**ITU**Публикации

Сектор радиосвязи

### Рекомендация МСЭ-R F.758-8 (02/2025)

Серия F: Фиксированная служба

Параметры системы и принципы разработки критериев совместного использования частот или совместимости цифровых систем фиксированной беспроводной связи фиксированной службы и систем других служб и других источников помех



#### Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

#### Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Резолюции МСЭ-R 1. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: <a href="https://www.itu.int/ITU-R/go/patents/en">https://www.itu.int/ITU-R/go/patents/en</a>, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

|       | Серии Рекомендаций МСЭ-R                                                                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|
|       | (Представлены также в онлайновой форме по адресу: <a href="https://www.itu.int/publ/R-REC/ru">https://www.itu.int/publ/R-REC/ru</a> .) |
| Серия | Название                                                                                                                               |
| во    | Спутниковое радиовещание                                                                                                               |
| BR    | Запись для производства, архивирования и воспроизведения; пленки для телевидения                                                       |
| BS    | Радиовещательная служба (звуковая)                                                                                                     |
| BT    | Радиовещательная служба (телевизионная)                                                                                                |
| F     | Фиксированная служба                                                                                                                   |
| M     | Подвижные службы, служба радиоопределения, любительская служба и относящиеся к ним спутниковые службы                                  |
| P     | Распространение радиоволн                                                                                                              |
| RA    | Радиоастрономия                                                                                                                        |
| RS    | Системы дистанционного зондирования                                                                                                    |
| S     | Фиксированная спутниковая служба                                                                                                       |
| SA    | Космические применения и метеорология                                                                                                  |
| SF    | Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы                  |
| SM    | Управление использованием спектра                                                                                                      |
| SNG   | Спутниковый сбор новостей                                                                                                              |
| TF    | Передача сигналов времени и эталонных частот                                                                                           |
| V     | Словарь и связанные с ним вопросы                                                                                                      |

**Примечание**. — Настоящая Рекомендация МСЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции МСЭ-R 1.

Электронная публикация Женева, 2025 г.

#### © ITU 2025

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

#### РЕКОМЕНДАЦИЯ МСЭ-R F.758-8

# Параметры системы и принципы разработки критериев совместного использования частот или совместимости цифровых систем фиксированной беспроводной связи фиксированной службы и систем других служб и других источников помех

(Вопрос МСЭ-R 252/5)

(1992-1997-2000-2003-2005-2012-2015-2019-2025)

#### Сфера применения

В настоящей Рекомендации изложены принципы разработки критериев совместного использования частот для цифровых систем в фиксированной службе. В основном приведены соображения о способах надлежащего планирования ухудшения показателей качества и готовности, вызываемых влиянием помех, в рамках допустимых показателей согласно Рекомендации МСЭ-R F.1094, при различных условиях воздействия помех. В рассматриваемой Рекомендации также содержится информация о типовых технических характеристиках и системных параметрах совместного использования частот для цифровых фиксированных беспроводных систем в фиксированной службе в целях применения в исследованиях совместного использования частот выше 30 МГц. В тех случаях, когда в процессе анализа возникают вопросы, касающиеся совместного использования частот, за дополнительной информацией о конкретных фиксированных системах беспроводной связи, развернутых администрациями, можно обратиться к Отчету МСЭ-R F.2108.

#### Ключевые слова

Фиксированная служба, критерии совместного использования частот, совместимость

#### Сокращения

| -        |                                         |          |                                                   |
|----------|-----------------------------------------|----------|---------------------------------------------------|
| AP       | Availability performance                |          | Показатель готовности                             |
| APO      | Availability performance objective      |          | Показатель качества по готовности                 |
| ATPC     | Automatic transmit power control        |          | Автоматическое регулирование мощности передатчика |
| BER      | Bit error ratio                         |          | Коэффициент ошибок по битам                       |
| e.i.r.p. | Equivalent isotropically radiated power | э.и.и.м. | Эквивалентная изотропно излучаемая мощность       |
| EP       | Error performance                       |          | Качество по ошибкам                               |
| EPO      | Error performance objective             |          | Показатель качества по ошибкам                    |
| FS       | Fixed service                           | ΦС       | Фиксированная служба                              |
| FSK      | Frequency shift keying                  |          | Частотная манипуляция                             |
| FWS      | Fixed wireless system                   | ФБС      | Система фиксированной беспроводной связи          |
| NF       | Noise figure                            |          | Коэффициент шума                                  |
| PMP      | Point-to-multipoint                     |          | Связь пункта с несколькими пунктами               |
| PP       | Point-to-point                          |          | Связь пункта с пунктом                            |
| QAM      | Quadrature amplitude modulation         |          | Квадратурная амплитудная модуляция                |
| QPSK     | Quaternary phase shift keying           |          | Четырехпозиционная фазовая манипуляция            |

#### Соответствующие Рекомендации и Отчеты МСЭ

| соответствующие текомендаци | in a Official Med                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Рекомендация МСЭ-R P.581    | Концепция "наихудшего месяца"                                                                                                                                                                                                                                                                                                                                                          |
| Recommendation ITU-R F.634  | Error performance objectives for real digital radio-relay links forming part of the high-grade portion of international digital connections at a bit rate below the primary rate within an integrated services digital network                                                                                                                                                         |
| Recommendation ITU-R F.695  | Availability objectives for real digital radio-relay links forming part of a high-grade circuit within an integrated services digital network                                                                                                                                                                                                                                          |
| Recommendation ITU-R F.696  | Error performance and availability objectives for hypothetical reference digital sections forming part or all of the medium-grade portion of an ISDN connection at a bit rate below the primary rate utilizing digital radio-relay systems                                                                                                                                             |
| Recommendation ITU-R F.697  | Error performance and availability objectives for the local-grade portion at each end of an ISDN connection at a bit rate below the primary rate utilizing digital radio-relay systems                                                                                                                                                                                                 |
| Рекомендация МСЭ-R F.699    | Эталонные диаграммы направленности антенн фиксированных беспроводных систем для использования при изучении вопросов координации и оценке помех в диапазоне частот от $100~\mathrm{M}\Gamma$ ц до примерно $70~\Gamma\Gamma$ ц                                                                                                                                                          |
| Recommendation ITU-R SF.766 | Methods for determining the effects of interference on the performance and the availability of terrestrial radio-relay systems and systems in the fixed-satellite service                                                                                                                                                                                                              |
| Рекомендация МСЭ-R F.1094   | Максимально допустимое ухудшение показателей качества по ошибкам и готовности цифровых фиксированных беспроводных систем (ФБС), возникающее вследствие радиопомех от излучений и радиации других источников                                                                                                                                                                            |
| Recommendation ITU-R F.1101 | Characteristics of digital fixed wireless systems below about 17 GHz                                                                                                                                                                                                                                                                                                                   |
| Рекомендация МСЭ-R F.1108   | Определение критериев защиты приемников фиксированной службы от излучений космических станций, работающих на негеостационарных орбитах в совместно используемых полосах частот                                                                                                                                                                                                         |
| Рекомендация МСЭ-R F.1245   | Математическая модель усредненных и родственных диаграмм направленности излучения антенн систем фиксированной беспроводной связи для связи пункта с пунктом, предназначенная для использования при оценке помех в диапазоне частот от 1 ГГц до 86 ГГц                                                                                                                                  |
| Рекомендация МСЭ-R F.1336   | Эталонные диаграммы направленности всенаправленных, секторных и других антенн для фиксированной и подвижной служб в целях применения в исследованиях совместного использования частот в диапазоне от 400 МГц до приблизительно 70 ГГц                                                                                                                                                  |
| Рекомендация МСЭ-R SM.1448  | Определение координационной зоны вокруг земной станции в полосах частот между 100 МГц и 105 ГГц                                                                                                                                                                                                                                                                                        |
| Recommendation ITU-R F.1494 | Interference criteria to protect the fixed service from time varying aggregate interference from other services sharing the 10.7-12.75 GHz band on a co-primary basis                                                                                                                                                                                                                  |
| Рекомендация МСЭ-R F.1495   | Критерии помех для защиты фиксированной службы от изменяющихся во времени совокупных помех со стороны других служб радиосвязи, совместно использующих частоты в полосе 17,7–19,3 ГГц на равной первичной основе                                                                                                                                                                        |
| Recommendation ITU-R F.1565 | Ухудшение эксплуатационных показателей реальных цифровых систем фиксированной беспроводной связи, используемых на международных и внутренних участках гипотетического эталонного тракта длиной 27 500 км на основной и более высокой скорости, вследствие помех от других служб, совместно использующих те же полосы частот на равной первичной основе, или помех от других источников |

| Recommendation ITU-R F.1606 | Interference criteria to protect fixed wireless systems from time varying aggregate interference produced by non-geostationary satellites operating in other services sharing the 37-40 GHz and 40.5-42.5 GHz bands on a co-primary basis |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Рекомендация МСЭ-R SF.1650  | Минимальное расстояние от базовой линии, за пределами которого движущиеся земные станции, размещенные на борту судна, не причиняют неприемлемых помех наземной службе в полосах частот 5925–6425 МГц и 14–14,5 ГГц                        |
| Рекомендация МСЭ-R F.1668   | Показатели качества по ошибкам для реальных цифровых фиксированных беспроводных линий, используемых на гипотетических эталонных трактах и соединениях протяженностью 27 500 км                                                            |
| Рекомендация МСЭ-R F.1669   | Критерии помех для фиксированных беспроводных систем, действующих в полосах 37–40 ГГц и 40,5–42,5 ГГц, в отношении спутников на геостационарной орбите                                                                                    |
| Рекомендация МСЭ-R F.1703   | Показатели готовности для реальных цифровых радиорелейных линий, используемых на гипотетических эталонных трактах и соединениях длиной 27 500 км                                                                                          |
| Рекомендация МСЭ-R F.2086   | Сценарии развертывания систем связи пункта с пунктом фиксированной службы                                                                                                                                                                 |
| Report ITU-R F.2108         | Fixed service system parameters for different frequency bands                                                                                                                                                                             |
| Recommendation ITU-T G.826  | End-to-end error performance parameters and objectives for international, constant bit-rate digital paths and connections                                                                                                                 |
| Recommendation ITU-T G.827  | Availability performance parameters and objectives for end-to-end international constant bit-rate digital paths                                                                                                                           |
| Recommendation ITU-T G.828  | Error performance parameters and objectives for international, constant bit-rate synchronous digital paths                                                                                                                                |
| Recommendation ITU-T G.829  | Error performance events for SDH multiplex and regenerator sections                                                                                                                                                                       |

#### Ассамблея радиосвязи МСЭ,

учитывая,

- a) что необходимо установить критерии совместного использования частот фиксированной ( $\Phi$ C) и другими службами, а также их соответствующими применениями в полосах частот, распределенных этим службам на равных правах;
- b) что совместным использованием частот можно управлять путем определения допустимых значений ухудшения качества и готовности фиксированных беспроводных систем (ФБС), вызванного помехами, создаваемыми другими службами радиосвязи, которым распределены на равных правах те же полосы частот, что и ФС;
- c) что в целях обеспечения совместимости  $\Phi C$  с системами других служб, включая их соответствующие применения, имеющие распределение в той же полосе частот на вторичной основе, необходимо также принимать во внимание нежелательные излучения любых других систем служб, работающих вне рассматриваемой полосы частот, которые попадают в полосу, распределенную фиксированной службе на первичной основе; а также излучения от источников, отличных от радиослужб;
- *d)* что необходимо разработать принципы для распределения ухудшения качества и готовности по всем элементам ФБС и между каждым источником помех;
- *e)* что технические характеристики каждой системы обычно определяются для разработки критериев помех, соответствующих допустимому ухудшению качества и готовности ФБС;
- f) что ухудшение качества и готовности может быть результатом воздействия как долговременных, так и кратковременных помех, а следовательно, должны быть разработаны критерии помех для обоих этих случаев;

- *g)* что наличие базовой методики разработки критериев совместного использования частот для ФС может быть полезным и для других исследовательских комиссий МСЭ-R;
- *h)* что характеристики цифровых и аналоговых систем фиксированной связи, основанные на предыдущих версиях данной Рекомендации, приведены в Отчете МСЭ-R F.2108,

#### признавая,

- a) что в Рекомендации МСЭ-R F.1094 приведен общий принцип распределения показателей ухудшения качества и готовности ФС, связанного с помехами, создаваемыми другими службами или источниками;
- b) что в Рекомендации МСЭ-R F.2086 приводится информация о характеристиках развертывания, которые могут применяться в исследованиях совместного использования частот системами связи пункта с пунктом ФС и другими системами/применениями ФС и других служб или исследованиях помех между ними при отсутствии более точной информации,

#### рекомендует,

- 1 чтобы разработка критериев совместного использования частот и оценка условий воздействия помех между ФС и другими службами и другими источниками помех проводилась в соответствии с принципами, описанными в Приложении 1;
- 2 чтобы информация, приведенная в Приложении 2, рассматривалась как руководство по техническим характеристикам и типовым параметрам цифровых фиксированных беспроводных систем фиксированной службы (ФС), которые также должны рассматриваться при разработке критериев совместного использования частот с другими службами;
- 3 что параметры систем в таблицах Приложения 3 могут использоваться в качестве дополнительной информации в отношении полос частот, для которых в Приложении 2 отсутствуют типовые параметры.

