дополняют рынки модемов DSL и кабельных модемов. Эти системы оптимизированы для услуг высокоскоростной пакетной передачи данных, которые работают в отдельном канале, оптимизированном для передачи данных. В требованиях к WWINA определяются радиоинтерфейс для беспроводного доступа в

интернет вне зоны прямой видимости для полноэкранных мультимедийных устройств, обеспечивающих качественные характеристики в полном объеме.

Эти радиоинтерфейсы обеспечивают улучшенные качественные показатели оконечных устройств доступа, если сравнивать с другими системами, которые предназначены для устройств высокомобильных пользователей. В частности, радиоинтерфейсы для WWINA оптимизируют следующие атрибуты качественных показателей:

- скорости передачи данных в системе;
- покрытие/радиус действия системы;
- пропускную способность сети;
- минимальную сложность сети;
- управление категорией обслуживания и качеством обслуживания.

I Стандарты Т1.723-2002 радиоинтерфейсов для систем с прямым расширением спектра

1 Обзор радиоинтерфейса

Стандарт I-CDMA (Многостанционный доступ с кодовым разделением для доступа к интернету I-CDMA) применяет технологию CDMA, работающую с чиповой скоростью 1,2288 Мчипа/с, и использует частотное присвоение 1,23 МГц, аналогичное коммерческим системам сотовой связи стандарта CDMA. Применение модуляции QPSK/BPSK наряду с композиционным турбокодом (TPC), ВСН с упреждающей коррекцией ошибок и протоколом ARQ обеспечивает надежную доставку данных. Каналы с растрами 12,5 кГц, 25 кГц, 30 кГц или 50 кГц используются для получения центральных частот передачи и приема канала для обеспечения совместимости с существующими частотными присвоениями сотовым системам с FDD.

2 Подробные описания радиоинтерфейса

Радиоинтерфейс I-CDMA состоит из трех уровней, соответствующих модели OSI. К ним относятся физический уровень, канальный уровень, включая LAC и MAC, а также сетевой уровень.

Физический уровень передает и принимает сегменты пакетов данных от канального уровня. Он осуществляет кодирование с упреждающей коррекцией ошибок (FEC), перемежение, ортогонализацию, расширение для обеспечения возможности многостанционного доступа с кодовым разделением, а также модуляцию.

Канальный уровень содержит два подуровня: уровень управления доступом к среде передачи (MAC) и уровень управления доступом к каналу передачи (LAC). Уровень MAC отвечает за управление ресурсами физического уровня для услуг передачи данных. Уровень LAC отвечает за инициацию соединения на канальном уровне между AT и BSR (базовая станция – маршрутизатор). Канальный уровень отвечает за сегментацию и обратное восстановление, услуги передачи данных, и коррекцию ошибок с использованием ARQ.

Сетевой уровень получает пользовательскую нагрузку в форме пакетов IP и обрабатывает эти пакеты, передаваемые в канальный уровень и принимаемые от него. Сетевой уровень связывается со своим одноранговым объектом по радиоинтерфейсу I-CDMA и обеспечивает настройку и управление со стороны функций сетевого уровня. Он обеспечивает передачу данных конфигурации и управления для AT, обслуживание соединения, аутентификацию устройства, поддержку аутентификации пользователя. Сетевой уровень также обеспечивает поддержку QoS, услуг сеанса и мобильность с использованием стандарта mobile IP.

II Описания физического уровня, уровней MAC/LLC и сетевого уровня стандарта ATIS-0700001.2004 MCSB

1 Обзор радиоинтерфейса

Стандарт формирования диаграммы направленности в режиме синхронного разделения со многими несущими частотами (MCSB) использует сочетание технологии CDMA и интеллектуальных антенн для получения усовершенствованного качества передачи в системах связи пункта со многими пунктами, с тем чтобы обеспечить скорость передачи данных широкополосного сигнала в условиях, когда прямая видимость отсутствует.

2 Подробные описания радиоинтерфейса

Радиоинтерфейс стандарта MCSB состоит из трех уровней, соответствующих модели OSI. К ним относятся физический уровень, канальный уровень, включая LLC и MAC, а также сетевой уровень.

Как показано в таблице 1, физический уровень описывает модуляцию, мультиплексирование, формирование кадров дуплекса с временным разделением, регулирование мощности и временную синхронизацию. В нем одинаковым образом обрабатываются данные, передаваемые в режиме с коммутацией каналов и коммутацией пакетов.

