RECOMMANDATION UIT-R M.1226*

CARACTÉRISTIQUES TECHNIQUES ET D'EXPLOITATION DES RADARS PROFILEURS DE VENT DANS LES BANDES SITUÉES AU VOISINAGE DE 50 MHz

(Question UIT-R 102/8)

(1997)

Résumé

La présente Recommandation spécifie les caractéristiques techniques et d'exploitation des radars profileurs de vent dans les bandes de fréquences situées au voisinage de 50 MHz. Elle indique la puissance type sur la ligne d'antenne, la largeur de bande nécessaire, la largeur de bande occupée, les suppressions types des lobes secondaires d'antenne et donne des indications sur le partage avec les radars profileurs de vent. L'Annexe 1 contient des valeurs types et les conditions minimales à remplir concernant les caractères des radars profileurs de vent dans les bandes situées au voisinage de 50 MHz.

L'Assemblée des radiocommunications de l'UIT,

considérant

- a) la Recommandation N° 621 de la Conférence administrative mondiale des radiocommunications chargée d'étudier les attributions de fréquences dans certaines parties du spectre (Malaga-Torremolinos, 1992) (CAMR-92);
- b) que les radars profileurs de vent sont des systèmes météorologiques importants utilisés pour mesurer la direction et la vitesse du vent en fonction de l'altitude;
- c) qu'un grand nombre d'administrations envisagent d'installer des radars profileurs de vent dans des réseaux opérationnels afin d'améliorer les prévisions et les avis météorologiques, de faciliter les études sur le climat et de renforcer la sécurité de la navigation;
- d) que, pour permettre l'exploitation des radars profileurs de vent dans les meilleures conditions, il faut leur attribuer des bandes de fréquences proches de 50, 400 et 1000 MHz, conformément à la demande de l'Organisation météorologique mondiale (OMM);
- e) que les profileurs de vent fonctionnant au voisinage de 50 MHz conviennent théoriquement le mieux aux mesures météorologiques (vent, turbulence atmosphérique, hauteur de tropopause) jusqu'à des altitudes élevées (20-25 km);
- f) qu'une fois conçus et réalisés, les radars profileurs de vent peuvent fonctionner à des fréquences centrales avec une marge de $\pm 1\%$;
- g) que les radars profileurs de vent peuvent être appelés à utiliser des fréquences en partage avec d'autres systèmes existants ou futurs;
- h) qu'il serait souhaitable de limiter le nombre de fréquences autorisées à l'échelle mondiale, afin de réduire au minimum les dépenses de recherche et de développement de composants;
- j) que les normes techniques pourraient faciliter la compatibilité avec d'autres systèmes dans la même bande de fréquences,

recommande

- que les exigences minimales relatives aux caractéristiques de qualité de fonctionnement du système figurant dans l'Annexe 1 soient adoptées par les administrations désireuses de réaliser des radars profileurs de vent ou de les faire fonctionner pour les exploiter en météorologie dans les bandes situées au voisinage de 50 MHz;
- que la puissance de l'émetteur soit limitée à celle qui est nécessaire pour obtenir les données à l'altitude maximale pour laquelle le radar profileur de vent est conçu;

^{*} Cette Recommandation doit être portée à l'attention des Commissions d'études 7, 9 et 11 des radiocommunications.

- que la largeur de bande occupée (Note 1) soit aussi proche de la largeur de bande nécessaire (Note 2) pour obtenir le pouvoir séparateur en distance requis, pour autant que la faisabilité technique et économique le permet. Il faut noter qu'une diminution du pouvoir séparateur en distance est généralement tolérée à très haute altitude. Les valeurs figurent dans l'Annexe 1.
- NOTE 1 Largeur de bande: largeur de bande de fréquences telle que les puissances moyennes émises, au-dessous de sa fréquence limite inférieure et au-dessus de sa fréquence limite supérieure, soient égales chacune à 0,5% de la puissance moyenne totale de l'émission donnée.
- NOTE 2 Largeur de bande nécessaire: pour une classe d'émission donnée, largeur de la bande de fréquences qui est juste suffisante pour assurer la transmission des informations au taux requis et avec la qualité requise sous des conditions spécifiques;
- que les rayonnements non désirés des radars profileurs de vent aient une puissance aussi faible que possible, compte tenu des facteurs techniques et économiques. Les valeurs figurent dans l'Annexe 1;
- 5 que le niveau des lobes secondaires du diagramme de rayonnement de l'antenne, à et proche de l'horizon, soit minimal. Les valeurs des gains de lobes secondaires figurent dans l'Annexe 1;
- que les administrations concernées élaborent leurs propres critères de partage tels que les séparations fréquence-distance (FD) conformément à la Recommandation UIT-R SM.337 concernant les types spécifiques de radars profileurs de vent utilisés qui fonctionnent en présence d'autres systèmes;
- que le choix du lieu d'implantation des radars profileurs de vent tire parti du relief et de la configuration du site pour réduire au minimum les probabilités de brouillage avec les autres systèmes; d'autres moyens peuvent être utilisés pour améliorer la compatibilité (par exemple: obstacles, murets et orientation des antennes);
- **8** que les fréquences situées dans la gamme des 40-80 MHz soient choisies, lorsque la compatibilité des systèmes doit être envisagée, compte tenu de la protection nécessaire.