#### СОДЕРЖАНИЕ

|      |        |                                                                                                             | Cmp. |
|------|--------|-------------------------------------------------------------------------------------------------------------|------|
| Прил |        | 1 – Основные принципы разработки критериев совместного использования                                        | 6    |
| 1    | Общие  | е показатели качества                                                                                       | 6    |
|      | 1.1    | Показатели качества по ошибкам и готовности систем                                                          | 6    |
| 2    | Раздел | ение показателей качества и готовности                                                                      | 7    |
|      | 2.1    | Разделение показателей качества по ошибкам и готовности участка                                             | 7    |
|      | 2.2    | Разделение показателей ухудшения качества и готовности по различным службам                                 | 8    |
| 3    | Харак  | геристики помех                                                                                             | 8    |
| 4    | _      | ажения по допустимым ухудшениям качества/готовности вследствие влияния и по соответствующим критериям помех | 9    |
|      | 4.1    | Долговременные помехи                                                                                       | 12   |
|      | 4.2    | Кратковременные помехи                                                                                      | 15   |

| Характеристики передатчика         2.1       Параметры оборудования         2.2       Статистическое распределение по территории         Характеристики приемника       3.1         3.2       Допустимый уровень помех         Таблицы параметров системы       4.1         4.1       Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R         4.2       Формат модуляции         4.3       Разнос каналов и ширина полосы шума приемника         4.4       Диапазон выходной мощности Тх (дБВт)         4.5       Диапазон плотности выходной мощности Тх (дБВт/МГц)         4.6       Диапазон потерь в фидере/мультиплексоре (дБ) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| использования частот/совместимости Введение  Характеристики передатчика                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Характеристики передатчика         2.1 Параметры оборудования         2.2 Статистическое распределение по территории         Характеристики приемника         3.1 Параметры оборудования         3.2 Допустимый уровень помех         Таблицы параметров системы         4.1 Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R         4.2 Формат модуляции         4.3 Разнос каналов и ширина полосы шума приемника         4.4 Диапазон выходной мощности Тх (дБВт)         4.5 Диапазон плотности выходной мощности Тх (дБВт/МГц)         4.6 Диапазон потерь в фидере/мультиплексоре (дБ)                                        |
| 2.1       Параметры оборудования         2.2       Статистическое распределение по территории         Характеристики приемника       3.1         3.1       Параметры оборудования         3.2       Допустимый уровень помех         4.1       Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R         4.2       Формат модуляции         4.3       Разнос каналов и ширина полосы шума приемника         4.4       Диапазон выходной мощности Тх (дБВт)         4.5       Диапазон плотности выходной мощности Тх (дБВт/МГц)         4.6       Диапазон потерь в фидере/мультиплексоре (дБ)                                        |
| 2.2       Статистическое распределение по территории         Характеристики приемника         3.1       Параметры оборудования         3.2       Допустимый уровень помех         Таблицы параметров системы       4.1         4.1       Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R         4.2       Формат модуляции         4.3       Разнос каналов и ширина полосы шума приемника         4.4       Диапазон выходной мощности Тх (дБВт)         4.5       Диапазон плотности выходной мощности Тх (дБВт/МГц)         4.6       Диапазон потерь в фидере/мультиплексоре (дБ)                                              |
| Характеристики приемника         3.1       Параметры оборудования         3.2       Допустимый уровень помех         Таблицы параметров системы       —         4.1       Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R         4.2       Формат модуляции         4.3       Разнос каналов и ширина полосы шума приемника         4.4       Диапазон выходной мощности Тх (дБВт)         4.5       Диапазон плотности выходной мощности Тх (дБВт/МГц)         4.6       Диапазон потерь в фидере/мультиплексоре (дБ)                                                                                                             |
| 3.1       Параметры оборудования                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.2 Допустимый уровень помех                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Таблицы параметров системы  4.1 Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R  4.2 Формат модуляции  4.3 Разнос каналов и ширина полосы шума приемника.  4.4 Диапазон выходной мощности Тх (дБВт)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>4.1 Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R</li> <li>4.2 Формат модуляции</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>4.2 Формат модуляции</li> <li>4.3 Разнос каналов и ширина полосы шума приемника</li> <li>4.4 Диапазон выходной мощности Тх (дБВт)</li> <li>4.5 Диапазон плотности выходной мощности Тх (дБВт/МГц)</li> <li>4.6 Диапазон потерь в фидере/мультиплексоре (дБ)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>4.3 Разнос каналов и ширина полосы шума приемника.</li> <li>4.4 Диапазон выходной мощности Тх (дБВт).</li> <li>4.5 Диапазон плотности выходной мощности Тх (дБВт/МГц).</li> <li>4.6 Диапазон потерь в фидере/мультиплексоре (дБ).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>4.4 Диапазон выходной мощности Тх (дБВт)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>4.5 Диапазон плотности выходной мощности Тх (дБВт/МГц)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.6 Диапазон потерь в фидере/мультиплексоре (дБ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 47 Лианазон коэффициента усиления антенны (пБи) (связь пункта с пунктом) иль                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| тип антенны и диапазон коэффициента усиления (дБи) (связь пункта о несколькими пунктами)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.8 Диапазон значений э.и.и.м. (дБВт)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.9 Диапазон плотности э.и.и.м. (дБВт/МГц)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.10 Типичный коэффициент шума приемника (дБ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.11 Типичная плотность мощности шума приемника (дБВт/МГц)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.12 Нормированный входной уровень Rx для BER 1 $\times$ 10 <sup>-6</sup> (дБВт/МГц)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.13 Номинальная плотность мощности долговременной помехи (дБВт/МГц)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.14 Дополнительная информация (номинальный входной уровень Rx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ірилагаемый документ 1 к Приложению 2 – Примеры исследований статистического распределения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Гриложение 3 – Другие конкретные параметры систем ФС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Приложение 1

### Основные принципы разработки критериев совместного использования частот

#### 1 Общие показатели качества

Одна из задач проектировщика систем радиосвязи состоит в разработке и реализации сети передачи, в которой обеспечиваются показатели качества, заложенные в документах МСЭ-Т и МСЭ-R. Поэтому с учетом все возрастающего использования радиоспектра весьма важно, чтобы реальные системы удовлетворяли соответствующим проектным требованиям. Имеется целый ряд Рекомендаций МСЭ-R серии F, касающихся общих показателей качества для различных типов линий.

#### 1.1 Показатели качества по ощибкам и готовности систем

#### 1.1.1 Ссылки на Рекомендации МСЭ-Т и МСЭ-R

Показатели качества по ошибкам для реальных цифровых линий фиксированной беспроводной связи, используемых на гипотетических эталонных цепях и соединениях длиной 27 500 км, приведены в Рекомендации МСЭ-R F.1668, основанной на Рекомендациях МСЭ-Т G.826, МСЭ-Т G.828 и МСЭ-Т G.829. Это — единственная Рекомендация, в которой определяются показатели качества по ошибкам для всех реальных цифровых фиксированных беспроводных линий связи.

ПРИМЕЧАНИЕ 1. – Применимость более ранних Рекомендаций МСЭ-R F.634, МСЭ-R F.696 и МСЭ-R F.697 ограничивается системами, разработанными до утверждения Рекомендации МСЭ-T G.826 (декабрь 2002 года).

Показатели готовности для реальных цифровых линий фиксированной беспроводной связи, используемых на гипотетических эталонных цепях и соединениях длиной 27 500 км, приведены в Рекомендации МСЭ-R F.1703, основанной на Рекомендации МСЭ-Т G.827. Это — единственная Рекомендация, в которой определяются показатели готовности для всех реальных цифровых фиксированных беспроводных линий связи.

ПРИМЕЧАНИЕ 2. – Применимость более ранних Рекомендаций МСЭ-R F.695, МСЭ-R F.696 и МСЭ-R F.697 ограничивается системами, разработанными до утверждения Рекомендации МСЭ-R F.1703 (январь 2005 года).

Большинство новых применений предназначено для систем, в которых используется один или несколько пролетов (например, для транзитной сети сотовой связи или для соединения удаленных областей с сетями столичного региона). Тем не менее защита от помех в каждом пролете должна основываться на упомянутых выше Рекомендациях.

#### 1.1.2 Временная основа для проведения оценки

#### 1.1.2.1 Общие принципы

Оценка готовности производится на временной основе в один год, установленной МСЭ-Т (G.827), и не зависит от действующей транспортной среды.

Оценка качества по ошибкам производится на временной основе в один месяц, установленной МСЭ-Т (G.826), и не зависит от действующей транспортной среды. В частности, поскольку условия распространения радиоволн характеризуются значительной изменчивостью, зависящей от времени года и климата, то предполагается, что соответствующие показатели должны соблюдаться в течение худшего месяца (эта концепция подробно рассматривается в Рекомендации МСЭ-R P.581).

При необходимости, в целях прогнозирования может быть выполнено преобразование статистических данных за год в данные за худший месяц, которое рассматривается в Рекомендации МСЭ-R P.841.

В том случае, если линии радиосвязи подвергаются воздействию помех от какого-либо источника, в общих оценках качества по ошибкам и готовности дополнительно учитывается влияние помех в пределах соответствующей временной основы, упомянутой выше.

Следует отметить, что понятия "долговременной" и "кратковременной" помехи (см. пункты 4.1 и 4.2 настоящего Приложения 1) напрямую не связаны с "месячной" или "годовой" временными основами. Оба вида помех, в зависимости от их изменчивости во времени и по уровню, могут, в принципе, влиять на "показатели качества по ошибкам" (на месячной основе), но только помеха длительностью более 10 последовательных секунд может повлиять на "готовность" (на годовой основе) систем ФС.

Последнее соображение относится, как правило, к долговременным помехам, но в особых случаях речь может идти также о кратковременных помехах.

#### 1.1.2.2 Практические применения

В соответствии с приведенными выше принципами, в случае возникновения вопроса о совместном использовании частот или совместимости с системами  $\Phi$ С, необходимо проводить различные исследования по раздельной оценке влияния помех на готовность  $\Phi$ С (на годовой основе) и качество по ошибкам  $\Phi$ С (на месячной основе).

Однако на практике бывают случаи, когда проведение обоих видов исследований не является необходимым, так как предполагается естественное наличие желательных и нежелательных трасс.

В частности, когда на объект ФС воздействует постоянная помеха, (например, от космической станции на геостационарной орбите), как правило, предполагается, что допустимый уровень помехи должен быть достаточно низким для того, чтобы не оказывать воздействия на пороговое значение готовности системы ФС на годовой основе. В этом случае, при обеспечении надлежащего уровня ухудшения готовности ФС, как правило, предполагается, что любое связанное с этим ухудшение "качества по ошибкам" будет находиться в допустимых пределах (в любом месяце), и никаких специальных исследований не потребуется.

Напротив если помеха, влияющая на объект воздействия ФС, относительно быстро изменяется (например, от космической станции на негеостационарной орбите), то, как правило, предполагается, что в связи с некоррелированными желательными и нежелательными трассами допустимый уровень помех может быть выше, и таким образом, ухудшение "качества по ошибкам" будет преобладать над возможным ухудшением показателя "готовности". В этом случае исследование ухудшения "качества по ошибкам" должно проводиться на основе "худшего месяца" (см. примеры, приведенные в Рекомендациях МСЭ-R F.1108 и МСЭ-R F.1495).

В принципе предполагается, что когда изменчивость помехи уменьшается (квазистатические состояния), может существовать порог скорости, при котором ухудшения как "готовности", так и "качества по ошибкам" подвергаются воздействию в равной степени. В подобных случаях следует проводить специальные исследования для обоих вариантов на соответствующей каждому из них временной основе.