ТАБЛИЦА 1 Функции уровней радиоинтерфейса

Уровень	Функция
Сетевой уровень (L3)	Классификация/установление приоритетов пакетов, ретрансляция, эксплуатация, администрирование и техническое обслуживание
Уровень канала передачи данных (L2)	LLC: сегментация/обратное восстановление, управление ресурсами, коррекция ошибок с избирательной повторной передачей
	MAC: сегментация/обратное восстановление, управление ресурсами, упреждающая коррекция ошибок
Физический уровень (L1)	Формирование каналов, расширение CDMA, модуляция, регулирование мощности, синхронизация

Уровень канала передачи данных имеет два подуровня: управления доступом к среде передачи (MAC) и управления логическим каналом (LLC). Функция подуровня MAC заключается в присвоении каналов, изменении их присвоения и освобождении каналов, а также в обработке пакетов данных. На уровне LLC обрабатываются данные, передаваемые в режиме с коммутацией каналов и коммутацией пакетов. В режиме с коммутацией каналов LLC собирает и разбирает пакеты сигналов управления, обрабатывает их и устанавливает голосовое соединение с соответствующим вокодерным каналом. В режиме с коммутацией каналов используется протокол формирования пакетов данных и коррекции ошибок с избирательной повторной передачей.

На сетевом уровне осуществляются классификация/установление приоритетов пакетов, ретрансляция пакетов Ethernet, а также передачи сообщений для целей эксплуатации, администрирования и технического обслуживания (ОАМ). Кроме того, обеспечивается интерфейс с базовой сетью.

В радиоинтерфейсе для каналов трафика/доступа/вещания используются поднесущие с полосой 500 кГц, в то время как для канала синхронизации используются несущие с полосой 1 МГц. Следовательно, используя полосу шириной 5 МГц, можно разместить 10 поднесущих для каналов трафика/доступа/вещания или 5 поднесущих для каналов синхронизации. В каждой поднесущей можно разместить до 32 кодовых каналов трафика (ТСС).

Применяется кодирование Рида-Соломона с упреждающей коррекцией ошибок, и поток данных модулируется методом QPSK, 8-PSK, 16-QAM или 64-QAM. В каждом канале ТСС данные объединяются, и далее в рамках операции суммирования каналы объединяются с другими кодовыми каналами.

В обратном канале трафика может использоваться максимум от 2 до 4 смежных поднесущих.

Используется кадр длительностью 10 мс с общим числом символов, содержащихся в кадре (включая линии вверх и вниз), равным 125. На прямой трафик может быть отведено 55 + n * 7 символов, а результирующий обратный трафик может занимать 55 - n * 7 символов, где n может меняться 0 (симметричный канал) до 7.

III Стандарт многостанционного доступа с пространственным разделением и высокой пропускной способностью (HC-SDMA) ATIS-0700004.2005

1 Обзор радиоинтерфейса

В стандарте HC-SDMA определяется радиоинтерфейс для территориальной распределительной системы подвижной широкополосной связи. В системе HC-SDMA используются технологии дуплекса с временным разделением (TDD) и адаптивных антенн (AA), наряду с алгоритмами

пространственной обработки с использованием многих антенн, предназначенные для создания системы подвижной связи, эффективно использующей спектр. Эти системы могут обеспечить развертывание услуг подвижной широкополосной связи всего лишь в одной (непарной) полосе спектра шириной 5 МГц, разрешенной для подвижных служб. Системы НС-SDMA предназначены для работы в разрешенных полосах частот ниже 3 ГГц, которые наиболее приемлемы для подвижных применений, обеспечивающих полную мобильность и обслуживание большой территории. В связи с тем, что в системах на основе стандарта НС-SDMA используется технология TDD, и им не требуются симметричные парные полосы частот, разделенные соответствующим защитным интервалом, или дуплексный разнос, то эта система может легко перейти на другие полосы частот. В технологии НС-SDMA достигается скорость передачи данных в канале 20 Мбит/с в разрешенной полосе шириной 5 МГц. При развертывании сети стандарта НС-SDMA с использованием разрешенной полосы спектра 10 МГц и коэффициентом повторного использования частот N=1/2, в каждой ячейке этой сети можно в полной мере обеспечить скорость передачи 40 Мбит/с, что соответствует эффективности использования спектра 4 бит/с/Гц/ячейку.

2 Подробные описания радиоинтерфейса

Радиоинтерфейс HC-SDMA имеет структуру TDD/TDMA, физические и логические характеристики которой были выбраны для обеспечения эффективного транспортирования IP-данных конечного пользователя, а также для извлечения максимальной пользы из обработки сигнала с использованием адаптивных антенн.

