РЕКОМЕНДАЦИЯ МСЭ-R М.1036-3

Планы размещения частот для внедрения наземного сегмента системы Международной подвижной электросвязи-2000 (IMT-2000) в полосах* 806–960 МГц**, 1710–2025 МГц, 2110–2200 МГц и 2500–2690 МГц

(Вопрос МСЭ-R 229/8)

(1994-1999-2003-2007)

1 Введение

Международная подвижная электросвязь-2000 (IMT-2000) — это системы подвижной связи третьего поколения, которые обеспечивают доступ к широкому спектру услуг электросвязи, поддерживаемых фиксированными сетями электросвязи (например, КТСОП/ЦСИС/IP), и к другим услугам, которые предназначаются конкретно пользователям подвижной связи.

Ключевыми возможностями IMT-2000 являются:

- высокая степень общности проектирования по всему миру;
- совместимость услуг в рамках IMT-2000 и с фиксированными сетями;
- высокое качество;
- небольшой терминал, пригодный для использования на всемирной основе;
- возможность всемирного роуминга;
- возможность использования мультимедийных применений и широкий спектр услуг и терминалов.

Возможности систем ІМТ-2000 постоянно расширяются в соответствии с потребностями пользователей и тенденциями развития технологий.

IMT-2000 будет работать в полосах частот, которые определены в Регламенте радиосвязи (PP) как предназначенные для использования на всемирной основе администрациями, желающими внедрить IMT-2000, а именно:

ВАКР-92 определила полосы:

- 1885–2025 MΓ_{II};
- 2110–2200 МГц,

а ВКР-2000 определила полосы:

- 806–960 МГц**;
- 1710–1885 МГц;
- 2500–2690 МГц (для наземного сегмента, а части ее для спутникового сегмента IMT-2000)

для возможного использования системами IMT-2000, отмечая (в соответствии с п. 5.388 PP), что определение этих полос не устанавливает приоритетов в PP и не препятствует использованию этих полос для любых других служб, которым эти полосы распределены. Кроме того, некоторые администрации могут развернуть системы IMT-2000 в полосах, отличных от тех, что определены в PP

^{*} Некоторые администрации могут внедрять системы IMT-2000 в полосах, отличных от тех, что определены здесь.

^{**} Из-за изменения первичных распределений подвижной службе и ее использования во всех трех Районах МСЭ не вся полоса 806—960 МГц определена для IMT-2000 на глобальном уровне.

2 Сфера применения¹

Сфера применения настоящей Рекомендации — это предоставление руководства по выбору планов размещения частот передачи и приема для наземного сегмента системы IMT-2000, а также самих этих планов, с целью содействия администрациям в решении технических проблем использования спектра, связанных с внедрением и эксплуатацией наземного сегмента IMT-2000 в полосах частот, определенных в РР. Планы размещения частот рекомендуются с точки зрения обеспечения наиболее эффективного и рационального использования спектра для предоставления услуг IMT-2000, минимизируя при этом нежелательное влияние на другие системы или службы в этих полосах и способствуя развитию систем IMT-2000.

3 Задачи

При планировании и внедрении IMT-2000, в соответствии с Резолюцией 223 (ВКР-2000), желательно выполнить следующие задачи:

- обеспечить, чтобы планы размещения частот для внедрения IMT-2000 имели длительный срок существования, допуская при этом эволюцию технологии;
- содействовать внедрению IMT-2000 в соответствии с условиями рынка и содействовать развитию и росту IMT-2000;
- минимизировать нежелательное влияние на другие системы и службы в пределах полос частот, определенных для IMT-2000, и в соседних полосах;
- содействовать всемирному роумингу терминалов IMT-2000;
- эффективно объединять наземный и спутниковый сегменты IMT-2000;
- оптимизировать эффективность использования спектра в полосах частот, определенных для IMT-2000;
- обеспечивать возможность конкуренции;
- содействовать внедрению и использованию IMT-2000, включая фиксированные и другие специальные применения, в развивающихся странах и в малонаселенных районах;
- обеспечивать передачу различных типов трафика и их комбинаций;
- содействовать дальнейшей разработке всемирных стандартов оборудования;
- упрощать глобальный доступ к услугам в рамках IMT-2000;
- минимизировать цены, размеры и энергопотребление терминалов, где это возможно и не противоречит другим требованиям;
- упрощать эволюцию систем, предшествующих IMT-2000 в сторону любых наземных радиоинтерфейсов IMT-2000, как это определенно в Рекомендации МСЭ-R M.1457.