#### 2 Разделение показателей качества и готовности

В предыдущем разделе рассматривались общие показатели качества для цифровых эталонных соединений. Однако на практике существует большое количество потенциальных источников помех, вызывающих ухудшение показателей качества систем фиксированной беспроводной связи. Для того чтобы перейти к какому-либо практическому методу планирования, необходимо распределить общие показатели качества между отдельными участками всех гипотетических эталонных соединений (ГЭС) и гипотетических эталонных цепей (ГЭЦ). Затем в пределах того или иного участка показатели качества разделяются пропорционально между различными источниками помех.

#### 2.1 Разделение показателей качества по ошибкам и готовности участка

Данная проблема рассмотрена в Рекомендации МСЭ-R F.1094. Допустимое ухудшение показателей качества подразделяется на следующие компоненты: X% — доля, вносимая ФС, Y% — ухудшение из-за совместного использования частот, распределенных на первичной основе, и Z% — доля, приходящаяся на все остальные источники помех (следует отметить, что X% + Y% + Z% = 100%), при этом X, Y и Z обычно равны 89, 10 и 1%, соответственно. Возможно дальнейшее разделение

допустимого значения X% в соответствии с местными условиями: это должно быть осуществлено таким образом, чтобы обеспечивать соответствие с качеством обслуживания (см. пункт 4.1.3).

Следует особо отметить, что источник помех (например, передатчик Тх) может оказывать влияние на несколько пролетов системы.

#### 2.2 Разделение показателей ухудшения качества и готовности по различным службам

В процессе определения критериев совместного использования частот с другими службами, работающими на равной первичной основе, может оказаться необходимым рассмотреть разделение показателей качества по ошибкам (ЕРО) и показателей качества по готовности (АРО) для кратковременных и долговременных помех (см. вводную часть раздела 4). Кроме того, следует учитывать следующие пункты:

- а) Для полосы частот, совместно используемой ФС и одной из служб радиосвязи на первичной основе, ухудшение качества/готовности Y1% ФС, вызываемое помехами от других служб, не должно превышать 10% от величины показателя согласно Рекомендации МСЭ-R F.1094.
- b) После того как установлены критерии совместного использования частот с первой службой, работающей на равной первичной основе, ухудшение качества/готовности Y2% ФС, вызванное помехами от другой службы на равной первичной основе, работающей в той же полосе частот, может быть вычислено следующим образом:
  - среда с воздействием множества помех, создаваемых обеими службами, должна быть тщательно изучена, особенно для случая, когда воздействие помех приводит к допустимому предельному значению Y1% и одновременно к приему дополнительных мешающих сигналов от второй службы на равной первичной основе;
  - затем можно вычислить предельное значение *Y*2 с помощью типовой модели помех для ФС и второй службы на равной первичной основе, учитывая также потенциальное влияние первой службы на равной первичной основе в данной модели.

#### 3 Характеристики помех

Необходимо обладать информацией об уровнях помех от других служб, которые в определенной степени могут ухудшить показатели качества системы. Эта задача упростилась бы, если бы при содействии других исследовательских комиссий была составлена таблица, содержащая информацию о характеристиках излучений.

Должны учитываться две категории помех:

- в исследованиях совместного использования частот: помехи, создаваемые службами, совместно использующими ту же полосу частот на первичной основе; эти помехи, вероятнее всего, будут находиться в полосе пропускания приемника (Rx) в результате воздействия либо непрерывного, либо импульсного излучения при цифровой модуляции. По данному вопросу можно сделать ссылки на существующие тексты в Рекомендациях МСЭ-R серий F и SF (например, Рекомендация МСЭ-R SF.766);
- в исследованиях совместимости: излучения от систем, отличных от тех, которые совместно используют ту же полосу частот на первичной основе; эти помехи могут быть многочисленными и разнообразными, вызываться непрерывными или импульсными и/или дискретными излучениями, и при рассмотрении могут быть приравнены к побочным излучениям. Такого рода излучения могут вызываться системами/применениями, работающими в той же полосе частот на вторичной основе, а также нежелательными излучениями от систем, работающих в других полосах частот.

В конечном счете при содействии других исследовательских комиссий по радиосвязи можно подготовить еще одну таблицу, в которой сравнивались бы уровни помех или гауссова шума, необходимые для того, чтобы вызвать определенное ухудшение показателей качества канала.

### 4 Соображения по допустимым ухудшениям качества/готовности вследствие влияния помех и по соответствующим критериям помех

Методы, характеризующие уровни помех, создаваемых наземным системам фиксированной беспроводной связи (ФБС), включают методы учета плотности потока мощности (п.п.м.), уровня мощности на входе антенны или уровня мощности на входе приемника. Следует отметить, что все эти методы используются в Рекомендациях МСЭ-R серий F и SF.

Как правило, мощность сигнала, принимаемого от источника помех, непостоянна, и изменяется в связи с изменяющимися условиями распространения трассы или перемещением источника помехи. Что касается условий распространения, то наибольшее значение имеют волноводное распространение и тропосферное рассеяние. Условия распространения, включая замирание вследствие многолучевого распространения, замирание в дожде и дифракционное замирание, также могут вызывать изменения принимаемой мощности полезного сигнала (замирание в системе), в связи с чем система должна обладать надлежащим запасом на замирания. Изменения принимаемой мощности полезного и мешающего сигналов могут быть или не быть коррелированными в зависимости от полосы частот и расположения источника помех.

В целях упрощения анализа помех отдельно рассматриваются кратковременные помехи, причем данный термин используется для описания наибольших уровней мощности помехи, возникающих в течение менее чем 1 процента времени, и долговременные помехи, к которым относятся остальные участки распределения мощности помех.

Когда основной сигнал затухает, время, в течение которого не соблюдается пороговое значение качества, в процентном отношении немного увеличивается в связи с наличием мощности помехи при замирании сигнала вблизи порогового значения. При рассмотрении помехи в данных условиях применяется термин "долговременная помеха". Долговременная помеха вызывает ухудшение качества по ошибкам и готовности системы за счет снижения запаса на замирания, который служит для защиты систем связи фиксированной службы от замирания. В исследованиях, посвященных совместному использованию частот и совместимости, долговременная помеха обычно характеризуется как мощность помехи на входе приемника, которая превышается в течение 20% времени. Данный уровень мощности используется в таблицах 2, 3 и 4 в пунктах 4.1.1 и 4.1.2. Проценты времени, применяемые к критериям защиты, см. в пункте 1.1.2.

Кратковременную помеху необходимо учитывать отдельно, так как мощность помехи может быть достаточно высока для создания ухудшения даже в том случае, если полезный сигнал не затухает. Такого рода помехи, как правило, возникают достаточно редко, и в тех случаях, когда небольшая длительность помехи является приемлемой. Критерий кратковременной помехи устанавливается на основе мощности помехи, требуемой для того, чтобы вызвать определенный дефект качества по ошибкам (такой как секунда с ошибкой) в том случае, если полезный сигнал не является затухающим. Данный подход применяется в Приложении 7 Регламента радиосвязи и Рекомендациях МСЭ-R SM.1448, МСЭ-R F.1494, МСЭ-R F.1495, МСЭ-R F.1606, МСЭ-R F.1669 и МСЭ-R SF.1650.

В связи с тем что допустимые дефекты качества по ошибкам могут возникать лишь в относительные интервалы времени, намного меньшие, чем 1% времени, и если при этом должны соблюдаться показатели качества по ошибкам, при изучении кратковременных помех необходимо точно знать мощность помехи, которая превышается в относительные интервалы времени, намного меньшие, чем 1 процент. Критерий помехи для заданного дефекта качества по ошибкам определяется уровнем мощности (относительно шума приемника) и процентом времени, характерным для данного дефекта.

Как показывают исследования, посвященные совместному использованию частот и совместимости, в тех полосах частот, где замирание вследствие многолучевого распространения является преобладающим фактором ухудшения условий распространения сигналов для приемников ФС (главным образом в полосах частот ниже примерно 15 ГГц), замирания на трассах распространения полезного сигнала и помех не коррелируются между собой. Для этих условий в Рекомендации МСЭ-R F.1108 представлен метод частичного ухудшения качества (FDP), согласно которому целесообразно использовать среднюю величину мощности помехи в качестве критического значения мощности долговременной помехи. Однако в приведенном расчете при определении средней мощности следует исключать те периоды времени, в которые уровни мощности помехи превышают предельное значение,

используемое в качестве критерия кратковременных помех. (В Рекомендации МСЭ-R F.1108 приведен соответствующий пример, применимый к НГСО.)

В тех полосах частот, где доминирующим фактором является дождь, применение метода FDP при рассмотрении долговременных помех нецелесообразно по двум причинам: 1) распределение замираний полезного сигнала не должно зависеть от распределения принимаемой мошности помех, так что их совместная плотность распределения может быть представлена как произведение отдельных плотностей распределения; 2) процент времени, в течение которого глубина замирания полезного сигнала превышается, должен быть уменьшен в 10 раз на 10 дБ увеличения глубины замирания. Такая характеристика замирания вследствие многолучевого распространения отмечается в Рекомендации MCЭ-R P.530. Считается, что для этих полос частот достаточно обеспечить, чтобы выполнялись все требования к ухудшению качества по ошибкам и готовности, относящиеся к долговременным помехам, используя уровень изменяемой во времени помехи, представляющий определение 20% времени в качестве критерия долговременной помехи, а также, чтобы распределение мощности помех отвечало критериям ухудшения качества по ошибкам, разработанным для кратковременных помех. Уровни мощности помехи в диапазоне значений, относящихся к процентам времени, заданным в качестве критериев кратковременных помех (< 1% времени) и долговременных помех (> 20% времени), могут быть вычислены для каждого случая отдельно, но в подобных обстоятельствах следует также учитывать наличие уровней мощности помех, которые ниже ожидаемых уровней для 20% времени.

Если речь идет об импульсных или дискретных излучениях, создающих помехи в течение длительного времени, то их влияние на системы связи фиксированной службы должно определяться на основе механизма взаимодействия в отношении помех, а не по характеристикам рабочего цикла мешающего сигнала. (Например, излучение РЛС с рабочим циклом менее 1% должно оцениваться как долговременная и/или кратковременная помеха, в зависимости от ситуации.)

Количество и значения критериев, необходимых для защиты системы фиксированной беспроводной связи от помех, зависит от характеристик системы фиксированной беспроводной связи и источника помех. Для помех, изменяющихся во времени, единственного критерия помехи может оказаться недостаточно; в некоторых Рекомендациях определены два или три значения, соответствующие долговременным (20% времени) и кратковременным (< 1% времени) помехам.

Следует отметить, что в связи с жесткими требованиями к показателям качества по ошибкам помехозащищенность ухудшается на очень короткое время.

Количество критериев кратковременных помех соответствует количеству критериев качества по ошибкам, отвечающих требованиям сценария совместного использования частот. Точное значение процента времени, связанного с критерием кратковременной помехи, соответствует показателю качества рассматриваемой системы; более подробная информация по выполнению показателей кратковременных помех содержится в Рекомендациях МСЭ-R F.1494, МСЭ-R F.1495 и МСЭ-R F.1606, в каждой из которых рассматриваются критерии защиты, применимые к изменяющимся во времени помехам.

В таблице 1 приведен список справочных документов, в которых затрагиваются показатели качества/готовности и вопросы совместного использования частот службами  $\Phi C$  и другими первичными службами в контексте создания помех службам  $\Phi C$ .

Показатели качества по ошибкам и готовности должны соблюдаться независимо от того, относятся они к долговременным или кратковременным помехам.