Организация физических аспектов протокола обеспечивает пространственные данные для режима обучения, а также связанную с ними помеховую обстановку на линиях вверх и вниз, предназначенные для логических каналов, пригодных для направленной передачи и приема, например каналов трафика. И наоборот, каналы, непригодные для направленной обработки, например каналы пейджинга или вещания, несут меньшую нагрузку и получают более высокую степень защиты от ошибок, чтобы выровнять их каналы передачи с каналами, получившими направленную обработку. Для обеспечения надежной передачи в широком диапазоне состояний линии применяется адаптивная модуляция и кодирование каналов, наряду с регулированием мощности на линиях вверх и вниз. Чтобы добиться надежности в линии, в дополнение к модуляции, кодированию и регулированию мощности используется режим быстрого ARQ. Также поддерживается режим быстрой высокоэффективной эстафетной передачи вызовов между ячейками без разрыва соединения. Аутентификация, авторизация и конфиденциальность в отношении линии радиодоступа осуществляется путем взаимной аутентификации терминалов и сети доступа, а также путем шифрования.

В радиоинтерфейсе стандарта имеется три уровня, которые обозначаются как L1, L2, and L3.

В таблице 2 представлены описания функциональных возможностей, которые включает в себя каждый уровень радиоинтерфейса. Ниже приводятся краткие характеристики каждого уровня. Более подробный обзор основных аспектов содержится в последующих разделах настоящего документа.

ТАБЛИЦА 2 **Уровни радиоинтерфейса**

Уровень	Определенные свойства
L1	Структуры на основе кадров и пакетов, модуляция и кодирование канала, опережение
L2	Надежная передача, преобразование логических каналов в физические, групповое шифрование
L3	Управление сеансами, управление ресурсами, управление мобильностью, фрагментация, регулирование мощности, адаптация канала связи, аутентификация

В таблице 3 приведено резюме основных элементов радиоинтерфейса HC-SDMA.

ТАБЛИЦА 3 Резюме основных элементов радиоинтерфейса HC-SDMA

Параметр	Значение
Дуплексный метод	TDD
Метод многостанционного доступа	FDMA/TDMA/SDMA
Схема доступа	Обнаружение/предотвращение коллизий с централизованным распределением ресурсов
Разнос между несущими	625 кГц
Период кадра	5 мс
Уровень асимметрии в скорости передачи данных пользователя	Уровень асимметрии для линий вверх/вниз при пиковых скоростях равен 3:1
Временные интервалы на линии вверх	3
Временные интервалы на линии вниз	3
Радиус действия	> 15 km
Скорость передачи символов	500 кбод/с
Схема формирования импульсов	Квадратный корень из приподнятого косинуса
Избыточная ширина полосы	25%
Модуляция и кодирование	 Независимый выбор комбинации каналов на линиях вверх и вниз для каждого кадра + кодирование
	 8 классов комбинаций каналов на линии вверх + кодирования
	 9 классов комбинаций каналов на линии вниз + кодирование
	 Алгоритм постоянного модуля и комбинации прямоугольных сигналов
Регулирование мощности	Для каждого кадра на линиях вверх и вниз, с наличием обратной связи или без обратной связи
Быстрый ARQ	Да
Объединение несущих и временных интервалов	Да
QoS	Дифференцирование услуг, определение политики, поддержка ограничения скорости, установление приоритета, разделение полосы и т.д.
Безопасность	Взаимная аутентификация АТ и BSR, шифрование для обеспечения конфиденциальности
Эстафетная передача вызова	Управляемая АТ, без разрыва соединения
Распределение ресурсов	Динамическое, с предоставлением полосы по требованию

IV Стандарт радиоинтерфейса T1.716/7-2000(R2004) для метода CDMA с прямым расширением спектра, предназначенного для фиксированного беспроводного доступа к КТСОП – уровень 1/уровень 2

1 Обзор радиоинтерфейса

В настоящем радиоинтерфейсе используется метод CDMA с прямым расширением спектра и чиповой скоростью от 4,16 до 16,64 Мчипа/с при ширине полосы радиочастотного сигнала, составляющей от 5 до 20 МГц. В качестве режима работы определен FDD с минимальным разносом между полосами на линиях вверх и вниз, составляющим от 40 до 60 МГц, в зависимости от чиповой скорости.