Предоставить гибкость администрациям в:

 определении на национальном уровне, какой объем спектра из определенных полос сделать доступным для IMT-2000;

¹ Настоящая Рекомендация не должна ни при каких условиях предрешать или оказывать влияние на решение, которое должно быть принято на ВКР-07 по пункту 1.4 повестки дня в отношении полос частот, ниже тех, что определены в настоящее время в п. 317А РР для IMT-2000 и последующих систем.

- разработке, при необходимости, собственных планов перехода, рассчитанных на то, чтобы они соответствовали конкретным планам развертывания существующих систем;
- том, чтобы иметь возможность использовать определенные полосы частот всеми службами, которым сделаны распределения частот в этих полосах;
- определении времени готовности и использования полос частот, определенных для IMT-2000, с целью удовлетворения рыночного спроса и с учетом других национальных аспектов.

При определении планов размещения частот применялись следующие руководящие принципы:

- гармонизация;
- технические аспекты;
- эффективность использования спектра.

4 Относящиеся к этому вопросу Рекомендации

Далее приводятся существующие Рекомендации по ІМТ-2000, которые считаются важными для

ие гекомендации по пит-2000, которые считаются важными для			
Международная подвижная электросвязь-2000 (IMT-2000)			
Концепция услуг, поддерживаемых в Международной подвижно электросвязи-2000 (IMT-2000)			
Использование спутников в Международной подвижной электросвязи-2000 (IMT-2000)			
Международная подвижная электросвязь-2000 (IMT-2000) для развивающихся стран			
Технические и эксплуатационные характеристики бесшнуровых телефонов и беспроводных систем электросвязи			
Требования к радиоинтерфейсу(ам) Международной подвижной электросвязи-2000 (IMT-2000)			
Концепция радиоинтерфейса(ов) и функционирование радиоподсистемы Международной подвижной электросвязи-2000 (IMT-2000)			
Цифровые сотовые системы сухопутной подвижной связи			
Концепция спутникового сегмента Международной подвижной электросвязи-2000 (IMT-2000)			
Словарь терминов для Международной подвижной электросвязи-2000 (IMT-2000)			

Рекомендация MCЭ-R M.1308: Эволюция системы сухопутной подвижной связи в направлении IMT-2000

Рекомендация MCЭ-R M.1390: Методика расчетов потребностей в спектра для наземного сегмента IMT-2000

Рекомендация MCЭ-R M.1457: Подробные спецификации радиоинтерфейсов Международной подвижной электросвязи-2000 (IMT-2000)

Рекоменлация МСЭ-R SM.329: Нежелательные излучения в области побочных излучений

5 Утверждения и соображения

Для того чтобы определить принципы и практическое использование спектра для систем ІМТ-2000, утверждается:

Относительно использования частот/полос спектра

- а) что полосы частот 806–960 МГц**, 1710–2025 МГц, 2110–2200 МГц и 2500–2690 МГц определены в РР как предназначенные для использования на всемирной основе администрациями, желающими внедрить ІМТ-2000, как указано в пп. 5.388, 5.384А и 5.317А Регламента радиосвязи и в Резолюциях 212 (Пересм. ВКР-97), 223 (ВКР-2000), 224 (ВКР-2000), 225 (ВКР-2000) и 228 (ВКР-03); учитывая эти положения и эти Резолюции, администрациям должна быть предоставлена гибкость в принятии решения об использовании этих полос на национальном уровне в соответствии с планом эволюции/перехода каждой администрации;
- b) что в некоторых странах в полосах частот, определенных для IMT-2000, работают другие службы, как указано в Резолюции 225 (ВКР-2000), пп. 5.389A, 5.389C, 5.389D, 5.389E PP и Рекомендациях МСЭ-R М.1073 и МСЭ-R М.1033.

