

Recomendación UIT-R M.1730-2 (02/2023)

Características y criterios de protección de los radares que funcionan en el servicio de radiodeterminación en la banda de frecuencias 15,4-17,3 GHz

Serie M

Servicios móviles, de radiodeterminación, de aficionados y otros servicios por satélite conexos

Prólogo

El Sector de Radiocomunicaciones tiene como cometido garantizar la utilización racional, equitativa, eficaz y económica del espectro de frecuencias radioeléctricas por todos los servicios de radiocomunicaciones, incluidos los servicios por satélite, y realizar, sin limitación de gamas de frecuencias, estudios que sirvan de base para la adopción de las Recomendaciones UIT-R.

Las Conferencias Mundiales y Regionales de Radiocomunicaciones y las Asambleas de Radiocomunicaciones, con la colaboración de las Comisiones de Estudio, cumplen las funciones reglamentarias y políticas del Sector de Radiocomunicaciones.

Política sobre Derechos de Propiedad Intelectual (IPR)

La política del UIT-R sobre Derechos de Propiedad Intelectual se describe en la Política Común de Patentes UIT-T/UIT-R/ISO/CEI a la que se hace referencia en la Resolución UIT-R 1. Los formularios que deben utilizarse en la declaración sobre patentes y utilización de patentes por los titulares de las mismas figuran en la dirección web http://www.itu.int/TTU-R/go/patents/es, donde también aparecen las Directrices para la implementación de la Política Común de Patentes UIT-T/UIT-R/ISO/CEI y la base de datos sobre información de patentes del UIT-R sobre este asunto.

Series de las Recomendaciones UIT-R								
	(También disponible en línea en http://www.itu.int/publ/R-REC/es)							
Series	Título							
во	Distribución por satélite							
BR	Registro para producción, archivo y reproducción; películas en televisión							
BS	Servicio de radiodifusión sonora							
BT	Servicio de radiodifusión (televisión)							
F	Servicio fijo							
M	Servicios móviles, de radiodeterminación, de aficionados y otros servicios por satélite conexos							
P	Propagación de las ondas radioeléctricas							
RA	Radio astronomía							
RS	Sistemas de detección a distancia							
S	Servicio fijo por satélite							
SA	Aplicaciones espaciales y meteorología							
SE	Compartición de frecuencias y coordinación entre los sistemas del servicio fijo por satélite y del servicio fijo							
SM	Gestión del espectro							
SNG	Periodismo electrónico por satélite							
TF	Emisiones de frecuencias patrón y señales horarias							
V	Vocabulario y cuestiones afines							

Nota: Esta Recomendación UIT-R fue aprobada en inglés conforme al procedimiento detallado en la Resolución UIT-R 1.

Publicación electrónica Ginebra, 2023

© UIT 2023

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

RECOMENDACIÓN UIT-R M.1730-2

Características y criterios de protección de los radares que funcionan en el servicio de radiodeterminación en la banda de frecuencias 15,4-17,3 GHz

(2005-2009-2023)

Cometido

Esta Recomendación da las características técnicas y los criterios de protección de los sistemas de radiolocalización que funcionan y tienen previsto funcionar en la banda 15,4-17,3 GHz. Se elaboró como documento de referencia en apoyo de los estudios de compartición, junto con la Recomendación UIT-R M.1461 que aborda los procedimientos de análisis para determinar la compatibilidad entre los radares que funcionan en el servicio de radiolocalización y otros servicios.

Palabras clave

Radiolocalización, radar, criterios de protección, interferencia impulsiva, características técnicas