2 Подробное описание радиоинтерфейса

Широкополосный радиоинтерфейс для метода CDMA с прямым расширением спектра состоит из двух уровней: уровня 1 (L1) и уровня 2 (L2 – разделенного на подуровни MAC и DLC), которые отличаются от классической модели OSI, как показано в таблице 4:

- Уровень DLC ограничивается управлением каналом передачи данных для выделенных каналов управления. На уровне DLC не осуществляется управление выделенными каналами трафика.
- Уровень МАС, не являющийся физическим уровнем (PHY), осуществляет кодирование/декодирование для обеспечения упреждающей коррекции ошибок (FEC), шифрование/дешифрование, повторение/объединение символов и автоматическое регулирование мощности для обеспечения качества обслуживания (OoS).

ТАБЛИЦА 4 Уровни радиоинтерфейса

Уровень	Функция
Уровень 2 (L2)	DLC: управление каналом передачи данных для выделенных каналов управления
	MAC: кодирование/декодирование, повторение/объединение символов, автоматическое регулирование мощности и шифрование/дешифрование
Уровень 1 (L1)	Формирование каналов, CDMA с расширением спектра, модуляция/демодуляция, синхронизация, объединение/разделение радиочастотных сигналов

Уровень 1 предоставляет физические каналы (каналы передачи) со скоростью 128 кбит/с. Несколько каналов передачи 128 кбит/с можно объединять для предоставления отдельному пользователю услуг с более высокими скоростями передачи данных. На уровне 1 происходит мультиплексирование нескольких физических каналов в одном и том же спектре радиочастот путем использования метода прямого расширения спектра с отдельной расширяющей последовательностью для каждого канала.

Последовательность данных для каждого физического канала модулирует расширяющую последовательность, а получающаяся в результате этого последовательность модулирует радиочастотную несущую. Чиповая скорость расширяющей последовательности определяет ширину полосы передаваемого сигнала.

При необходимости, на уровне 1 генерируются пилотные символы, которые передаются с модулированными информационными сигналами.

Подуровень DLC уровня 2 предоставляет услуги плоскости контроля. Подуровень DLC обеспечивает защиту от ошибок с использованием протокола сбалансированного доступа к каналу, а также заданной процедуры LAPCc, которая основана на процедуре LAPC, в свою очередь базирующейся на протоколе LAPD (Рекомендации МСЭ-Т Q.920 и Q.931). Плоскость контроля предоставляет услугу связи пункта с пунктом, которая работает в режиме с подтверждением. Услуга связи пункта с пунктом включает адресацию, защиту от ошибок, управление потоком данных, формирование последовательности кадров, мультиплексирование/демультиплексирование информационных полей сетевого уровня и разделение кадров DLC.

Все стандарты, упомянутые в настоящем Приложении, представлены в электронной форме по адресу: https://www.atis.org/docstore/default.aspx.

Приложение 5

Система "PHS следующего поколения" – система широкополосного беспроводного доступа (ШБД), действующая в подвижной службе

1 Обзор радиоинтерфейса

Группа в рамках МоВ PHS, являющаяся организацией по разработке стандартов для систем персональных мобильных телефонов (PHS), разработала систему "PHS следующего поколения¹⁴", являющуюся одной из систем широкополосного беспроводного доступа (BWA). В системе "PHS следующего поколения" достигается высокая эффективность использования спектра, главным образом, за счет использования микроячеек, радиус которых существенно меньше, чем радиус типовых ячеек в подвижной телефонной связи, а также исходной системы PHS.

Система "PHS следующего поколения" является новой системой подвижного ШБД, в которой используется метод OFDMA/TDMA-TDD, и которая характеризуется рядом более усовершенствованных характеристик, приведенных ниже:

Возможность установления непрерывного соединения на уровне IP

Что касается удобства непрерывного соединения, обеспечиваемого в условиях кабельного модема и т. д., то большое значение имеет возможность установления непрерывного соединения на IP уровне, позволяющая пользователям моментально начать высокоскоростную передачу.

Высокая скорость передачи данных

Также важно поддерживать пропускную способность отчасти для практического использования, даже в случае, если произойдет существенная концентрация трафика.

Высокая скорость передачи данных на линии вверх

Что касается будущих потребностей в двунаправленной широкополосной связи, например видеоконференцсвязи, то считается, что в ближайшее время скорость передачи данных на линии вверх свыше 10 Мбит/с станет еще более важной.

- Высокая эффективность использования спектра

При возникновении серьезной перегрузки в сети в каком-либо деловом районе или деловом центре, ряд проблем, связанных с нехваткой частот, будет препятствовать развитию многих услуг. Для того, чтобы не допустить возникновения таких ситуаций, необходимо обеспечить высокую эффективность использования спектра.