Для того чтобы определить принципы и практическое использование спектра для систем IMT-2000, учитывается,

- с) что минимизация числа глобально гармонизированных планов размещения частот в полосах частот, определенных для IMT-2000 одной или несколькими конференциями, позволит понизить общую стоимость сетей и терминалов IMT-2000 за счет массового производства;
- d) что когда планы размещения частот не могут быть глобально гармонизированы, наличие общей полосы передачи базовой и/или подвижной станции упростило бы создание абонентского оборудования для глобального роуминга. Общая полоса передачи базовой станции, в частности, обеспечивает возможность вести радиовещательную передачу для путешествующих пользователей всей информации, необходимой для установления вызова;
- е) что при разработке планов размещения частот должны быть учтены возможные технологические ограничения (например, экономическая эффективность, размер и сложность терминалов, высокоскоростная/с низким энергопотреблением обработка цифрового сигнала и потребность в компактных аккумуляторах);
- f) что защитные полосы для систем IMT-2000 должны быть минимизированы во избежание непроизводительного использования спектра;
- g) что в Отчете МСЭ-R M.2031 Совместимость между нисходящими линиями WCDMA 1800 и восходящими линиями GSM 1900 рассматривается совместимость в соседних полосах на частоте 1850 МГц;
- h) что при разработке планов размещения частот должно учитываться современное и будущее состояние технологий (например, многорежимные/многополосные терминалы, улучшенная технология фильтрации, адаптивные антенны, улучшенные методы обработки сигнала, гибкая технология дуплекса и беспроводные соединения с периферийными устройствами);
- j) что в системе с частотным дуплексом между частотами передатчика и приемника должен существовать достаточный частотный разнос;
- к) что проведен ряд исследований совместимости в целях рассмотрения возможности сосуществования между службами и между системами в полосах частот, определенных для IMT-2000, например, для изучения возможности совместного использования частот и совместимости в смежной полосе частот со спутникового сегмента IMT-2000 в диапазонах 2 ГГц и 2,2 ГГц, как показано в Приложении 1.

Относительно аспектов трафика

1) что, как ожидается, трафик отдельного пользователя систем IMT-2000 будет динамически асимметричным, причем степень асимметрии в различных направлениях может быстро меняться в пределах коротких промежутков времени (мс);

- m) что, как ожидается, трафик в отдельной соте для систем IMT-2000 будет динамически асимметричным, причем направление асимметрии будет меняться в зависимости от суммарного трафика пользователей;
- n) что трафик в сети IMT-2000 может менять направление асимметрии на протяжении длительных периодов времени.

Относительно технологических аспектов

- о) что радиоинтерфейсы IMT-2000 подробно рассмотрены в Рекомендации MCЭ-R M.1457;
- р) что у IMT-2000 есть два режима работы с частотным дуплексом (FDD) и с временным дуплексом (TDD);
- q) что в Отчете МСЭ-R М.2030 и проекте нового Отчета МСЭ-R М.2045 рассматривается, соответственно, возможность сосуществования и методы подавления помех между технологиями радиоинтерфейсов TDD и FDD систем IMT-2000 в диапазоне частот 2500—2690 МГц, работающих в смежных полосах частот в одной географической области;
- что считается, что технология выбора/смены дуплексного разноса является методом, который может содействовать использованию нескольких полос частот для упрощения решений проблем всемирного охвата и конвергенции. Такая технология может еще больше повысить гибкость, которая позволит терминалам IMT-2000 поддерживать многие планы размещения частот;
- s) что Отчеты, указанные в п. s) раздела *учитывая*, выше, могут помочь определить средства для обеспечения сосуществования систем FDD и TDD, например определяя требования к защитным полосам.

Относительно других аспектов

t) что может существовать необходимость обеспечения работы терминалов IMT-2000 в самостоятельно предоставляемых применениях².

6 Рекоменлации

6.1 Планы размещения частот

6.1.1 Парные планы размещения частот в полосе 806–960 МГц

Рекомендованные планы размещения частот в этих полосах, учитывающие существующие системы подвижной связи общего пользования, следует использовать, как указано в таблице 1 и § 6.1.4.1.

Ожидается, что будут разработаны самостоятельно предоставляемые применения, дополняющие услуги, предоставляемые операторами корпоративным клиентам или частным пользователям на территории их офисов или мест проживания, которые будут работать самостоятельно или соединяться с другими сетями. Основными характеристиками самостоятельных применений, кроме малого радиуса их действия, будет отсутствие гарантии их доступности, поскольку они будут работать в спектре, используемом совместно с аналогичными пользователями. Примером может быть музей, в котором установлена система связи между персоналом и для проведения экскурсий и руководства в покупке сувениров для посетителей. Ожидается, что будут разработаны самостоятельные применения, работающие с малыми мощностями в режиме самокоординации.