Recomendaciones e Informes UIT-R conexos

Recomendaciones

UIT-R M.1313	Características técnicas de los radares de radionavegación marítima
UIT-R M.1372	Utilización eficaz del espectro radioeléctrico por las estaciones de radar del servicio de radiodeterminación
UIT-R M.1460	Características técnicas y operacionales y criterios de protección de los radares de radiodeterminación en la banda de frecuencias 2 900-3 100 MHz
UIT-R M.1461	Procedimientos para determinar la posibilidad de interferencia entre radares que funcionan en el servicio de radiodeterminación y sistemas de otros servicios
UIT-R M.1462	Características y criterios de protección de los radares del servicio de radiolocalización que funcionan en la gama de frecuencias 420-450 MHz
UIT-R M.1463	Características y criterios de protección para los radares que funcionan en el servicio de radiodeterminación en la banda de frecuencias 1 215-1 400 MHz
UIT-R M.1464	Características de los radares de radiolocalización y características y criterios de protección para estudios de compartición de los radares de radionavegación aeronáutica y meteorológicos en el servicio de radiodeterminación que funcionan en la banda de frecuencias 2 700-2 900 MHz
UIT-R M.1465	Características y criterios de protección para los radares que funcionan en el servicio de radiodeterminación en la gama de frecuencias 3 100-3 700 MHz
UIT-R M.1466	Características y criterios de protección para los radares que funcionan en el servicio de radionavegación en la banda de frecuencias 31,8-33,4 GHz
UIT-R M.1638	Características y criterios de protección para los estudios de compartición de los radares de radiolocalización (salvo los radares meteorológicos en tierra), y de radionavegación aeronáutica que funcionan en las bandas de frecuencias entre 5 250 y 5 850 MHz
UIT-R M.1851	Modelos matemáticos de diagramas de antena de sistemas de radar del servicio de radiodeterminación para uso en los análisis de interferencia

La Asamblea de Radiocomunicaciones de la UIT,

considerando

- *a)* que las características en cuanto a antena, propagación de la señal, detección del objetivo y gran anchura de banda necesaria de los radares para lograr sus funciones son óptimas en ciertas bandas de frecuencias;
- b) que las características técnicas de los radares que funcionan en el servicio de radiodeterminación vienen determinadas por la misión del sistema y varían ampliamente incluso dentro de una banda de frecuencias;
- c) que el UIT-R está considerando la posibilidad de introducir nuevos tipos de sistemas o servicios en las bandas de frecuencias comprendidas entre 420 MHz y 34 GHz utilizadas por los radares del servicio de radiodeterminación;
- d) que es necesario conocer las características técnicas y operacionales representativas de los radares que funcionan en el servicio de radiodeterminación para establecer la viabilidad de introducir nuevos tipos de sistemas en bandas de frecuencias atribuidas al servicio de radiodeterminación;
- e) que se necesitan procedimientos y metodologías para analizar la compatibilidad entre los radares que funcionan en el servicio de radiodeterminación y los sistemas de otros servicios contenidos en la Recomendación UIT-R M.1461.

observando

- a) que esta Recomendación junto con la Recomendación UIT-R M.1461 se utilizan como directrices para analizar la compatibilidad entre los radares de radiodeterminación y los sistemas de otros servicios;
- *b*) que los criterios de potencia de señal de interferencia causada al nivel de potencia de ruido del receptor del radar figuran en la Recomendación UIT-R M.1461,

reconociendo

- a) que los criterios de protección necesarios dependen de los tipos específicos de señales interferentes;
- pue la aplicación de los criterios de protección puede obligar a examinar la incorporación del carácter estadístico de los criterios y otros elementos de la metodología para la realización de estudios de compatibilidad (por ejemplo, la exploración de la antena, incluyendo el movimiento del transmisor, y las pérdidas de propagación). La elaboración más detallada de estas consideraciones estadísticas puede incorporarse en las revisiones futuras de la presente Recomendación y de otras correspondientes, según proceda,

recomienda

- 1 que se considere que las características técnicas y operacionales de los radares de radiolocalización descritas en el Anexo 1 son representativas de los que funcionan o tienen previsto funcionar en la banda de frecuencias 15,4-17,3 GHz;
- 2 que se considere un valor de la relación *I/N* de −6 dB como el nivel de protección requerido para los radares en la banda de frecuencias 15,4-17,3 GHz en los casos en que exista una atribución al servicio de radiolocalización, con arreglo al *reconociendo a*) y *b*) anteriores;
- que en el caso de la interferencia impulsiva, el criterio se determine analizando caso por caso teniendo en cuenta las características del tren de impulsos no deseado y, en la medida de lo posible, el procesamiento de la señal en el receptor del radar.
- NOTA 1 Esta Recomendación debe revisarse a medida que se disponga de información más detallada.

Anexo 1

Características y criterios de protección de los radares que funcionan en el servicio de radiolocalización en la banda de frecuencias 15,4-17,3 GHz

1 Introducción

Las características de los radares de radiolocalización que funcionan o tienen previsto funcionar por todo el mundo en la banda de frecuencias 15,4-17,3 GHz se presentan en el Cuadro 1 y se describen con más detalle en los puntos siguientes.