Кроме того, эта система способна обеспечить высокую эффективность использования спектра за счет применения описанных ниже технологий:

- Технологий адаптивных антенных решеток и многостанционного доступа с пространственным разделением, позволяющих добиться, чтобы значение коэффициента повторного использования частот превысило 4.
- Технологий автономного децентрализованного управления, помогающих упразднить составление планов для проектов ячеек, и в результате этого добиться возможности реализации ячейки с радиусом менее 100 м.

В связи с тем, в системе "PHS следующего поколения" многие ячейки могут, в принципе, накладываться друг на друга, радиотелефонная трубка может одновременно получить доступ к станциям многих ячеек. Следовательно, эта система способна предоставить всем пользователям непрерывную стабильную пропускную способность за счет расширения объема трафика, который может возникать и носить интенсивный и временный характер.

Поскольку в системе "PHS следующего поколения" допускается использованием методов автономного децентрализованного управления, позволяющих нескольким операторам совместно использовать одну и ту же полосу частот, то можно достичь более эффективного использования спектра.

 $^{^{14}}$ "PHS следующего поколения", в широком смысле может включать усовершенствованную систему PHS, т. е. систему TDMA-TDD.

"PHS следующего поколения" принадлежит системам ШБД, зона охвата услуг которых состоит и многочисленных микро-ячеек.

Радиоинтерфейс системы "PHS следующего поколения" поддерживает ширину полосы частот от 1.25 до 20 МГц, а также методы модуляции вплоть до 256QAM, с тем чтобы реализовать высокую скорость передачи данных на линиях вверх/вниз.

2 Подробное описание радио интерфейса

Радиоинтерфейс "PHS следующего поколения" описывается двумерной шкалой методов многостанционного доступа: OFDMA (управление по оси частот) и TDMA (управление по оси времени). На оси времени, формат временного кадра является таким же, как и в исходной системе PHS, т. е. симметричный кадр длительностью 5 мс. По оси частот (использование метода OFDMA), будет выделяться несколько поднесущих в пределах всей доступной ширины полосы, в зависимости от потребностей пользователя и частотной обстановки в каждый момент времени.

В этом радиоинтерфейсе может использоваться ширина полос нескольких типов: 1,25 МГц, 5 МГц, 5 МГц, 5 МГц, 10 МГц, 20 МГц, а также разнос между поднесущими частотами 37,5 кГц. Временной кадр содержит 8 временных интервалов длительностью 5 мс каждый, при этом 4 последовательных интервала отведены для линии вниз, а оставшиеся 4 последовательных интервала – для линии вверх. Каждый из 4-х интервалов, безусловно, может использоваться по отдельности, а также может использоваться непрерывно одним пользователей. Более того, возможно непрерывное использование свыше 4-х интервалов при асимметричной структуре кадра.

В системе "PHS следующего поколения" достигается эффективное использование спектра за счет использования ряда функций, например адаптивных антенных решеток, метода SDMA и MIMO. Кроме того, в этой системе имеются функции поддержки методов автономного децентрализованного управления и динамического присвоения каналов для организации микроячеистой сети, что также является действенным способом повышения эффективности использования спектра.

Основные элементы радиоинтерфейса изображены в таблице 5.

ТАБЛИЦА 5 Основные элементы системы "PHS следующего поколения"

Метод многостанционного доступа	OFDMA/TDMA
Дуплексный метод	TDD
Число мультиплексированных каналов TDMA	4
Число мультиплексированных каналов OFDMA	Зависит от ширины полосы канала
Рабочая ширина полосы канала	1,25 МГц, 2,5 МГц, 5 МГц, 10 МГц, 20 МГц
Разнос между поднесущими частотами	37,5 кГц
Число точек FFT (в зависимости от ширины полосы канала, МГц)	32 (1,25), 64 (2,5), 128 (5), 256 (10), 512 (20)
Длительность кадра	5 мс
Число временных интервалов	8 временных интервалов (4 – на линии вниз/4 – на линии вверх)
Метод модуляции	BPSK, QPSK, 16-QAM, 32-QAM, 64-QAM, 256-QAM
Присвоение канала	Автономное децентрализованное управление
Базовый раздел ячейки	Микроячейки
Метод соединения	Соединение подканалов, соединение временных интервалов
Методы обеспечения эффективного использования спектра	Адаптивная антенная решетка, SDMA, MIMO
Пиковая скорость передачи в канале/5 МГц (в случае, симметричная)	Линия вверх: 8,0 Мбит/с Линия вниз: 11,2 Мбит/с

Стандарты: Описание системы "PHS следующего поколения" (A-GN4.00-01-TS) представлено в электронной форме по адресу: http://www.phsmou.org/about/nextgen.aspx.