ТАБЛИЦА 1 Рекомендации МСЭ-R, в которых затрагиваются вопросы совместного использования частот между службами ФС и другими первичными службами

| Рекомендация<br>МСЭ-R | Название                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| F.1094                | Максимально допустимое ухудшение показателей качества по ошибкам и готовности цифровых фиксированных беспроводных систем, возникающее вследствие радиопомех от излучений и радиации других источников                                                                                                                                                        |  |  |  |
| F.1108                | Определение критериев защиты приемников фиксированной службы от излучений космических станций, работающих на негеостационарных орбитах в совместно используемых полосах частот                                                                                                                                                                               |  |  |  |
| F.1334                | Критерии защиты систем фиксированной службы, работающих в одной полосе частот диапазона 1–3 ГГц, с сухопутной подвижной службой                                                                                                                                                                                                                              |  |  |  |
| F.1338                | Пороговые уровни при определении необходимости координации между конкретными системами радиовещательной спутниковой службы (звук), расположенными на геостационарной орбите, ведущими передачи в направлении космос-Земля, и станциями фиксированной службы в полосе 1452—1492 МГц                                                                           |  |  |  |
| F.1494                | Критерии помех для защиты фиксированной службы от изменяющихся во времени совокупных помех со стороны других служб, совместно использующих полосу 10,7–12,75 ГГц на равной первичной основе                                                                                                                                                                  |  |  |  |
| F.1495                | Критерии помех для защиты фиксированной службы от изменяющихся во времени совокупных помех со стороны других служб радиосвязи, совместно использующих частоты в полосе 17,7—19,3 ГГц на равной первичной основе                                                                                                                                              |  |  |  |
| F.1565                | Ухудшение качественных показателей реальных цифровых фиксированных беспроводных систем, применяемых на международных и внутренних участках гипотетического эталонного тракта протяженностью 27 500 км и работающих на основной и более высоких скоростях, из-за помех от других служб, совместно использующих те же полосы частот на равной первичной основе |  |  |  |
| F.1606                | Критерии помех для защиты систем фиксированных беспроводных систем от изменяющихся во времени совокупных помех, создаваемых негеостационарными спутниками других служб, совместно использующих на равной первичной основе полосы частот 37–40 ГГц и 40,5–42,5 ГГц                                                                                            |  |  |  |
| F.1668                | Показатели качества по ошибкам для реальных цифровых фиксированных беспроводных линий, используемых в гипотетических эталонных трактах и соединениях протяженностью 27 500 км                                                                                                                                                                                |  |  |  |
| F.1669                | Критерии помех для фиксированных беспроводных систем, действующих в полосах 37–40 ГГц и 40,5–42,5 ГГц, в отношении спутников на геостационарной орбите                                                                                                                                                                                                       |  |  |  |
| F.1670                | Защита систем фиксированной беспроводной связи от систем наземного цифрового телевизионного и звукового вещания в совместно используемых диапазонах ОВЧ и УВЧ                                                                                                                                                                                                |  |  |  |
| F.1703                | Показатели готовности для реальных цифровых радиорелейных линий, используемых на гипотетических эталонных трактах и соединениях длиной 27 500 км                                                                                                                                                                                                             |  |  |  |
| F.1706                | Критерии защиты для фиксированных беспроводных систем связи "точка-точка", совместно использующих ту же полосу частот с передвижными системами беспроводного доступа в диапазоне 4–6 ГГц                                                                                                                                                                     |  |  |  |
| SF.1006               | Определение возможности помех между земными станциями фиксированной спутниковой службы и станциями фиксированной службы                                                                                                                                                                                                                                      |  |  |  |
| SF.1650               | Минимальное расстояние от базисной линии, за пределами которой перемещаемые земные станции, которые размещаются на борту судов, не будут создавать неприемлемых помех наземным службам в полосах частот 5925–6425 МГц и 14–14,5 ГГц                                                                                                                          |  |  |  |

#### 4.1 Долговременные помехи

В Рекомендации МСЭ-R F.1094 изложены основные принципы для разделения показателей качества по ошибкам (EPO) и показателей готовности (APO).

В данном разделе рассматривается взаимосвязь следующих трех показателей а), b) и c), при этом исключены аспекты, относящиеся к кратковременным помехам:

- а) ухудшение качества по ошибкам (EP) или показателей готовности (AP) вследствие помех, создаваемых службами на равной первичной основе, величина которого четко определена как 10% в Рекомендации МСЭ-R F.1094 (а также в Рекомендации МСЭ-R F.1565);
- b) ухудшение качества по ошибкам (EP) или показателей готовности (AP), обусловленное помехами от любых других источников и применений, кроме использующих рассматриваемую полосу частот на равной первичной основе, которое четко установлено равным 1% в Рекомендации МСЭ-R F.1094 (и уже используется в ряде исследований совместимости, например в Рекомендации МСЭ-R SM.1756, посвященной сверхширокополосным помехам); на практике значение, полученное в соответствии с пунктом а), следует разделить на 10;
- с) ухудшение запаса на замирания вследствие воздействия помех, которое рассчитывается напрямую из значения (I/N) как  $10 \log ((N+I)/N) = 10 \log ((1+(I/N)))$  (дБ).

Следует отметить, что отношение I/N, как правило, определяется на основе средней (среднеквадратической) мощности как шума, так и помехи; однако если речь идет об импульсных или дискретных излучениях, создающих помехи в течение длительного времени, то отношение их пиковой мощности к средней может играть значительную роль при определении критериев защиты.

Когда отношение пиковой мощности к средней значительно возрастает, а полоса пропускания приемника фиксированной службы становится весьма широкой, может возникнуть необходимость учета показателя *I*/*N* на основе пикового уровня помехи, интегрированной по всей полосе пропускания объекта воздействия помех, для правильной оценки снижения запаса на замирания, обусловленного влиянием помех. Справочная информация о воздействии помех с высокими пиковыми значениями и критерии защиты приведены в Рекомендации МСЭ-R F.1097 для помех РЛС, а в Рекомендации МСЭ-R SM.1757 и дополнительно более подробно в Отчете МСЭ-R SM.2057 для помех UWB-SRR (сверхширокополосных РЛС малого радиуса действия).

В следующих разделах приведены руководящие указания для наиболее распространенных случаев, в которых целесообразно использовать среднюю (среднеквадратическую) мощность помех.

### 4.1.1 Влияние снижения запаса на замирание в полосах частот, в которых преобладающим фактором является многолучевое распространение

В тех случаях, когда качество цифровых систем в основном определяется замираниями вследствие многолучевого распространения (например, на частотах ниже примерно 17 ГГц), дополнительное воздействие совокупной помехи, уровень которого на 10 дБ ниже порога системного шума, вызывает увеличение на 10% периода времени, в течение которого отношение несущая/шум плюс помеха (C/(N+I)) в системе находится ниже критического значения. При определении ухудшения качества необходимо также учитывать любые временные характеристики воздействия помех на работу  $\Phi$ С с учетом показателей качества по ошибкам.

Кроме того, следует отметить, что многие системы фиксированной беспроводной связи (ФБС) используют пространственно-разнесенный прием в полосах частот, в которых многолучевое распространение оказывает преобладающее влияние, и что для принимаемой мощности в системах, использующих разнесение, должно применяться более умеренное распределение, чем замирание Рэлея. Поэтому подобного рода системы позволяют добиться такого же качества, что и системы, не использующие пространственное разнесение, но обладают намного меньшим запасом на замирания. Одно и то же снижение запаса на замирания будет оказывать большее воздействие на системы с пространственно-разнесенным приемом, что приведет к снижению качества по ошибкам примерно в два раза. В таблице 2 показана взаимосвязь между ними для трех значений (I/N).

| Отношение упория                                        | Donyar munyayyaa                                 | Результирующее снижение качества по ошибкам <sup>(1)</sup>    |                                                            |  |
|---------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|--|
| Отношение уровня помехи к тепловому шуму приемника (дБ) | Результирующее снижение запаса на замирания (дБ) | Системы,<br>не использующие<br>пространственное<br>разнесение | Системы,<br>использующие<br>пространственное<br>разнесение |  |
| -6                                                      | 1                                                | 25%                                                           | 50%                                                        |  |
| -10                                                     | 0,5                                              | 10%                                                           | 20%                                                        |  |
| -13                                                     | 0,2                                              | 5%                                                            | 10%                                                        |  |

ТАБЛИЦА 2 Снижение качества по ошибкам вследствие многолучевого замирания

### 4.1.2 Влияние снижения запаса на замирание в полосах частот, в которых преобладающим фактором являются атмосферные осадки

При наличии атмосферных осадков взаимосвязь между:

- а) ухудшением показателей готовности вследствие влияния помех; и
- b) снижением запаса на замирания вследствие влияния помех,

неочевидна, поскольку распределение ослабления в дожде меняется в зависимости от многих параметров, например частоты радиосигнала, зоны выпадения осадков, длины линии связи, определенных показателей готовности.

Использование типовых параметров и вероятностных распределений приводится в Рекомендации МСЭ-R Р.530, примеры результатов расчетов даны в таблицах 3 и 4, в каждой из которых показана взаимосвязь между значением (I/N) и результирующим ухудшением показателей готовности для линии с длиной пролетов 6 и 3 км, соответственно. Цифры в таблицах 3 и 4 можно интерпретировать, например, таким образом, что если номинальный запас 42,9 дБ уменьшается на 1 дБ (до 41,9 дБ), то показатель готовности линии, определенный при коэффициенте неготовности 0,001% в отсутствие помехи, увеличивается до 0,001085% (на 8,5%) при наличии помехи.

Общее замечание заключается в том, что результирующее ухудшение показателей готовности более значительно в системах с меньшим номинальным запасом на замирания. При определении критерия совместного использования частот на основе значения (I/N) разработчикам систем следует учитывать все соответствующие параметры, включая информацию о распространении радиоволн.

Следует отметить, что примеры расчетов результирующих показателей ухудшения готовности и снижения запаса на замирания, приведенные в таблицах 3 и 4, основаны на некоррелированном замирании в дожде. Если учитывать влияние коррелированного замирания в дожде, то результирующие цифры могут быть более низкими. Пример такого воздействия приводится в Рекомендации МСЭ-R F.1669.

<sup>(1)</sup> Учитываются многолучевое замирание, подчиняющееся распределению Рэлея, и влияние типового пространственного разнесения. Цифры будут различаться для различных видов распределения замираний.

ТАБЛИЦА 3 Ухудшение показателей готовности вследствие замирания в дожде (частота радиосигнала: 23 ГГц, длина линии: 6 км)

| Режим<br>погоды<br>(интен-<br>сивность                       | Уровень<br>помехи<br>относительно      | Результи-<br>рующее Заданные показатели готовности без помех: коэффициент неготовности 0,01% коэффициент подобранием поставлением поставл |                              | готовности без помех:<br>коэффициент неготовности |                              | без помех:<br>еготовности                      |
|--------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------|------------------------------------------------|
| дождя,<br>превы-<br>шаемая<br>в течение<br>0,01%<br>времени) | теплового<br>шума<br>приемника<br>(дБ) | снижение<br>запаса<br>(дБ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Номинальный<br>запас<br>(дБ) | Результи-<br>рующее<br>ухудшение<br>готовности    | Номинальный<br>запас<br>(дБ) | Результи-<br>рующее<br>ухудшение<br>готовности |
|                                                              | -6                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,1                         | 14,6%                                             | 42,9                         | 8,5%                                           |
| 32 мм/ч                                                      | -10                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,1                         | 7,0%                                              | 42,9                         | 4,2%                                           |
|                                                              | -13                                    | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,1                         | 2,8%                                              | 42,9                         | 1,7%                                           |
|                                                              | -6                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13,8                         | 22,0%                                             | 29,6                         | 12,6%                                          |
| 22 мм/ч                                                      | -10                                    | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13,8                         | 10,3%                                             | 29,6                         | 6,1%                                           |
|                                                              | -13                                    | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13,8                         | 4,0%                                              | 29,6                         | 2,4%                                           |

ТАБЛИЦА 4 Ухудшение показателей готовности вследствие замирания в дожде (частота радиосигнала: 23 ГГц, длина линии: 3 км)

| Режим<br>погоды<br>(Интен-<br>сивность                       | Уровень<br>помехи<br>относительно      | Результи-<br>рующее        | Заданные показатели готовности без помех: коэффициент неготовности 0,01% |                                                | Результи- Результи- Результи- Результи- Результи- Результи- Результи- Результи- |                                                | без помех:<br>еготовности |
|--------------------------------------------------------------|----------------------------------------|----------------------------|--------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|---------------------------|
| дождя,<br>превы-<br>шаемая<br>в течение<br>0,01%<br>времени) | теплового<br>шума<br>приемника<br>(дБ) | снижение<br>запаса<br>(дБ) | Номинальный<br>запас<br>(дБ)                                             | Результи-<br>рующее<br>ухудшение<br>готовности | Номинальный<br>запас<br>(дБ)                                                    | Результи-<br>рующее<br>ухудшение<br>готовности |                           |
|                                                              | -6                                     | 1                          | 11,2                                                                     | 27,8%                                          | 24,1                                                                            | 15,7%                                          |                           |
| 32 мм/ч                                                      | -10                                    | 0,5                        | 11,2                                                                     | 12,7%                                          | 24,1                                                                            | 7,5%                                           |                           |
|                                                              | -13                                    | 0,2                        | 11,2                                                                     | 4,8%                                           | 24,1                                                                            | 2,9%                                           |                           |
| 22 мм/ч                                                      | -6                                     | 1                          | 7,6                                                                      | 44,3%                                          | 16,3                                                                            | 24,2%                                          |                           |
|                                                              | -10                                    | 0,5                        | 7,6                                                                      | 19,5%                                          | 16,3                                                                            | 11,4%                                          |                           |
|                                                              | -13                                    | 0,2                        | 7,6                                                                      | 7,2%                                           | 16,3                                                                            | 4,5%                                           |                           |

#### 4.1.3 Дополнительное совместное влияние теплового шума приемника и шума помехи

Расчеты, приведенные в таблицах 2 и 3 предыдущих разделов, базируются на уровне мощности, определенном как "тепловой шум приемника". На практике эталонный уровень должен представлять собой эффективный уровень шума, включающий все компоненты шума в приемной системе, а также ожидаемый уровень помехи в зоне действия фиксированной службы, как в элементе X, определенном в Рекомендации МСЭ-R F.1094. Следует иметь в виду, что помехи от других служб также будут базироваться на этом эффективном уровне. Таким образом, увеличение ожидаемого уровня помехи от той же самой службы понижает возможности ухудшения показателей, допустимого для заданного уровня мощности помех от других служб.