2 Características técnicas

La banda de frecuencias 15,4-17,3 GHz se utiliza en múltiples tipos distintos de radar, entre los que están los basados en tierra, los transportables, los instalados a bordo de barcos y las plataformas a bordo de aeronaves. Entre las funciones de radiolocalización realizadas en dicha banda están las de investigación a bordo de aeronaves y en la superficie, la cartografía del suelo, el seguimiento en el terreno, las aplicaciones marítimas y la identificación de blancos. Puede suponerse que las frecuencias de funcionamiento del radar se distribuyen uniformemente a lo largo de la gama de sintonía de cada radar. El Cuadro 1 contiene las características técnicas de radares de radiolocalización representativos que funcionan en la banda de frecuencias 15,4-17,3 GHz.

Los radares de radiolocalización importantes que funcionan o tienen previsto funcionar en dicha banda se utilizan principalmente para la detección de objetos aéreos y algunos se utilizan para cartografía del suelo. Han de medir la altitud del blanco y la distancia y orientación hacia él, y realizar mapas del terreno. Algunos de los blancos a bordo de aeronave y en el suelo son pequeños y algunos se encuentran a distancias de hasta 300 millas náuticas (556 km), de forma que estos radares de radiolocalización deben tener una gran sensibilidad y deben ofrecer un alto grado de supresión de todos los tipos de ecos parásitos, incluyendo los del mar, la tierra y la precipitación.

Rec. UIT-R M.1730-2

CUADRO 1 Características de los radares de radiolocalización en la banda 15,4-17,3 GHz

Características	Unidades	Sistema 1	Sistema 2	Sistema 3	Sistema 4	Sistema 5	Sistema 6
Función		Radar de búsqueda, seguimiento y cartografía del suelo (multifunción)	Radar de búsqueda, seguimiento y cartografía del suelo (multifunción)	Vigilancia aérea, ayudas de aterrizaje, seguimiento durante la exploración	Vigilancia	Vigilancia del suelo y seguimiento	Radar de búsqueda, seguimiento y cartografía del suelo (multifunción)
Tipo de plataforma		A bordo de aeronave, potencia reducida	A bordo de aeronave, gran potencia	A bordo de barco, gran potencia	En suelo, potencia reducida	En suelo, gran potencia	Abordo de aeronave (300-13 700 m)
Gama de sintonía	GHz	16,2-17,3	16,29-17,21	15,7-17,3	16,21-16,5	15,7-16,2	15,4-17,3
Modulación		MF lineal variable	Impulsiva MF lineal	Impulsiva salto de frecuencia	MF lineal en segmentos	Impulsiva salto de frecuencia	MF lineal en segmentos
Potencia de cresta de transmisión	W	80	700	20 k	2	10 k	500, 2 k, 10 k
Anchura del impulso	μs	18,2; 49	120-443	0,1	5,5	36	0,05-50
Tiempo de subida/caída del impulso	ns	20	4	7/70	10	8	5-100
Frecuencia de repetición de impulsos	pps	5 495; 2 041	900-1 600	4 000; 21 600	7 102	20 000	200-20 000
Ciclo de trabajo máximo		0,1	No especificado	0,00216	0,039	0,00072	Hasta 0,2 ⁽¹⁾
Dispositivo de salida		Tubo de ondas progresivas	Tubo de ondas progresivas	Tubo de ondas progresivas	Transistor	Tubo de ondas progresivas	Tubo de ondas progresivas
Tipo de diagrama de antena		Abanico/haz puntual	Abanico	Haz puntual	Haz puntual	Haz puntual	Haz puntual (UIT-R M.1851, distribución de coseno al cuadrado)
Tipo de antena		Guía onda ranurada	Sistema en fase	Sistema en fase plano	Elíptica con contorno parabólico	Reflector curvo doble con alimentador de bocina	Sistema en fase
Polarización de la antena		Vertical lineal	Vertical lineal	Circular dextrógira	Horizontal	Circular	Lineal
Ganancia de antena	dBi	25,6	38,0	43,0	37,0	43	35
Apertura en elevación del haz de la antena	grados	9,7	2,5	1	1,1	1,6	3,2

Rec. UIT-R M.1730-2 CUADRO 1 (*fin*)