Приложение 6

В таблице 6 содержится резюме основных характеристик каждого стандарта.

Рек. MCЭ-R M.1801

ТАБЛИЦА 6

Основные технические параметры

Стандарт	Номинальная ширина полосы РЧ канала	Модуляция/ скорость кодирования ⁽¹⁾ – линия вверх – линия вниз	Поддержка кодирова- ния	Пиковая скорость передачи в канале по отношению к каналу шириной 5 МГц (если не указано иное)	Поддержка формиро- вания ДН (Да/Нет)	Поддержка МІМО (да/нет)	Дуплекс- ный метод	Метод много- станцион- ного доступа	Длитель- ность кадра	Возможность мобильности (кочевой/ подвижный доступ)
IEEE 802.16 WirelessMAN/ ETCИ HiperMAN (Приложение 3)	Гибкое назначение, начиная с 1,25 МГц вплоть до 28 МГц. Типовая ширина полосы: 3,5 МГц, 5 МГц, 7 МГц, 8,75 МГц, 10 МГц и 20 МГц	Линия вверх: — QPSK-1/2, 3/4 — 16-QAM-1/2, 3/4 — 64-QAM-1/2, 2/3, 3/4, 5/6 Линия вниз: — QPSK-1/2, 3/4 — 16-QAM-1/2, 3/4 — 64-QAM-1/2, 2/3, 3/4, 5/6	СС/СТС другие варианты: ВТС/ LDPC	До 1 в режиме SISO До 35 Мбит/с в режиме (2 × 2) МІМО До 70 Мбит/с в режиме (4 × 4) МІМО	Да	Да	TDD/ FDD/ HFDD	OFDMA TDMA	5 мс Другие варианты: 2, 2,5, 4, 8, 10, 12,5 и 20 мс	Подвижный
Стандарты Т1.723- 2002 радиоинтерфей сов для систем I-CDMA с прямым расширением спектра (Приложение 4)	1,25 МГц	Линия вверх: - QPSK, - 0,325-0,793 Линия вниз: - QPSK, - 0,325-0,793	Блочные коды ТРС ВСН	Линия вверх: 1,228 Мбит/с Линия вниз: 1,8432 Мбит/с	Явно не задана, но не запрещена	Явно не задана, но не запрещена	FDD	CDMA	Уровень 1: 13,33 мс Уровень 2: 26,67 мс	Кочевой
Описание физического уровня, уровней МАС/LLС и сетевого уровня стандарта ATIS-0700001.2004 (Приложение 4)	5 МГц	Линия вверх: - QPSK, 8-PSK - 16-QAM R-S (18, 16) Линия вниз: - QPSK, 8-PSK - 64-QAM R-S (18, 16)	Код Рида- Соломона (18, 16)	Линия вверх: 6,4 Мбит/с Линия вниз: 24 Мбит/с	Да	Не указана	TDD	CDMA	10 мс	Кочевой

ТАБЛИЦА 6 (продолжение)

Стандарт	Номинальная ширина полосы РЧ канала	Модуляция/ скорость кодирования ⁽¹⁾ – линия вверх – линия вниз	Поддержка кодирова- ния	Пиковая скорость передачи в канале по отношению к каналу шириной 5 МГц (если не указано иное)	Поддержка формиро- вания ДН (Да/Нет)	Поддержка МІМО (да/нет)	Дуплекс- ный метод	Метод много- станцион- ного доступа	Длитель- ность кадра	Возможность мобильности (кочевой/ подвижный доступ)
Стандарт многостанционного доступа с пространственным разделением и высокой пропускной способностью (HC-SDMA) ATIS-0700004.2005 (Приложение 4)	0,625 МГц	Линия вверх: - BPSK, QPSK, 8-PSK, 12-QAM, 16-QAM 3/4 Линия вниз: - BPSK, QPSK, 8-PSK, 12-QAM, 16-QAM, 24-QAM,	Сверточные и блочные коды	Линия вверх: 2866 Мбит/с × 8 подканалов × 4 пространственных канала = 91,7 Мбит/с Линия вниз: 2,5 Мбит/с × 8 подканалов × 4 пространственных канала = 80 Мбит/с	Да	Да	TDD	TDMA/F DMA/ SDMA	5 мс	Подвижный
Стандарт радиоинтерфейса Т1.716/7-2000 (R2004) для метода СDMA с прямым расширением спектра, предназначенного для фиксированного беспроводного доступа к КТСОП – Уровень 1/Уровень 2 (Приложение 4)	От 2 × 5 до 2 × 20 МГц (с приращением 3,5 или 5 МГц)	Линия вверх: — QPSK, — 1/2 Линия вниз: — QPSK, — 1/2	Сверточ- ный код	Линия вверх: 1,92 Мбит/с Линия вниз: 1,92 Мбит/с	Нет	Нет	FDD	CDMA	19 мс максимум	Кочевой
РНЅ следующего поколения (Приложение 5)	1,25 МГц 2,5 МГц 5 МГц 10 МГц 20 МГц	Линии вверх и вниз: BPSK 1/2 QPSK 1/2, 3/4 16-QAM 3/4 32-QAM 4/5 64-QAM 5/6 256-QAM 7/8	Сверточ- ный код Решет- чатый код	Линия вверх: 8,0 Мбит/с Линия вниз: 11,2 Мбит/с (в случае SISO, симметричный)	Да (вариант)	Да (вариант)	TDD	OFDMA TDMA	5 мс	Подвижный
IEEE 802.11-1999 (R2003) (802.11b) (Приложение 1)	22 МГц	Симметричная линии вверх и вниз: DQPSK CCK BPSK PBCC – 1/2 QPSK PBCC – 1/2	Некодированный сигнал/ СС	2,5 Мбит/с	Нет	Нет	TDD	CSMA/ CA, SSMA	Перемен- ная дли- тельность кадра	Кочевой