ТАБЛИЦА 1	
Парные планы размещения частот в полосе 806-96	0 МГц

Планы размещения частот	Передатчик подвижной станции (МГц)	Центральный просвет ⁽¹⁾ (МГц)	Передатчик базовой станции (МГц)	Дуплексный разнос ⁽²⁾ (МГц)
A1	824–849	20	869–894	45
A2	880–915	10	925–960	45

ПРИМЕЧАНИЕ 1.- Из-за перекрытия полос частот передатчика базовой станции и передатчика подвижной станции и из-за различного использования в разных Районах полос частот 806-824~ М Γ ц, 849-869~ М Γ ц и 902-928~ М Γ ц, в ближайшем и среднесрочном будущем общего решения найдено не будет.

6.1.2 Планы размещения частот в полосе 1710–2200 М Γ ц 3

Рекомендованные планы размещения частот в этой полосе, учитывающие существующие системы подвижной связи общего пользования, следует использовать, как указано в таблице 2 и § 6.1.4.2.

ТАБЛИЦА 2 Планы размещения частот в полосе 1710–2200 МГц

Планы размещения частот	Передатчик подвижной станции (МГц)	Центральный просвет (МГц)	Передатчик базовой станции (МГц)	Дуплексный разнос (МГц)	Спаренный спектр (например для TDD) (МГц)
B1	1 920–1 980	130	2 110–2 170	190	1 880–1 920; 2 010–2 025
B2	1 710–1 785	20	1 805–1 880	95	Нет
В3	1 850–1 910	20	1 930–1 990	80	1 910–1 930
В4 (гармонизированный с В1 и В2)	1 710–1 785 1 920–1 980	20 130	1 805–1 880 2 110–2 170	95 190	1 900–1 920; 2 010–2 025
В5 (гармонизированный с В3 и участками В1 и В2)	1 850–1 910 1 710–1 770	20 340	1 930–1 990 2 110–2 170	80 400	1 910–1 930

⁽¹⁾ *Центральный просвет* – разделение по частоте между верхней границей нижней полосы частот и нижней границей верхней полосы частот в парных частотных назначениях FDD.

⁽²⁾ Дуплексный частотный разнос – разделение по частоте между контрольной точкой в нижней полосе частот и соответствующей точкой в верхней полосе частот в частотных назначениях FDD.

 $^{^{3}}$ Полоса 2025–2110 МГц в этот план размещения частот не входит.

Примечания к таблице 2:

ПРИМЕЧАНИЕ 1. – Администрации могут реализовать все эти планы размещения частот или их отдельные участки.

ПРИМЕЧАНИЕ 2. — В полосах частот 1710—2025 МГц и 2110—2200 МГц три базовых плана размещения частот (В1, В2 и В3) уже используются в сотовых системах подвижной связи общего пользования, включая ІМТ-2000. На основании этих трех планов размещения частот рекомендуются различные их комбинации, описанные в В4 и В5. План В1 и план В2 являются полностью взаимодополняющими, тогда как план В3 частично пересекается с планами В1 и В2.

Для стран, реализовавших план B1, план B4 обеспечивает возможность оптимизации использования спектра для работы в парных полосах IMT-2000.

Для стран, реализовавших план B3, план B1 может быть объединен с планом B2. Следовательно, для оптимизации использования спектра рекомендуется использовать B5:

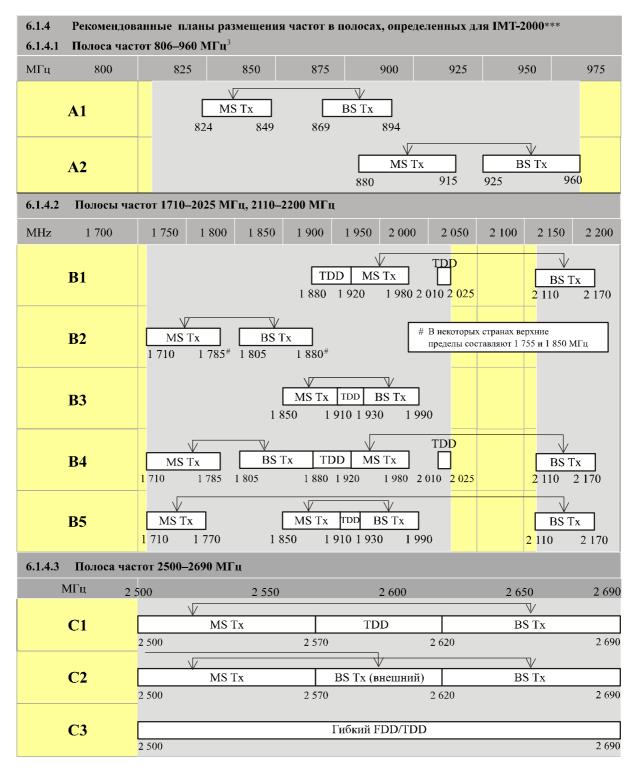
 План В5 позволяет добиться максимального использования спектра для IMT-2000 в тех странах, где реализован план В3, и где полоса 1770–1850 МГц не доступна на первоначальном этапе развертывания IMT-2000 в этой полосе частот.

ПРИМЕЧАНИЕ 3. – TDD может использоваться в непарных полосах, а также, при определенных условиях, в полосах восходящего направления парных планов размещения частот и/или в центральном просвете между парными полосами частот.

ПРИМЕЧАНИЕ 4. — Если в терминалах используется технология, позволяющая иметь возможность выбора/смены технологии дуплексного разноса в качестве наиболее эффективного способа управления использованием различных планов размещения частот, тот факт, что соседние страны могут выбрать план В5, никак не скажется на сложности терминала. Требуются дальнейшие исследования.

6.1.3 Планы размещения частот в полосе 2500–2690 МГц

Рекомендованные планы размещения частот в этой полосе, учитывающие существующие системы подвижной связи общего пользования, следует использовать, как указано в таблице 3 и § 6.1.4.3.


ТАБЛИЦА 3
Планы размещения частот в полосе 2500–2690 МГц (не включая спутниковый сегмент)

Планы размещения частот	Передатчик подвижной станции (МГц)	Центральный просвет (МГц)	Передатчик базовой станции (МГц)	Дуплексный разнос (МГц)	Использование Центрального просвета
C1	2 500–2 570	50	2 620–2 690	120	TDD
C2	2 500–2 570	50	2 620–2 690	120	FDD DL (внешний)
C3	Гибкий FDD/TDD				

ПРИМЕЧАНИЕ 1. – Администрации могут реализовать все эти планы размещения частот или их отдельные участки, учитывая другие службы, которым распределена эта полоса частот.

ПРИМЕЧАНИЕ 2. – В плане C1, для того чтобы содействовать использованию оборудования FDD, решения о защитных полосах частот, требуемых для обеспечения совместимости по соседней полосе на границах 2570 МГц и 2620 МГц, будут приняты на национальном уровне и будут использованы в полосе частот 2570–2620 МГц, и должны быть минимально необходимыми, на основе проекта нового Отчета МСЭ-R М.2045.

ПРИМЕЧАНИЕ 3. — В плане C3, администрации могут использовать полосу частот только для TDD или для каких-либо комбинаций TDD и FDD. Администрации могут использовать любой дуплексный разнос FDD и любое направление дуплексной передачи. Однако, когда администрации принимают решение об использовании смешанных каналов FDD/TDD с фиксированным дуплексным разносом для FDD, предпочтительными являются дуплексный разнос и направление дуплексной передачи, показанные в плане C1.

^{***} Администрации могут реализовать все эти планы размещения частот или их отдельные участки.

1036-01

6.2 Влияние асимметрии трафика

Рекомендуется, чтобы администрации и операторы в ходе присвоения спектра или реализации систем учитывали требования к асимметричности трафика.

В данном контексте асимметрия означает, что базовые объемы трафика в восходящем и нисходящем направлениях могут быть различными. Возможным последствием этого будет то, что объем ресурсов, требуемых в нисходящем направлении, может отличаться от объема ресурсов, требуемых в восходящем направлении. Оценки смешанного трафика описываются в Отчете МСЭ-R М.2023. Подходящие методы для поддержания асимметричного трафика описываются в Отчете МСЭ-R М.2038.