Características	Unidades	Sistema 1	Sistema 2	Sistema 3	Sistema 4	Sistema 5	Sistema 6
Apertura en acimut del haz de la antena	grados	6,2	2,2	1	3,5	.25	3,2
Velocidad de exploración horizontal de la antena		30 grados/s	5 grados/s	1 500 exploraciones/min	7,8 ó 15,6 grados/s	60 rpm, 360 grados/s	1-30 grados/s
Tipo de exploración horizontal de la antena (continua, aleatoria, sectorial, etc.)		±45° a ±135° (mecánica)	±30° (electrónica, cónica)	±40° (mecánica)	180° (mecánica)	360° (continua)	±45° (electrónica)
Velocidad de exploración vertical de la antena		30 grados/s	5 grados/s	1 500 exploraciones/min	No aplicable	No aplicable	1, 5 grados/s
Tipo de exploración vertical de la antena		-10° a −50° (mecánica)	0° a –90° (electrónica, cónica)	+30°/–10° (mecánica)	+22,5°/-33,75° (mecánica)	No aplicable	+5° a -45° (electrónica)
Nivel del primer lóbulo lateral de la antena		10 dBi a 31°	18 dBi a 1,7°	20 dBi a 1,6°	15 dBi a 2,4°	23 dBi a 1,6°	3,5 dBi a 5,2°
Altura de la antena		Altitud de la aeronave	Altitud de la aeronave	Mástil/montaje en el puente	Nivel del suelo	100 m	Altitud de la aeronave
Anchuras de banda a -3 dB de la 1 ^{era} y 2 ^{da} FI del receptor	MHz	215/68	26,7 (banda ancha); 7,2 (banda estrecha)	70/40	500/0,750	50	25
Factor de ruido del receptor	dB	4	2,7	No especificado	4	1 + (860/290) 860 = Temperatura de ruido del receptor, K 290 = Temperatura de ruido de la Tierra, K 3,97	5
Señal discernible mínima	dBm	-89	-97,4	-80	-100,4	-92	-100
Anchura de banda de los segmentos	MHz	≤640	No especificada	30	0,750	No especificada	<1 900(2)
Anchura de banda en emisión de RF del transmisor: -3 dB -20 dB	MHz	622; 271 725; 324	1 200; 600; 180 1 220; 620; 200	6,8; 37 20; 42	0,608 2,35	540 670	1 850 1 854

⁽¹⁾ Los estudios de compartición se llevarán a cabo utilizando múltiples ciclos de trabajo, con valores desde 0,01 hasta 0,2.

⁽²⁾ Los estudios de compartición se centrarán en anchuras de banda en segmentos mayores de 1 600 MHz.

Debido en gran medida a los requisitos de la misión, los radares de radiolocalización que utilizan o tienen previsto utilizar la banda 15,4-17,3 GHz tienden a presentar las siguientes características generales:

- suelen tener una potencia del transmisor de cresta y media elevadas, con excepciones notables;
- utilizan típicamente transmisores con amplificador de potencia de oscilador principal más que osciladores de potencia. Suelen ser sintonizables y algunos de ellos son versátiles en frecuencia. En ocasiones se utilizan la modulación lineal FM (segmentos) o la codificada en fase interior al impulso;
- algunos tienen haces principales de antena orientables en acimut y elevación, utilizando un control electrónico del haz;
- típicamente emplean la recepción versátil y capacidades de procesamiento, tales como las que ofrecen las antenas receptoras auxiliares de supresión de lóbulos laterales, el procesamiento de trenes de impulsos de portadoras coherentes para suprimir los ecos parásitos por medio de la indicación de blancos móviles, las técnicas de índices constantes de alarmas falsas y, en ciertos casos, la selección adaptable de las frecuencias de funcionamiento, basándose en la detección de la interferencia en diversas frecuencias.

El Cuadro 1 resume las características técnicas de sistemas representativos instalados o cuya instalación está prevista en toda la banda de frecuencias 15,4-17,3 GHz o en partes de la misma. Esta información es suficiente para el cálculo general en la evaluación de la compatibilidad entre estos radares y otros sistemas. Algunos o todos los radares de radiolocalización cuyas características se muestran en el Cuadro 1 presentan las propiedades indicadas, aunque no ilustran todo el repertorio de atributos que pudieran aparecer en los sistemas futuros.

2.1 Transmisores

Los radares que funcionan o tienen previsto funcionar en la banda de frecuencias 15,4-17,3 GHz utilizan diversas modulaciones incluyendo los impulsos sin modulación, los impulsos modulados en frecuencia (por segmentos) y los impulsos codificados en fase. Se utilizan dispositivos de salida de haz lineal y de estado sólido en las etapas finales de los transmisores. La tendencia en los nuevos sistemas de radar apunta hacia los dispositivos de salida de haz lineal y de estado sólido, debido a los requisitos del procesamiento de la señal Doppler. Además, los radares con dispositivos de salida de estado sólido tienen una potencia de salida de cresta del transmisor inferior y ciclos de trabajo de impulsos superiores.