Рек. МСЭ-R М.1801

ТАБЛИЦА 6 (продолжение)

Стандарт	Номинальная ширина полосы РЧ канала	Модуляция/ скорость кодирования ⁽¹⁾ – линия вверх – линия вниз	Поддержка кодиро- вания	Пиковая скорость передачи в канале по отношению к каналу шириной 5 МГц (если не указано иное)	Поддержка формирова ния ДН (Да/Нет)	Поддержка МІМО (да/нет)	Дуплекс- ный метод	Метод многостан ционного доступа	Длитель- ность кадра	Возможность мобильности (кочевой/ подвижный доступ)
IEEE 802.11-1999 (R2003) (802.11a) (Приложение 1)	20 МГц	Симметричные линии вверх и вниз: 64-QAM OFDM 2/3, 3/4 16-QAM OFDM -1/2, 3/4 QPSK OFDM - 1/2, 3/4 BPSK OFDM - 1/2, 3/4	СС	13,5 Мбит/с	Нет	Нет	TDD	CSMA/ CA	Перемен- ная дли- тельность кадра	Кочевой
IEEE 802.11-1999 (R2003) (802.11g) (Приложение 1)	20 МГц	Симметричные линии вверх и вниз: 64-QAM OFDM 2/3, 3/4 16-QAM OFDM – 1/2, 3/4 QPSK OFDM – 1/2, 3/4 BPSK OFDM – 1/2, 3/4 8-PSK PBCC – 2/3 64-QAM DSSS-OFDM – 2/3, 3/4 16-QAM DSSS-OFDM – 1/2, 3/4 QPSK DSSS-OFDM – 1/2, 3/4 BPSK DSSS-OFDM – 1/2, 3/4	CC	13,5 Мбит/с	Нет	Нет	TDD	CSMA/ CA	Перемен- ная дли- тельность кадра	Кочевой
ETCИ BRAN HiperLAN 2 (Приложение 1)	20 МГц	64-QAM-OFDM 16-QAM-OFDM QPSK-OFDM BPSK-OFDM На линиях вверх и вниз	CC	6, 9, 12, 18, 27, 36 и 54 Мбит/с в канале 20 МГц (поддержива- ются только каналы 20 МГц)	Нет	Нет	TDD	TDMA	2 мс	Кочевой

ТАБЛИЦА 6 (продолжение)