ANNEXE 1

Valeurs types et exigences minimales des caractéristiques de système concernant les radars profileurs de vent fonctionnant au voisinage de 50 MHz

1 Introduction

Les valeurs données ci-après reposent sur les connaissances actuelles et les mesures de champ relatives aux systèmes modulés par impulsion.

2 Valeurs types relatives aux radars profileurs de vent en exploitation dans les bandes situées au voisinage de 50 MHz

TABLEAU 1

Paramètre de système	Plage des valeurs types ⁽¹⁾
Puissance de crête d'impulsion (kW)	5-60
Puissance moyenne émise (kW)	0,5-5
Gain d'antenne du faisceau principal (dBi)	30-34
Largeur du faisceau (degrés)	4-6
Angle d'inclinaison (degrés)	11-16
Dimension de l'antenne (m ²)	2 500-10 000
Plage de hauteur ⁽²⁾ (km)	1-24
Pouvoir séparateur en hauteur (m)	150-1 500

⁽¹⁾ Les utilisateurs de ce tableau doivent prendre des précautions lorsqu'ils utilisent des combinaisons de ces valeurs pour représenter un profileur «typique» ou «dans le cas le plus défavorable». Par exemple, un profileur fonctionnant avec une puissance moyenne de 5 kW alors qu'il utilise des impulsions permettant d'offrir un pouvoir séparateur en hauteur de 150 m sort de la normale.

3 Exigences minimales pour les caractéristiques de qualité de fonctionnement du système

3.1 Largeur de bande d'émission

TABLEAU 2

Largeur d'impulsion	Largeur de bande nécessaire	Rapport: largeur de bande
(μs)	(MHz)	occupée/largeur de bande nécessaire
1-10	2,2-0,2	$\leq 2,5^{(1)}$

⁽¹⁾ Il est possible d'obtenir des valeurs inférieures à 1,5 au prix d'une augmentation du coût et d'une légère baisse de la qualité qui résultent de la forme de l'impulsion. La limite s'applique à la combinaison de la puissance et de la largeur d'impulsion qui produit la densité de puissance la plus élevée dans les bandes latérales du signal.

3.2 Niveaux des rayonnements non essentiels

Les niveaux des rayonnements non essentiels doivent être mesurés à l'entrée de l'antenne en utilisant les valeurs de largeurs de bande données ci-dessous:

Largeur de bande FI:

- $\leq 1/T$ pour les radars à impulsions non codées en phase, à fréquence fixe, où T est la longueur d'impulsion. Par exemple, si la longueur d'impulsion de radar est 1 μ s, la largeur de bande FI de mesure doit être $\leq 1/1\mu$ s = 1 MHz.
- $\leq 1/t$ pour les radars à impulsions codées en phase, à fréquence fixe, où t est la longueur de bribe de phase. Par exemple si un radar émet des impulsions de 26 μ s, chaque impulsion consistant en 13 bribes codées en phase ayant une longueur de 2 μ s, la largeur de bande FI de mesure doit être $\leq 1/2$ μ s = 500 kHz

⁽²⁾ La hauteur maximale de fonctionnement est fonction du produit: (puissance moyenne) × (aire de captation).

Rec. UIT-R M.1226

Largeur de bande vidéo: ≤ Largeur de bande FI du système de mesure

Suppression de rayonnement non essentiel: > 55 dB

Suppression du second harmonique: > 60 dB

3.3 Suppression des lobes secondaires d'antenne pour des angles spécifiés au-dessus de l'horizon

TABLEAU 3

Angle au-dessus de l'horizon (degrés)	Suppression des lobes secondaires d'antenne (dB)	
	Valeur médiane	Valeur minimale
0-5	40	33
5-45	30	23
> 45	23	13