Los transmisores de estado sólido son radares de baja potencia, y los que utilizan dispositivos de campo transversal (magnetrones) y dispositivos de haz lineal (tubos de onda progresiva) son radares de alta potencia.

2.1.1 Salto de frecuencia

Este tipo de radar, que utiliza técnicas de salto de frecuencia, suele dividir su banda de frecuencias atribuida en canales. El radar selecciona entonces de forma aleatoria un canal entre los disponibles para la transmisión. Esta ocupación aleatoria de un canal puede producirse sobre una base de posición por haz, en la que se transmiten múltiples impulsos por el mismo canal, o sobre una base de impulsos individuales. Debe considerarse este aspecto importante de los sistemas de radar y en los estudios de compartición debe tenerse presente la posible repercusión de los radares de salto de frecuencia.

2.2 Receptores

Los sistemas de radar de generaciones más recientes utilizan el procesamiento de la señal digital después de la detección para el procesamiento de las señales de alcance, acimutal y Doppler. Generalmente, el procesamiento de la señal incluye técnicas utilizadas para mejorar la detección de los blancos deseados y producir símbolos de los blancos en la pantalla. Las técnicas de procesamiento de la señal utilizadas para la mejora y la identificación de los blancos deseados ofrecen también una cierta supresión de la interferencia impulsiva de ciclo de trabajo reducida (inferior al 5%) que es asíncrona respecto a la señal deseada.

El procesamiento de la señal en los radares de generaciones más recientes utiliza impulsos por segmentos y codificados en fase para obtener una ganancia del procesamiento en la señal deseada y pueden también ofrecer la supresión de las señales no deseadas.

Algunos de los radares recientes de estado sólido y baja potencia utilizan un procesamiento de la señal multicanal de pico de trabajo elevado a fin de mejorar los retornos de la señal deseada. Algunos receptores de radar tienen capacidad de identificar los canales de RF con niveles reducidos de señales indeseadas y de encargar al transmisor que transmita por estos canales de RF.

2.3 Antenas

En los radares que funcionan o tienen previsto funcionar en la banda de frecuencias 15,4-17,3 GHz se utiliza una amplia variedad de tipos de antena. Las antenas en esta banda suelen tener diversos tamaños y ofrecen interés para las aplicaciones en las que la movilidad y el peso ligero son factores importantes, así como las características de largo alcance. Muchos radares en dicha banda de frecuencias 15,4-17,3 GHz funcionan o tienen previsto funcionar en diversos modos, incluyendo el de búsqueda, cartografía y navegación (observación meteorológica). Las antenas de dichos radares suelen tener una exploración entre 360° en el plano horizontal. Otros radares en esa banda están más especializados y limitan la exploración a un sector fijo. La mayoría de los radares en la banda 15,4-17,3 GHz utiliza o tienen previsto utilizar la exploración mecánica, aunque los radares de generaciones más recientes utilizan antenas en sistema con exploración electrónica. Se emplean las polarizaciones horizontal, vertical y circular. Las alturas típicas de antena de los radares basados en el suelo y a bordo de barcos oscilan entre 8 m y 100 m sobre el nivel de la superficie, respectivamente.

3 Criterios de protección

En la parte de la banda de frecuencias 15,4-17,3 GHz donde hay una atribución a la radiolocalización, los usuarios de radar consideran aceptable una señal procedente de otro servicio que dé una relación I/N inferior a -6 dB, cuando se trata de señales de otro servicio con un ciclo de trabajo elevado (por ejemplo, onda continua, MDP-2, MDP-4, señal de tipo ruido, etc.). Una relación I/N de -6 dB se traduce en una (I + N)/N de 1,26, o aproximadamente, un aumento de 1 dB en la potencia de ruido del receptor de radar. Puede ser necesario realizar nuevos estudios o mediciones de compatibilidad para evaluar la interferencia en términos del efecto operacional en el comportamiento del radar. Debe señalarse que se están realizando estudios sobre la viabilidad de la utilización de los aspectos estadísticos y operacionales en los criterios de protección para los sistemas de radar de radiodeterminación. Este enfoque estadístico puede ser especialmente interesante en el caso de señales no continuas. Cuando se trata de sistemas de radar que funcionan en la banda para la que se aplica una Recomendación UIT-R sobre características del radar y criterios de protección, debe

consultarse la Recomendación pertinente¹ para obtener orientaciones específicas respecto a los criterios de protección.