### 4.1.4 Снижение качества по ошибкам и ухудшение показателей готовности в многопролетных линиях

В Рекомендации МСЭ-R F.1565 для каждого участка ГЭЦ определяется снижение качества по ошибкам реальной системы ФБС, вызванное воздействием помех от других служб на равной первичной основе. А именно снижение качества по ошибкам реальной системы ФСБ может быть вычислено для всего межстанционного участка ближней связи и участка сети доступа. Если речь идет о межстанционном участке дальней связи, то минимальная длина линии, для которой определяется показатель качества по ошибкам, равна 50 км.

Следует отметить, что при развертывании многопролетной системы ФБС с формированием всего участка сети доступа, межстанционного участка ближней связи или межстанционного участка дальней связи длиной менее 50 км, показатель качества по ошибкам для помех, определенных в Рекомендации МСЭ-R F.1565, следует применять не к отдельным пролетам, а к многопролетной линии в целом.

Аналогичные соображения можно применять к распределению показателей готовности, заданных в Рекомендации МСЭ-R F.1703, с оговоркой, что та или иная линия считается находящейся в готовности только в том случае, если доступна связь в обоих направлениях.

Данный пункт следует учитывать в условиях совместного использования частот, в котором существенное влияние помех наблюдается не в каждом, а только в некоторых пролетах. Например, если только один пролет подвержен воздействию помех в пределах линии ФБС с *N*-пролетами, образующей весь участок, то результирующее ухудшение качества по ошибкам и показателям готовности должно быть распределено на один пролет, подверженный воздействию помех, в соответствии с тем, как показано в условии расчета таблиц 2, 3 и 4.

#### 4.2 Кратковременные помехи

Система должна соответствовать заданным для нее показателям качества по ошибкам и готовности независимо от того, какими помехами обусловлены допустимые ухудшения — кратковременными или долговременными. При этом необходимо учитывать ухудшения качества, вызванные кратковременными помехами, наряду с ухудшениями качества, вызванными долговременными помехами, таким образом, чтобы их суммарная величина не превышала допустимое ухудшение качества. Для источников, использующих ту же полосу на равной первичной основе, общее ухудшение показателей качества по ошибкам и готовности, обусловленное кратко- и долгосрочными помехами, не должно превышать 10%; а для других источников — 1%.

Расчет допустимых уровней кратковременных помех и соответствующих процентов времени представляет собой сложный процесс. Поскольку он подробно описан для различных условий и полос частот в ряде действующих Рекомендаций МСЭ-R по совместному использованию частот на равной первичной основе, то здесь расчеты не приводятся.

Процедуры, описанные в Рекомендациях МСЭ-R F.1494, МСЭ-R F.1495 и МСЭ-R F.1606, а также в Приложении 5 к Отчету МСЭ-R M.2119, содержат примеры разработки критериев кратковременных помех.

### 5 Использование автоматического регулирования мощности передатчика в цифровых системах

В некоторых полосах частот системы фиксированной службы используют функцию автоматического регулирования мощности передатчика (ATPC). Как правило, система ATPC включается при снижении уровня принимаемого сигнала ниже заранее определенного порогового значения; в ряде случаев алгоритм включения ATPC также может быть дополнен пороговым значением ухудшения коэффициента ошибок по битам (BER). Где применимо, ATPC может учитываться при проведении исследований совместного использования частот с участием ФС. В подобных исследованиях следует учитывать максимальный уровень передаваемой мощности, диапазон ATPC и распределение уровней мощности ФС во времени вследствие изменения потерь на распространение.

При наличии помехи с относительно высоким уровнем (например, при рассмотрении кратковременной помехи) установление этого распределения может быть затруднено, поскольку уровень помехи может

вызвать включение АТРС (например, срабатывание порогового значения ВЕR), либо предотвратить включение АТРС (например, путем предотвращения достижения порогового значения принимаемого сигнала) непредсказуемым образом. Для проведения анализа совместного использования частот различными службами при оценке воздействия кратковременных помех на системы, оборудованные АТРС, следует тем не менее использовать долговременную мощность передатчика полезного сигнала, а не его максимальную мощность, до тех пор пока источник помехи не будет обладать той же конфигурацией трассы распространения. Например, если трасса помехи начинается со спутниковой станции, то корреляция с трассой полезной фиксированной службы (ФС) отсутствует. В подобных случаях надо полагать, что мощность полезного передатчика имеет самый низкий уровень. Если, однако, трасса помехи начинается от наземного источника, то можно предположить наличие некоторой корреляции замираний (см. Примечание ниже). В этом случае ожидаемая полезная мощность передатчика может равняться максимальной мощности диапазона АТРС. Более подробная информация по АТРС приведена в Рекомендациях МСЭ-R F.1494, МСЭ-R F.1495, МСЭ-R F.1606 и МСЭ-R F.1669. ПРИМЕЧАНИЕ. – Это относится в основном к случаю работы в полосах частот выше 17 ГГц, где дожди являются преобладающим фактором, влияющим на характеристики распространения линии, например, в Рекомендациях МСЭ-R Р.452 и МСЭ-R Р.839 приведена информация по размеру очага дождя и распределению интенсивности осадков (по направлению азимута и угла места) в пределах этих очагов. В полосах более низких частот, где преобладающим фактором является многолучевое распространение, глубокие замирания на трассе полезного сигнала и на трассе помехи не коррелируются.

#### 6 Расчет фактических уровней помех

Для завершения анализа совместного использования частот необходимо оценить вероятность появления помех на входе антенны. При такой оценке следует учитывать современные модели распространения радиоволн и факторы трассы, которые описываются в Отчетах и Рекомендациях МСЭ-R серии Р. Маловероятно, что одна модель подойдет для всех возможных случаев применения. Расчеты потерь передачи должны также включать такие факторы, как потери на поглощение, дифракционные потери, потери на рассеяние, потери связи на поляризацию, потери связи "апертурасреда" и влияние многолучевого распространения. Кроме того, может потребоваться учет как суммарного уровня помех, так и уровня единичной помехи на входе.

#### Приложение 2

### Параметры цифровых систем ФС для исследований совместного использования частот/совместимости

#### 1 Введение

Для проведения расчета ухудшений качества и готовности необходимо знать, какие из характеристик системы ФБС ухудшаются. Существует большое количество разнообразных систем ФБС, как действующих, так и разрабатываемых для удовлетворения будущих потребностей. Это разнообразие системных параметров может быть обобщено с помощью систем, типичных для определенных диапазонов частот, в которых оборудование функционирует по единому принципу. В настоящем Приложении приведена подробная информация по ключевым параметрам систем радиосвязи, необходимым для оценки помех и расчетов для исследований совместного использования частот с другими службами. Системные параметры представлены в табличной форме для минимального количества диапазонов частот, необходимого для проведения исследований совместного использования частот службой ФС и другими службами.

#### 2 Характеристики передатчика

#### 2.1 Параметры оборудования

Основными параметрами передатчика, необходимыми для оценки потенциального воздействия помех на другие службы, являются:

- несущая частота;
- спектральные характеристики (например, полоса пропускания и плотность мощности передатчика);
- эквивалентная изотропно излучаемая мощность (э.и.и.м.);
- диаграмма направленности излучения антенны.

Рабочие частоты обычно соответствуют планам размещения частот радиостволов, определенным в Рекомендациях МСЭ-R. Тип модуляции и план размещения частот радиостволов создают основу для представления спектральных характеристик излучений при проведении базовых статистических вычислений, в ходе которых обычно принимаются в расчет только помехи в совмещенном канале. Однако, для более детального расчета (для каждой станции) возможностей совместного использования частот потребуется модель спектральных характеристик, составленная таким образом, чтобы могло быть вычислено подавление сигнала для любого отклонения частот при заданном разносе частот несущих полезного сигнала/помехи.

Э.и.и.м. передатчика вычисляется исходя из мощности передатчика, потерь в фидере/мультиплексоре и коэффициента усиления антенны. В принципе максимальное значение э.и.и.м. должно соответствовать максимальному коэффициенту усиления антенны, минимальным потерям в фидере/мультиплексоре и максимальной выходной мощности передатчика, что соответствует наибольшему потенциалу создания помех другим службам; однако, если исследования совместного использования частот/совместимости требуют статистической оценки объединенных данных о большом количестве мешающих станций ФС, либо если потенциальное возникновение помех может происходить случайным образом в пределах большой географической зоны, некорректно рассматривать абсолютно наихудшую ситуацию, а более подходящим вариантом в данном случае является использование диапазона значений в случайном порядке (или в соответствии с другим подходящим статистическим распределением.

Для проведения подробных исследований совместного использования частот необходимо знание диаграмм направленности антенн. При отсутствии измеренных диаграмм следует использовать эталонные диаграммы направленности, приведенные в следующих Рекомендациях:

- Рекомендация МСЭ-R F.699 Эталонные диаграммы направленности антенн фиксированных беспроводных систем для использования при изучении вопросов координации и оценки помех в диапазоне частот от 100 МГц до 86 ГГц;
- Рекомендация МСЭ-R F.1245 Математическая модель усредненной диаграммы направленности антенн для радиорелейных систем прямой видимости точка-точка, для изучения вопросов координации и оценки помех в диапазоне частот от 1 ГГц до 86 ГГц; и
- Рекомендация МСЭ-R F.1336 Эталонные диаграммы направленности всенаправленных, секторных и других антенн в системах связи фиксированной и подвижной служб для использования при изучении вопросов совместного использования частот в диапазоне от 400 МГц до приблизительно 70 ГГц.

#### 2.2 Статистическое распределение по территории

В прошлом линии ФС применялись в основном для создания многоканальных многопролетных магистральных соединений, ориентированных по известным направлениям между коммутационными центрами крупных городов, или соединений в удаленных зонах сельской местности. В обоих случаях в целях экономии сетевых ресурсов, как правило, требовалось, чтобы протяженность каждого пролета проектировалась максимально возможной, с учетом существующей технологии для ожидаемых условий распространения. Это привело к тому, что в большинстве линий ФС широко использовалась максимально возможная выходная мощность, связанная с увеличением размера антенны.

Таким образом, максимально возможная э.и.и.м. передатчика на практике совпадала с э.и.и.м., ожидаемой при проведении исследований совместного использования частот. Кроме того, плотность

станций ФС на территории была ограничена несколькими крупными станциями электросвязи, в которых сходились все магистральные линии.

В настоящее время с появлением сетей подвижной связи и потребности в беспроводных соединениях для передачи данных в сетях доступа изменилось типичное распределение протяженности линий связи; теперь этот показатель определяется в основном различными соображениями, касающимися зон покрытия сотовых систем (то есть расстоянием между базовыми станциями, соединяемыми с помощью линий ФС), или географическим расположением центров обработки данных частных пользователей относительно ближайшей точки доступа основной сети.

В населенных зонах это приводит к большей плотности сетей ФС, для которых требуются:

- более короткие пролеты, расположенные случайным образом по всей территории;
- существенно отличающаяся протяженность пролетов в одной и той же географической зоне;
- тщательная координация работы сети;
- использование согласно правилам лицензирования различных значений э.и.и.м. для каждой конкретной линии в целях минимизации помех и максимально возможного повышения эффективности спектра.

Вышеуказанные соображения, применительно к исследованиям совместного использования частот, приводят к необходимости "вероятностно ориентированного" сценария развертывания сети, при котором э.и.и.м. распределяется в соответствии с протяженностью линии в пределах диапазона значений, а направления линий случайным образом распределяются по какому-либо углу азимута и более широкому диапазону углов места.