Стандарт	Номинальная ширина полосы РЧ канала	Модуляция/ скорость кодирования ⁽¹⁾ – линия вверх – линия вниз	Поддержка кодиро- вания	Пиковая скорость передачи в канале по отношению к каналу шириной 5 МГц (если не указано иное)	Поддержка формиро- вания ДН (Да/Нет)	Поддержка МІМО (да/нет)	Дуплекс- ный метод	Метод много- станцион- ного доступа	Длитель- ность кадра	Возможность мобильности (кочевой/ подвижный доступ)
ARIB HiSWANa (Приложение 1)	$4 \times 20 \text{ M}\Gamma$ _Ц (5,15-5,25 ΓΓ _Ц) $4 \times 20 \text{ M}\Gamma$ _Ц (4,9-5,0 ΓΓ _Ц)	- BPSK 1/2 - BPSK 3/4 - QPSK 1/2 - QPSK 3/4 - 16-QAM 9/16 - 16-QAM 3/4 - 64-QAM 3/4	Сверточ- ный код	6-54 Мбит/с в канале 20 МГц	Нет	Нет	TDD	TDMA	2 мс	Кочевой
IMT-2000 CDMA с прямым расширением спектра (Приложение 2)	5 МГц	Линия вверх: QPSK Линия вниз: 16-QAM, QPSK	Сверточ- ный турбокод	Линия вверх: 5,7 Мбит/с Линия вниз: 14 Мбит/с	Да	Нет (Будет добавлена в версии 7)	FDD	CDMA	2 мс и 10 мс	Подвижный
IMT-2000 CDMA со многими несущими частотами (Приложение 2)	1,25 МГц	Линия вверх: BPSK, QPSK, 8-PSK Линия вниз: 16-QAM, 8-PSK, QPSK	Сверточ- ный код/турбо- код	Линия вверх: 1,8 Мбит/с Линия вниз: 3,1 Мбит/с в канале 1,25 МГц	Да	Нет	FDD	CDMA	Линия вниз: 1,25, 1,67 2,5, 5, 10, 20, 40, 80 мс Линия вверх: 6,66, 10, 20, 26,67, 40, 80 мс	Подвижный
ІМТ-2000 CDMA TDD (Приложение 2)	Высокая чиповая скорость (НСR): 5 МГц Низкая чиповая скорость (LCR): 1,6 МГц	HCR, линия вверх: 16-QAM, QPSK LCR, линия вверх: 8-PSK, QPSK HCR, линия вниз: 16-QAM, QPSK LCR, линия вниз: 16-QAM, 8-PSK, QPSK	Сверточ- ный турбокод	НСR, линия вверх: 9,2 Мбит/с LCR, линия вверх: 2 Мбит/с/Несущая 1,6 МГц ⁽²⁾ НСR, линия вниз: 10,2 Мбит/с LCR, линия вниз: 2,8 Мбит/с/ Несущая 1,6 МГц ⁽²⁾	Да	Нет	TDD	HCR: TDMA/C DMA LCR: TD- SCDMA	HCR: 10 мс LCR: 5 мс	Подвижный

Рек. MCЭ-R M.1801

ТАБЛИЦА 6 (окончание)

Стандарт	Номинальная ширина полосы РЧ канала	Модуляция/ скорость кодирования ⁽¹⁾ – линия вверх – линия вниз	Поддержка кодиро- вания	Пиковая скорость передачи в канале по отношению к каналу шириной 5 МГц (если не указано иное)	Поддержка формиро- вания ДН (Да/Нет)	Поддержка МІМО (да/нет)	Дуплекс- ный метод	Метод много- станцион- ного доступа	Длитель- ность кадра	Возможность мобильности (кочевой/ подвижный доступ)
IMT-2000 TDMA с одной несущей (Приложение 2)	2 × 200 κΓц 2 × 1,6 ΜΓц	Линия вверх: - GMSK - 8-PSK - B-OQAM - Q-OQAM 0,329 – 1/1 Линия вниз: - GMSK - 8-PSK - B-OQAM - Q-OQAM 0,329 – 1/1	Прореженный сверточный код	Линия вверх: 16,25 Мбит/с 20,312 Мбит/с Линия вниз: 16,25 Мбит/с 20,312 Мбит/с	Явно не задана, но не запрещена	Явно не задана, но не запрещена	FDD TDD (в канале 1,6 МГц)	TDMA	4,6 мс 4,615 мс	Подвижный
IMT-2000 FDMA/TDMA (Приложение 2)	1,728 МГц	Линии вверх и вниз: GFSK π/2-DBPSK π/4-DQPSK π/8-D8-PSK 16-QAM, 64-QAM	Зависит от услуги: СRС, ВСН, код Рида- Соломон, турбокод	20 Мбит/с	Частичная	Частичная	TDD	TDMA	10 с	Подвижный

⁽¹⁾ Включая все применимые режимы, либо по крайней мере, максимальная и минимальная скорости.

⁽²⁾ В режиме LCR TDD формируются каналы с шириной полосы, равной 1,6 МГц. В полосе 5 МГц можно размесить три LCR TDD несущих. Также имеется возможность работы в режиме TDD со скоростью 7,68 Мчипа/с. Для этого режима требуется полоса шириной 10 МГц, при этом скорость передачи данных удваивается, как в режиме HCR TDD.