El efecto de la interferencia impulsiva es más difícil de cuantificar y depende considerablemente del diseño de los receptores y el procesador, así como del modo de funcionamiento. En particular, las ganancias de procesamiento de la señal de ecos de blanco válido, que es impulsiva síncronamente y con impulsos de interferencia que generalmente son asíncronos, suelen tener efectos importantes en los niveles determinados de interferencia por impulsos. Dicha desensibilización puede infligir diversas formas de degradación de la calidad. La evaluación de éstas será objeto del análisis de las interacciones entre tipos específicos de radar. En general, cabe prever que los numerosos aspectos de los radares de radiodeterminación contribuyan a suprimir la interferencia impulsiva con ciclo de trabajo reducido, especialmente la que procede de algunas fuentes aisladas. La Recomendación UIT-R M.1372 – Utilización eficaz del espectro radioeléctrico por las estaciones de radar del servicio de radiodeterminación, incluye técnicas para la supresión de la interferencia impulsiva de ciclo de trabajo reducido.

Cuando hay múltiples fuentes de interferencia, el criterio de protección recomendado de la *I/N* permanece inalterable (porque depende del tipo de receptor de radar y de sus características de procesamiento de la señal). El nivel de interferencia total que realmente llega al receptor de radar (que se ha de comprobar en relación con los criterios de protección recomendados de la *I/N*) depende del número de fuentes interferentes, de su distribución espacial y de la estructura de su señal, y ha de evaluarse a lo largo de un análisis de acumulación en un escenario determinado. Si se recibe interferencia procedente de diversas direcciones acimutales, en el análisis de acumulación se deben agregar las contribuciones simultáneas de todas estas direcciones que se reciben por el haz principal de la antena del radar y/o por los lóbulos laterales, a fin de evaluar la compatibilidad.

4 Sistemas futuros de radiolocalización

En términos amplios, los radares de radiolocalización que puedan desarrollarse en el futuro para el funcionamiento en la banda de frecuencias 15,4-17,3 GHz se parecerán probablemente a los radares existentes que se describen aquí.

Es probable que los futuros radares de radiolocalización tengan al menos la misma flexibilidad que los radares descritos, incluyendo la capacidad de funcionar diferentemente en sectores distintos de acimut y elevación.

Cabe prever razonablemente que algunos diseños futuros puedan tratar de lograr la capacidad de funcionar en una banda amplia que llegue al menos hasta los límites de la banda utilizados en estas consideraciones.

Los futuros radares de radiolocalización en esta banda probablemente contarán con antenas orientables electrónicamente. No obstante, la actual tecnología hace que la orientación en fase sea una alternativa práctica y atractiva a la de orientación en frecuencia y numerosos radares de radiolocalización desarrollados en los últimos años para la utilización en otras bandas han empleado la orientación en fase, en acimut y en elevación. A diferencia de los radares orientados por frecuencia, los nuevos radares de sistema en fase pueden orientarse con cualquier frecuencia fundamental en la banda operativa del radar hasta cualquier acimut y elevación arbitrarios, dentro de su zona de cobertura angular. Entre otras ventajas, esto facilita la compatibilidad electromagnética en múltiples circunstancias.

-

¹ Entre los ejemplos de Recomendaciones que contienen características técnicas y criterios de protección para bandas específicas están las: UIT-R M.1313, UIT-R M.1460, UIT-R M.1462, UIT-R M.1463, UIT-R M.1464, UIT-R M.1465, UIT-R M.1466, y UIT-R M.1638.

Se prevé que algunos radares futuros de radiolocalización ofrezcan capacidades de potencia media tan elevada al menos como las de los radares que aquí se describen. No obstante, cabe esperar razonablemente que los diseñadores de los radares futuros traten de reducir las emisiones de ruido de banda ancha por debajo de los actuales radares que emplean magnetrones o amplificadores de campo transversal. Se espera lograr dicha reducción de ruido mediante la utilización de transmisores/sistemas de antena de estado sólido. En dicho caso, los impulsos transmitidos serán más largos y los ciclos de trabajo en transmisión serán sustancialmente superiores a los de la mayoría de los primeros transmisores de radar con sistemas de tubo.