Достигаемая протяженность линии сокращается по мере увеличения рабочей частоты в связи с тем, что уровни выходной мощности имеют фиксированное значение согласно регуляторным требованиям, установленным местными администрациями, а также в связи с более интенсивным ослаблением с расстоянием при распространении. Таким образом, для каждой полосы частот верхний предел э.и.и.м. ограничен максимумом, доступным на рынке, в то время как нижний предел на практике ограничивается минимальной "экономически целесообразной" протяженностью линии в данной полосе частот. На самом деле в большинстве лицензионных положений предусмотрена плата за линию, которая снижается по мере увеличения рабочей полосы частот, и пользователь, таким образом, получает экономический стимул при использовании более высоких полос частот (для которых и оборудование дешевле) для создания более коротких линий связи, вместо того чтобы просто уменьшать э.и.и.м. в более низких полосах частот.

Следовательно, в диапазонах уровней выходной мощности и э.и.и.м., приведенных в таблицах 6–15, представлен достаточный диапазон значений, которые можно использовать в "вероятностных" исследованиях.

В то время как функция распределения протяженности линии в конечном счете связана с географическим распределением базовых станций подвижной связи или местонахождением оборудования абонента, статистическое распределение э.и.и.м. не может считаться "гауссовым", но может быть рассчитано для каждого конкретного случая. В Прилагаемом документе 1 к настоящему Приложению приведены примеры подобных расчетов.

Для построения точной вероятностной модели, в той или иной модели совместного использования частот линии фиксированной службы должны распределяться в узловом порядке со случайным распределением по географической зоне. Для городских, пригородных и сельских районов должен учитываться весовой коэффициент, приблизительно определяющий средние характеристики используемой ФС в целях более точного распределения узлов фиксированной связи.

Весовой коэффициент зависит от типа развертываемой фиксированной службы, и должен определяться для каждого конкретного случая. Фактическое процентное соотношение в данных географических зонах может быть различным для разных стран. Например, в одной стране для города, пригорода и сельской местности используются значения 60%/30%/10%, соответственно.

#### 3 Характеристики приемника

#### 3.1 Параметры оборудования

Оценка влияния помех, создаваемых другими службами работе ФС, требует знания эксплуатационных характеристик радиоприемника. Для исследования совместного использования частот важное значение имеют следующие параметры:

- коэффициент шума;
- ширина полосы шума;
- плотность мощности теплового шума приемника;
- мощность принимаемого сигнала для BER  $1 \times 10^{-3}$ ,  $1 \times 10^{-6}$ ,  $1 \times 10^{-10}$  (последующая коррекция ошибок) (см. Примечание 1);
- номинальный входной уровень приемника.

ПРИМЕЧАНИЕ 1. — Как правило, в системах без кодирования уровень несущей, соответствующий  $1\times10^{-6}$  BER, примерно на 4 дБ выше, чем для  $1\times10^{-3}$  BER; разность уровней несущей между точками BER  $1\times10^{-6}$  и  $1\times10^{-10}$  также примерно равна 4 дБ. Для радиооборудования, в котором используется упреждающая коррекция ошибок (FEC), уровень несущей, соответствующий  $1\times10^{-6}$  BER, превышает на 1-2 дБ уровень для  $1\times10^{-3}$  BER; разница несущих между  $1\times10^{-6}$  и  $1\times10^{-10}$  также составляет от 1 до 2 дБ. В следующих таблицах мощность принимаемого сигнала рассматривается только для  $1\times10^{-6}$ , поскольку соответствующие параметры для других коэффициентов BER теоретически могут быть получены из схемы модуляции или на основе влияния коррекции ошибок.

Уровни принимаемого сигнала и уровни помех могут быть привязаны ко входу малошумящего усилителя (МШУ)/смесителя приемника, поэтому они не будут зависеть от коэффициента усиления приемной антенны и потерь в фидере/мультиплексоре (если предположить, что эти показатели одинаковы и для передатчика и для приемника).

Следует также отметить, что для детальных (по каждой станции) расчетов совместного использования частот необходима информация о частотной избирательности радиооборудования. Типовые исследования совместного использования частот и совместимости в одной и той же выделенной полосе частот, как правило, выполняются в условиях наличия помехи в совмещенном канале; следовательно, сигнал шума обладает достаточной шириной полосы.

Требуемые уровни сигнала для заданных коэффициентов BER могут быть выведены на основе расчетного уровня теплового шума приемника с добавлением требуемого отношения сигнала к тепловому шуму (S/N) для заданного коэффициента BER. Информация по теоретическому и практическому значениям S/N для наиболее распространенных форматов модуляции приведена в Рекомендации МСЭ-R F.1101.

#### 3.2 Допустимый уровень помех

Необходимо определить максимальные уровни помех для процентов времени, соответствующих как долговременным, так и кратковременным помехам. При определении суммарной долговременной помехи, если могут возникать помехи одновременно от нескольких источников, то следует отметить, что критерии воздействия единичной помехи будут соответственно ниже. В случае кратковременных помех исследуемый процент времени будет связан с показателями качества системы.

Уровни долговременных и кратковременных помех, а также соответствующие проценты времени, должны вычисляться по отдельности для каждого типа системы в соответствии с принципами, описанными в Приложении 1.

#### 4 Таблицы параметров системы

В таблицах 6–14 показаны характерные значения параметров, которые следует использовать при проведении исследований совместного использования частот и совместимости для цифровых ФБС, используемых в настоящее время в различных полосах частот.

В мире существует много разнообразных (например, в зависимости от разнесения каналов и форматов модуляции) систем ФБС, работающих в большинстве полос частот; их фактическое использование в какой-либо географической зоне зависит от региональных и национальных распределений и потребностей. Таким образом, приведенные системные параметры не являются характерными для какой-либо действующей системы ФС, а представляют собой некое усреднение, либо ожидаемый диапазон значений, подходящих для проведения типовых исследований совместного использования частот/совместимости.

В каждой строке таблиц учитывается определенный параметр (или ожидаемый диапазон его значений), который был определен или вычислен в соответствии с принципами, приведенными в следующих пунктах. В результате важно учитывать эти принципы вместе с другими факторами при выборе специальных параметров ФБС из приведенных ниже таблиц, чтобы использовать общий пакет параметров ФБС, которые являются репрезентативными при проведении исследований совместного использования и совместимости.

#### 4.1 Диапазон частот и соответствующая ему справочная Рекомендация МСЭ-R

Рассматриваемый диапазон является приблизительным и, как правило, охватывается соответствующей Рекомендацией, в которой приведен план размещения частот радиостволов; фактические границы полос зависят от региональных и национальных распределений для ФС.

#### 4.2 Формат модуляции

Для каждого диапазона частот два столбца соответствуют двум типам применений. Считается, что в первом столбце представлены более простые системы (например, с более узкой полосой частот и менее сложным форматом модуляции), которые часто обладают более высокой плотностью э.и.и.м. Во втором столбце, как предполагается, представлены более сложные системы (например, с более широкой полосой частот и сложным форматом модуляции), для которых обычно требуется высокое качество по ошибкам, и которые считаются более чувствительными к воздействию помех.

Исследования совместного использования частот, как правило, не зависят от модуляции, поскольку они базируются на показателях I/N. Формат модуляции, в принципе, может оказаться полезным при расчете уровней сигнала Rx (номинальных, и для коэффициента  $BER\ 1\times 10^{-6}$ ), которые могут использоваться для оценки кратковременных помех.

Следует отметить, что технология адаптивного кодирования и модуляции (ACM) (то есть когда скорость кодирования и/или модуляция изменяются в соответствии с условиями распространения и/или влиянием внутрисистемных помех) может быть использована, при наличии возможностей, для увеличения доступной производительности/пропускной способности системы. Соответственно, эти системы могут работать с форматом модуляции до BPSK (1 бит/символ) при наихудших условиях распространения и до 4096 QAM (12 бит/символ) при номинальных условиях распространения.

#### 4.3 Разнос каналов и ширина полосы шума приемника

Данные о разносе каналов требуются для простого расчета плотности выходной мощности Тх. Однако для некоторых полос частот Рекомендация МСЭ-R указывает на разнообразие значений разноса каналов, применение которых зависит от конкретной страны; следовательно, для разноса каналов задается определенное количество значений. Фактическая ширина полосы шума зависит от конкретных условий реализации; тем не менее для исследований совместного использования частот/совместимости номинальное значение, как правило, считается равным ширине полосы канала.

#### 4.4 Диапазон выходной мощности Тх (дБВт)

При использовании координации частот (для каждой конкретной линии в системах PP, либо между сотами и терминалами в одной и той же системе PMP) для управления помехами внутри службы (от ФС к ФС) э.и.и.м. (и, следовательно, выходная мощность Тх) фиксируется на уровне, позволяющем обеспечить лишь предоставление услуги желаемого качества по конкретной линии, либо в пределах площади ячейки. Таким образом, представленный диапазон выходной мощности предоставляет информацию не только о максимальной мощности, которую может обеспечить система, но также о

фактическом распределении действующей мощности на большой территории. В полученных значениях учтены потери в фильтре Тх.

Системы ФС также могут использовать функцию автоматического регулирования мощности передатчика (ATPC), при этом выходная мощность передатчика не фиксируется на определенном уровне, а может изменяться в пределах возможного диапазона передатчика путем адаптации уровня мощности к условиям распространения (то есть приемник запрашивает у передатчика увеличение или уменьшение выходной мощности). Соответственно, эти системы могут работать с более низкой мощностью на выходе передатчика в номинальных условиях распространения. Номинальная выходная мощность может опускаться до –40 дБВт, но эта нижняя граница используется только в редких случаях.

#### 4.5 Диапазон плотности выходной мощности Тх (дБВт/МГц)

При проведении исследований совместного использования частот/совместимости могут потребоваться значения спектральной плотности мощности. Плотность выходной мощности Тх может быть получена путем масштабирования выходной мощности Тх с учетом коэффициента полосы частот для линий связи в рассматриваемой сети: плотность выходной мощности Тх (дБВт/МГц) = выходная мощность Тх (дБВт) –  $10 \log$  (разнос каналов в МГц).

#### 4.6 Диапазон потерь в фидере/мультиплексоре (дБ)

Для большого количества разнообразных систем, существующих в мире, имеются различные методики физического развертывания. Системы обычного типа, применяемые внутри помещений (например, с радиочастотными входными каскадами в защищенных условиях эксплуатации), и подключаемые к установленным на мачтах или на крышах антеннам с помощью фидера, представлены главным образом в полосах более низких частот; системы, полностью предназначенные для использования вне помещений (например, в водонепроницаемом корпусе, совмещенные с антенной или находящиеся в непосредственной близости от нее), представлены главным образом в полосах более высоких частот, но их применение возрастает и на более низких частотах. Таким образом, нулевые потери (0 дБ) в фидере относятся к устройствам полностью наружного применения, в то время как более высокие уровни потерь, только для полос частот ниже 18/23 ГГц, вычисляются на основе средней длины фидера, составляющей примерно 50 м гибкого волновода. Строка потерь в фидере/мультиплексоре отражает потери в фидере, а также потери, обусловленные многоканальными системами уплотнения, при наличии таковых (за исключением потерь в канальном фильтре, которые учитываются в выходной мощности Тх или в коэффициенте шума Rx).

## 4.7 Диапазон коэффициента усиления антенны (дБи) (связь пункта с пунктом) или тип антенны и диапазон коэффициента усиления (дБи) (связь пункта с несколькими пунктами)

В системах РР антенны меньшего размера, как правило, сочетаются с низкими либо нулевыми потерями в фидере (например, в системах, применяемых полностью вне помещений); эталонные диаграммы направленности приведены в Рекомендациях МСЭ-R F.699 и МСЭ-R F.1245. В системах РМР типичными видами антенн являются всенаправленная, "волновой канал", параболическая, секторная; эталонные диаграммы направленности приведены в Рекомендации МСЭ-R F.1336.

Следует проявлять особую осторожность с учетом того, что:

при проведении исследований наиболее интенсивные помехи не всегда создаются антенной с набольшим коэффициентом усиления. Антенна с низким коэффициентом усиления обладает более широким лучом, и в некоторых случаях это наносит больший вред, независимо от того, подвергается ли служба ФС воздействию помехи или сама является ее источником. Это определяется в каждом отдельном случае и для каждого сценария совместного использования частот исходя из заданного характерного диапазона;

 диапазон коэффициента усиления представляет всю совокупность сетей, поскольку каждая сеть характеризуется различным распределением значений коэффициента усиления антенны.
 Типовое значение, вероятно, находится в пределах заданного диапазона, но это также зависит от различных национальных особенностей.