Отмечается, что асимметрия трафика может обеспечиваться при помощи различных методов, включая гибкое распределение слотов времени, различные форматы модуляции и различные схемы кодирования для восходящего и нисходящего направлений. При равных полосах частот в восходящем и нисходящем направлениях для парного режима FDD, или в режиме TDD, может быть обеспечена некоторая степень асимметрии трафика. Поскольку в настоящее время еще нет определенной информации о природе асимметрии трафика для будущего трафика подвижной связи, необходимо проявлять осторожность, принимая жесткие решения по присвоению спектра с учетом асимметрии трафика (например, решения о неравных частотных назначениях для восходящего и нисходящего направлений FDD), поскольку такие действия могут оказаться необратимыми.

6.3 Сегментация спектра

Рекомендуется, чтобы планы размещения частот не были бы сегментированы для различных радиоинтерфейсов или услуг IMT-2000, за исключением тех случаев, когда это необходимо по техническим и регуляторным причинам.

Рекомендуется, чтобы с целью поддержания гибкости развития, планы размещения частот были такими, чтобы частоты были доступны для использования как в режиме FDD, так и в режиме TDD, или в обоих режимах сразу, и чтобы спектр в парных полосах не был бы сегментирован между режимами FDD и TDD ,за исключением тех случаев, когда это необходимо по техническим и регуляторным причинам.

6.4 Дуплексные размещение и разнос

Рекомендуется, чтобы для полос всех частот системы IMT-2000, при работе в режиме FDD, сохраняли обычное направление дуплексной передачи, при котором мобильный терминал ведет передачу в нижнем участке полосы, а базовая станция ведет передачу в верхнем участке полосы. Исследования показывают, что такой вариант использования является предпочтительным, если учитывать необходимость совмещения с ПСС (см. Приложение 1) и с наземными службами, отличными от IMT-2000, разработку двухрежимных терминалов спутниковой/наземной связи, различие потерь распространения (приводящих к изменению срока работы аккумуляторов и/или размера соты), и влияние на глобальный роуминг.

В обычном направлении дуплексной передачи для наземных подвижных систем с FDD мобильный терминал ведет передачу в нижнем участке полосы, а базовая станция ведет передачу в верхнем участке полосы. Причина этого заключается в том, что показатели качества системы, как правило, ограничиваются бюджетом восходящей линии из-за ограниченной мощности передачи терминалов. Для полосы частот 2,6 ГГц смена направления дуплексной передачи изменит бюджет восходящей линии примерно на 1 дБ, что приведет к сокращению зоны охвата примерно на 10%.

Рекомендуется, чтобы у администраций, желающих использовать только часть частотных выделений для IMT-2000, способ размещения парных каналов⁴ соответствовал дуплексным разносам для полного плана размещения частот.

6.5 Доступность частот

Рекомендуется, чтобы администрации своевременно позаботились о доступности необходимых частот для развития системы IMT-2000.

⁴ Дуплексный частотный разнос каналов: разделение по частоте между несущей конкретного канала в нижней части полосы и несущей парного канала в верхней части полосы в плане размещения для режима FDD.

Приложение 1

Аспекты совместного использования частот для спутникового сегмента

Приведенный далее вывод сделан на основании исследований, выполненных для полос частот, определенных для IMT-2000 на BAKP-92 и для полосы частот 2500–2690 МГц (см. Отчет МСЭ-R M.2041).

В полосе ПСС на линии вверх, учитывая э.и.и.м., создаваемую наземными передатчиками ІМТ-2000 с большими углами места, и количество наземных станций ІМТ-2000, суммарные помехи от этого большого числа наземных станций ІМТ-2000 будут неприемлемы для спутниковых приемников ПСС.

Совместное использование частот в полосе ПСС на линии вниз может привести к уменьшению размера сот и снижению пропускной способности наземного сегмента IMT-2000.

В обеих полосах ПСС – на линии вверх и на линии вниз – помехи между подвижными земными станциями и наземными станциями IMT-2000 будут накладывать существенные ограничения на области обслуживания спутниковой и/или наземной службы и требовать сложных процедур координации.

По этим причинам совершенно очевидно, что работа наземного и спутникового сегментов IMT-2000 в совмещенной зоне покрытия и с совместным использованием частот неосуществима, если только не применяются такие методы, как использование соответствующей защитной полосы между спутниковым и наземным сегментами IMT-2000 для полосы частот 2500—2690 МГц, или иные методы смягчения помех.

Возможно, потребуются дальнейшие исследования в области внедрения наземного сегмента и дополняющего спутникового сегмента (гибридные системы).