#### 4.8 Диапазон значений э.и.и.м. (дБВт)

Диапазон значений э.и.и.м. зависит от упомянутых выше значений выходной мощности, потерь в фидере и коэффициента усиления антенны следующим образом: э.и.и.м. = (выходная мощность Тх) + (коэффициент усиления антенны) – (потери в фидере). Однако фактический диапазон значений э.и.и.м. не может рассчитываться напрямую как сумма наибольшего и наименьшего значений, поскольку должны учитываться следующие соображения:

- Если задан диапазон потерь в фидере, то нулевое значение (0 дБ) соответствует системам, применяемым полностью вне помещений, для которых обычно характерна умеренная выходная мощность.
- Если установлены регуляторные ограничения, то значение э.и.и.м. может не быть равным максимальной мощности плюс максимальный коэффициент усиления минус минимальные потери в фидере (в децибелах).
- Системы с менее сложной модуляцией могут, в принципе, обладать низкими потерями мощности передатчика и, следовательно, более высокой мощностью; однако разработка систем, привязанная к среднему бюджету линии, согласно требованиям рынка для данного применения, предполагает, по экономическим соображениям, использование умеренной мощности. Тем не менее при использовании в условиях меньшего разноса каналов плотность э.и.и.м. (дБВт/МГц) может возрасти.
- Системы с модуляцией более высокого порядка требуют более высоких потерь мощности передатчика и, подключаясь к широкополосным системам с высокой пропускной способностью, используют максимальную общедоступную мощность. Тем не менее плотность э.и.и.м. (дБВт/МГц) может не быть наивысшей среди систем, использующих ФС.
- Для заданной сети наивысшая выходная мощность Тх не обязательно соответствует наибольшему коэффициенту усиления антенны.

Значение э.и.и.м. для различных направлений антенны может быть вычислено с учетом диаграммы направленности антенны.

#### 4.9 Диапазон плотности э.и.и.м. (дБВт/МГц)

При проведении исследований совместного использования частот/совместимости часто используется спектральная плотность э.и.и.м. Ее несложно вычислить путем масштабирования с использованием коэффициента ширины полосы для линий связи рассматриваемой сети: плотность э.и.и.м. (дБВт/МГц) = э.и.и.м. (дБВт)  $-10 \log$  (разнос каналов в МГц).

В некоторых случаях задается также режим, который является статистическим параметром для наиболее часто встречающихся значений.

#### 4.10 Типичный коэффициент шума приемника (дБ)

Коэффициент шума приемника включает потери в фильтре Rx. Предполагаемое значение является экономически целесообразной компенсацией для данного применения (в большей степени зависящей от требуемого бюджета линии, заложенного при разработке системы).

#### 4.11 Типичная плотность мощности шума приемника (дБВт/МГц)

Типичная плотность мощности шума приемника может быть получена из плотности мощности теплового шума и рассчитывается как: -144 дБВт/МГц + коэффициент шума. Абсолютная мощность шума Rx может быть получена путем прибавления номинального коэффициента ширины полосы шума =  $10 \log$  (разнос каналов (в МГц)).

#### 4.12 Нормированный входной уровень Rx для BER $1 \times 10^{-6}$ (дБВт/МГц)

Нормированный входной уровень Rx для  $BER\ 10^{-6}$  зависит от соответствующего отношения S/N для действующего формата модуляции и от ширины полосы канала. Он может быть получен из плотности мощности шума приемника по следующей формуле:

Нормированный входной уровень Rx (дБВт/МГц) = плотность мощности шума Rx (дБВт/МГц) + S/N (дБ).

Фактический входной уровень Rx может быть получен путем прибавления номинального коэффициента ширины полосы шума =  $10 \log$  (разнос каналов в  $M\Gamma$ ц).

Информация о теоретическом отношении *S/N* для ряда форматов модуляции, как с кодированием, так и без кодирования, приведена в Рекомендации МСЭ-R F.1101. При наличии информации о типовом ожидаемом значении *S/N*, включающем выигрыш при кодировании, эта информация отражается в таблице, в иных случаях табличные значения берутся из данной Рекомендации, при этом считается, что в существующих системах фактический выигрыш при кодировании компенсирует как минимум потери, связанные с введением в эксплуатацию. Отмечается, что в Рекомендации МСЭ-R F.1101 описывыются системы ФС, работающие в полосах частот ниже примерно 17 ГГц, как указано в названии этой Рекомендации. Однако теоретические значения S/N, рассматриваемые в Рекомендации МСЭ-R F.1101, могут применяться к системам ФС, работающим в полосах частот выше 17 ГГц.

#### 4.13 Номинальная плотность мощности долговременной помехи (дБВт/МГц)

Плотность мощности долговременной помехи, приведенная в таблицах 6–14 и таблицах 16–19, равна  $N_{RX}+I/N$ . Это значение должно стать точкой отсчета при рассмотрении совместного использования частот или совместимости. Несмотря на то, что значение для  $N_{RX}$  находится во второй строке над данной записью в каждом столбце указанных таблиц, соответствующее значение I/N зависит от полосы частот и условий совместного использования частот или совместимости, указанных в таблице 5. В прошлом в большинстве случаев суммарное значение в -10 дБ применялось для условий совместного использования частот с одной службой на равной первичной основе; однако другие значения также применялись или разрабатывались в исследованиях совместного использования частот и совместимости для различных условий помех.

Значение -6 дБ применялось в некоторых случаях совместного использования частот на равной первичной основе в полосах частот ниже 3 ГГц. В дополнение к этому, далее приведены руководящие указания по исследованиям совместного использования частот, включающим более одной службы на равной первичной основе; в таблице 4 приведены некоторые руководящие указания по выбору значений I/N для использования при определении соответствующей плотности мощности долговременных помех.

ТАБЛИЦА 5 Руководящие указания по выбору значений I/N для долговременных помех

| <i>I</i> / <i>N</i> <sup>(1)</sup> | Диапазон частот       | Условия совместного использования частот/совместимости <sup>(2)</sup>                | Комментарии и соответствующие<br>Рекомендации МСЭ-R                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------|-----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -6 дБ                              | От 30 МГц<br>до 3 ГГц | Условия совместного использования частот,                                            | Широко применяемое значение для суммарной помехи                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -10 дБ                             | Свыше 3 ГГц           | кроме упомянутых в других местах данной таблицы                                      | Ссылку на соответствующие Рекомендации см. в таблице 1                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ≤−6 дБ                             | От 30 МГц<br>до 3 ГГц |                                                                                      | Разделение показателей МСЭ-R F.1094 (см. раздел 2 Приложения 1 настоящей Рекомендации)                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ≤−10 дБ                            | Свыше 3 ГГц           | Совместное использование частот с более чем одной службой на равной первичной основе | -6 дБ или −10 дБ, в зависимости от ситуации может применяться в том случае, если риск одновременного возникновения помех от станций с другими распределениями на равной первичной основе является ничтожным. В иных случаях может потребоваться более жесткий критерий для учета суммарной помехи от всех мешающих служб на равной первичной основе (то есть значения −6 дБ или −10 дБ должны рассматриваться как максимальное суммарное отношение <i>I/N</i> от всех служб на равной первичной основе) |
| -13 дБ                             | 3–6 ГГц               | Совместимость с UWB                                                                  | Только для оконечных устройств фиксированного радиодоступа (FWA), применяемых внутри помещений, согласно МСЭ-R SM.1757                                                                                                                                                                                                                                                                                                                                                                                  |
| −15 дБ                             | 27–31 ГГц             | Совместное использование частот с ФС, использующей HAPS                              | MCЭ-R F.1609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -20 дБ                             | 3-8,5 ГГц             | Совместимость с UWB                                                                  | MCЭ-R SM.1757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -20 дБ                             | Bce                   | Исследования<br>совместимости                                                        | MCЭ-R F.1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

 $<sup>^{(1)}</sup>$  Эти значения  $I\!/N$  применяются к суммарным помехам, создаваемым работой службы, совместно использующей частоту.

- системами в службах, имеющих распределение на вторичной основе в полосах, которые распределены фиксированной службе на первичной основе;
- системами в службах, имеющих распределение в других полосах (например, в соседних полосах);
- источниками излучений, отличных от радиослужб.

#### 4.14 Дополнительная информация (номинальный входной уровень Rx)

Номинальный входной уровень Rx (дБВт) не упоминается в таблицах в связи с тем, что в действующих сетях его значение изменяется в широком диапазоне. Однако эта величина может потребоваться для оценки кратковременных помех. Номинальный уровень приема зависит от требуемого бюджета конкретной линии, который необходим для достижения заданного качества по ошибкам и готовности. Кроме того, при использовании функции ATPC номинальный уровень приемника еще больше снижается на величину диапазона ATPC. Обычно при использовании ATPC номинальный уровень

<sup>(2)</sup> Для целей настоящей Рекомендации исследования совместимости означают исследования, проводимые между ФБС и:

приемника должен снизиться примерно на 10 дБ. При необходимости данные о номинальных входных уровнях Rx должны быть предоставлены национальными администрациями, которых непосредственно касается проводимое исследование.

В любом случае для нормального функционирования линии связи, включая ATPC, номинальный входной уровень Rx не должен быть ниже значений, превышающих примерно на 10-15 дБ входной уровень Rx для BER =  $10^{-6}$ .

Для каждой полосы частот в таблицах 6–15 два столбца относятся к репрезентативным данным для более простых и более сложных систем, соответственно (см. пункт 4.2 в Приложении 2).

ТАБЛИЦА 6 Параметры систем для систем РР ФС в распределенных полосах частот ниже 400 МГц

| Полоса частот<br>(МГц)                                                       | 54,02–66,26                   |
|------------------------------------------------------------------------------|-------------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                 |                               |
| Модуляция                                                                    | QPSK, 16-QAM, 64-QAM, 256-QAM |
| Разнос каналов и ширина полосы шума приемника (МГц)                          | 0,12                          |
| Диапазон выходной мощности Тх (дБВт)                                         | 10                            |
| Диапазон плотности выходной мощности Тх (дБВт/МГц))                          | 19,2                          |
| Диапазон потерь в фидере/мультиплексоре (дБ)                                 | 3                             |
| Диапазон коэффициента усиления антенны (дБи)                                 | 11,15 (волновой канал)        |
| Диапазон значений э.и.и.м. (дБВт)                                            | 19,2                          |
| Диапазон плотности э.и.и.м. (дБВт/МГц)                                       | 27,4                          |
| Типичный коэффициент шума приемника (дБ)                                     | 6,4                           |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/М $\Gamma$ ц) | -137,6                        |
| Нормированный входной уровень Rx для BER $1 \times 10^{-6}$ (дБВт/МГц)       | -111,4                        |
| Номинальная плотность мощности долговременной помехи (дБВт/М $\Gamma$ ц)     | -137,6 + <i>I</i> / <i>N</i>  |

ТАБЛИЦА 7 Параметры систем для систем РР ФС в распределенных полосах частот между 0,4 и 3 ГГц

| Полоса частот<br>(ГГц)                                                          | 0,4061                                                                       | 0,4061-0,450                                                                 |                              | 1,350-                  | 1,350–1,530             |                | -2,100<br>-2,300                                                             | 1,900                                                                        | -2,300                  | 2,290-<br>2,670         |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------|----------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------|-------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                    | F.1                                                                          | 567                                                                          |                              | F.1                     | 242                     | F.382          |                                                                              | F.1098                                                                       |                         | F.1243                  |
| Модуляция                                                                       |                                                                              |                                                                              | 4-FSK, QPSK                  |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Разнос каналов и ширина полосы шума приемника (МГц)                             | 0,05; 0,1;<br>0,15; 0,2;<br>0,25; 0,3;<br>0,5; 0,6;<br>0,75; 1, 1,75;<br>3,5 | 0,05; 0,1;<br>0,15; 0,2;<br>0,25; 0,3;<br>0,5; 0,6;<br>0,75; 1; 1,75;<br>3,5 | 0,0125                       | 0,25; 0,5;<br>1; 2; 3,5 | 0,25; 0,5;<br>1; 2; 3,5 | 29             | 0,05; 0,1;<br>0,15; 0,2;<br>0,25; 0,3;<br>0,5; 0,6;<br>0,75; 1;<br>1,75; 3,5 | 0,05; 0,1;<br>0,15; 0,2;<br>0,25; 0,3;<br>0,5; 0,6;<br>0,75; 1;<br>1,75; 3,5 | 0,25; 0,5;<br>1; 2; 3,5 | 0,25; 0,5;<br>1; 2, 3,5 |
| Диапазон выходной мощности Тх (дБВт)                                            | ПРИМЕ-                                                                       | ПРИМЕ-                                                                       | 1–10                         | ПРИМЕ-                  | ПРИМЕ-                  | ПРИМЕ-         | ПРИМЕ-                                                                       | ПРИМЕ-                                                                       | ПРИМЕ-                  | ПРИМЕ-                  |
| Диапазон плотности выходной мощности Тх (дБВт/МГц))                             | ЧАНИЕ                                                                        | ЧАНИЕ                                                                        | 20–29                        | ЧАНИЕ                   | ЧАНИЕ                   | ЧАНИЕ          | ЧАНИЕ                                                                        | ЧАНИЕ                                                                        | ЧАНИЕ                   | ЧАНИЕ                   |
| Диапазон потерь в фидере/мультиплексоре (дБ)                                    |                                                                              |                                                                              | 0–4                          |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Диапазон коэффициента усиления антенны (дБи)                                    |                                                                              |                                                                              | 11–17<br>(волновой<br>канал) |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Диапазон значений э.и.и.м. (дБВт)                                               |                                                                              |                                                                              | 14–20                        |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Диапазон плотности э.и.и.м. (дБВт/МГц)                                          |                                                                              |                                                                              | 33–39                        | =                       |                         |                |                                                                              |                                                                              |                         |                         |
| Типичный коэффициент шума приемника (дБ)                                        |                                                                              |                                                                              | 4                            |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/МГц)             |                                                                              |                                                                              | -140 <sup>(1)</sup>          |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Нормированный входной уровень Rx для BER 1 $\times$ 10 <sup>-6</sup> (дБВт/МГц) |                                                                              |                                                                              | -121 <sup>(2)</sup>          |                         |                         |                |                                                                              |                                                                              |                         |                         |
| Номинальная плотность мощности долговременной помехи (дБВт/МГц)                 | $N_{RX} + I/N$                                                               | $N_{RX} + I/N$                                                               | $-140 + I/N^{(3)}$           | $N_{RX} + I/N$          | $N_{RX} + I/N$          | $N_{RX} + I/N$ | $N_{RX} + I/N$                                                               | $N_{RX} + I/N$                                                               | $N_{RX} + I/N$          | $N_{RX} + I/N$          |

ПРИМЕЧАНИЕ. – Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совместимости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

<sup>(1)</sup> Плотность мощности шума приемника в канале будет равна –159 дБВт/12,5 кГц.

<sup>(2)</sup> Нормированный уровень входной мощности на приемнике для BER =  $1 \times 10^{-6}$  в канале будет равен -140 дБВт/12,5 кГц.

<sup>(3)</sup> Номинальная плотность мощности долговременной помехи в канале будет равна (-159 + I/N) дБВт/12,5 к $\Gamma$ ц.

ТАБЛИЦА 8 Параметры систем для систем РР ФС в распределенных полосах частот между 3 и 7,2 ГГц

| Полоса частот (ГГц)                                                               | 3,600                        | )-4,200                        | 3,70                                                                               | 0-4,200                                                                         | 4,400-5                                                                                                                                    | 5,000                                                                       | 5,925                                          | -6,425                                         | 6,425                                               | -7,125                                              |
|-----------------------------------------------------------------------------------|------------------------------|--------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                      | F.                           | 635                            | F                                                                                  | 7.382                                                                           | F.109                                                                                                                                      | 99                                                                          | F.383                                          |                                                | F.:                                                 | 384                                                 |
| Модуляция                                                                         | 64-QAM                       | 512-QAM                        | 64-QAM                                                                             | 256-QAM                                                                         | 16-QAM                                                                                                                                     | 256-QAM                                                                     | 64-QAM                                         | 128-QAM                                        | QPSK                                                | 64-QAM                                              |
| Разнос каналов и ширина полосы шума приемника (МГц)                               | 10; 30;<br>40; 60;<br>80; 90 | 10; 30; <b>40</b> ; 60; 80; 90 | 9 <sup>(3)</sup> ; 10;<br>13 <sup>(3)</sup> ; 20;<br><b>28</b> ; 29; 40;<br>60; 80 | 9 <sup>(3)</sup> ; 10; 13 <sup>(3)</sup> ;<br>20; <b>28</b> ; 29;<br>40; 60; 80 | 8 <sup>(3)</sup> ; 9 <sup>(3)</sup> ; 10; 13 <sup>(3)</sup> ;<br>16,6 <sup>(3)</sup> ; 20; <b>28</b> ;<br>33,2 <sup>(3)</sup> ; 40; 60; 80 | 9 <sup>(3)</sup> ; 10; 13 <sup>(3)</sup> ;<br>20; <b>28</b> ; 40;<br>60; 80 | 5; 10; 20; 28;<br>29,65; <b>40</b> ; 60;<br>90 | 5; 10; 20; 28;<br><b>29,65</b> ; 40; 60;<br>90 | 3,5; 5; 7; 10;<br>14; <b>20</b> ; 30; 40;<br>60; 80 | 3,5; 5; 7; 10;<br>14; 20; 30; <b>40</b> ;<br>60; 80 |
| Диапазон выходной мощности Тх (дБВт)                                              | ПРИМЕ-                       | ПРИМЕ-                         | ПРИМЕ-                                                                             | -5                                                                              | -510                                                                                                                                       | -5                                                                          | -82,0                                          | -112                                           | -134                                                | -153                                                |
| Диапазон плотности выходной мощности Тх (дБВт/МГц) $^{(1)}$                       | ЧАНИЕ                        | ЧАНИЕ                          | ЧАНИЕ                                                                              | -19,5<br>-14,5                                                                  | -25,214,5                                                                                                                                  | -19,514,5                                                                   | -2414,0                                        | -25,79,7                                       | -269                                                | -3113,0                                             |
| Диапазон потерь в фидере/мультиплексоре (дБ)                                      |                              |                                |                                                                                    | 3                                                                               | 0                                                                                                                                          | 3                                                                           | 2,55,6                                         | 1,13                                           | 06,3                                                | 06,3                                                |
| Диапазон коэффициента усиления антенны (дБи)                                      |                              |                                |                                                                                    | 22,5                                                                            | 21,522,5                                                                                                                                   | 22,5                                                                        | 38,145,0                                       | 38,746,6                                       | 32,647,4                                            | 32,647,4                                            |
| Диапазон значений э.и.и.м. (дБВт)                                                 |                              |                                |                                                                                    | 14,5                                                                            | 11,514,5                                                                                                                                   | 14,5                                                                        | 20,637,5                                       | 25,745,9                                       | 27,142,2                                            | 15,848,8                                            |
| Диапазон плотности э.и.и.м. (дБВт/МГц)(1)                                         |                              |                                |                                                                                    | 0,05,0                                                                          | -3,75,0                                                                                                                                    | 0,05,0                                                                      | 4,621,5<br>(мода 14,3)                         | 10,931,1<br>(мода 26,9)                        | 14,129,1<br>(мода 21,7)                             | -0,232,7<br>(мода 8,224,2)                          |
| Типичный коэффициент шума приемника (дБ)                                          |                              |                                |                                                                                    | 6,5                                                                             | 6,57                                                                                                                                       | 6,5                                                                         | 5                                              | 4,0                                            | 3,5                                                 | 3,5                                                 |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/МГц)               |                              |                                |                                                                                    | -137,5                                                                          | -137,5137                                                                                                                                  | -137,5                                                                      | -139                                           | -140                                           | -140,5                                              | -140,5                                              |
| Нормированный входной уровень Rx для BER $1 \times 10^{-6}$ (дБВт/МГц)            |                              |                                |                                                                                    | -104,9                                                                          | -117,0<br>-116,5                                                                                                                           | -104,9                                                                      | -112,5                                         | -110,5                                         | -127                                                | -114                                                |
| Номинальная плотность мощности долговременной помехи (дБВт/М $\Gamma$ ц) $^{(2)}$ | $N_{RX} + I/N$               | $N_{RX} + I/N$                 | $N_{RX} + I/N$                                                                     | -137,5 + I/N                                                                    | −137,5<br>−137 + <i>I</i> / <i>N</i>                                                                                                       | -137,5 + I/N                                                                | -139 + I/N                                     | -140 + I/N                                     | -140,5 + I/N                                        | -140,5 + I/N                                        |

ПРИМЕЧАНИЕ. – Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совместимости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные **полужирным шрифтом**. При наличии наиболее вероятного значения (моды) его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(</sup>см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Данное значение разноса каналов не указано в справочной Рекомендации.

ТАБЛИЦА 9 Параметры систем для систем РР ФС в распределенных полосах частот между 7,1 и 14 ГГц

| Полоса частот<br>(ГГц)                                              | 7,110-                                                                                                                   | -7,900                                                                                                                    | 7,725–8                                                                                                          | 3,500                                                                                                                | 10-                                      | 10,5                                        | 10,5-                        | 10,68                                   | 10,7–                                                      | 11,7                                                       | 12,75–13,25                        |                                      |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------|-----------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------------|
| Ссылка на<br>Рекомендацию<br>МСЭ-R                                  | F.3                                                                                                                      | 385                                                                                                                       | F.38                                                                                                             | 36                                                                                                                   | F.7                                      | 47                                          | 7 F.74                       |                                         | F.387                                                      |                                                            | F.497                              |                                      |
| Модуляция Разнос каналов и ширина полосы шума приемника (МГц)       | 16-QAM<br>3,5; 5; 7; 10; 14;<br>20; 28; 30 <sup>(3)</sup> ;<br>40 <sup>(3)</sup> ; 60 <sup>(3)</sup> ; 80 <sup>(3)</sup> | 128-QAM<br>3,5; 5; 7; 10; 14;<br>20; 28; 30 <sup>(3)</sup> ;<br>40 <sup>(3)</sup> ; 60 <sup>(3)</sup> ; 80 <sup>(3)</sup> | 16-QAM<br>1,25; 2,5; 5; 7; 10;<br>11,662; 14; 20; 28;<br>29,65; 30; 40;<br>60 <sup>(3)</sup> ; 80 <sup>(3)</sup> | 128-QAM<br>1,25; 2,5; 5; 7;<br>10; 11,662; 14;<br>20; 28; 29,65;<br>30; 40; 60 <sup>(3)</sup> ;<br>80 <sup>(3)</sup> | QPSK<br>1,25; 2,5; 3,5; 7;<br>14; 28; 56 | 128-QAM<br>1,25; 2,5; 3,5; 7;<br>14; 28; 56 | QPSK<br>1,25; 2,5; 3,5;<br>7 | 128-QAM<br>1,25; <b>2,5</b> ; 3,5;<br>7 | 16-QAM<br>5; 10; 20; 40;<br><b>60</b> ; 67; 80; 56;<br>112 | 64-QAM<br>5; 10; 20; <b>40</b> ;<br>60; 67; 80;<br>56; 112 | QPSK<br><b>3,5</b> ; 7; 14; 28; 56 | 128-QAM<br>3,5; 7;14; <b>28</b> ; 56 |
| Диапазон<br>выходной<br>мощности Тх<br>(дБВт)                       | -6,5 13                                                                                                                  | -6,513                                                                                                                    | −6,5 13                                                                                                          | −6,5 13                                                                                                              | 0                                        | 0                                           | ПРИМЕ-<br>ЧАНИЕ              | -15,01,0                                | 35,0                                                       | 0,0                                                        | 0                                  | -15,63,0                             |
| Диапазон плотности выходной мощности Тх (дБВт/МГц) <sup>(1)</sup>   | -25,53                                                                                                                   | -25,53                                                                                                                    | -25,53                                                                                                           | -25,53                                                                                                               | -11,5                                    | -11,5                                       |                              | -19,03,0                                | -14,812,8                                                  | -16,0                                                      | -5,4                               | -30,117,5                            |
| Диапазон потерь в фидере/мультипле ксоре (дБ)                       | 03,0                                                                                                                     | 03,0                                                                                                                      | 03,0                                                                                                             | 03,0                                                                                                                 | 06,3                                     | 06,3                                        |                              | 2,110,0                                 | 09,5                                                       | 07,6                                                       | 09,5                               | 07,6                                 |
| Диапазон коэффициента усиления антенны (дБи)                        | 1248,6                                                                                                                   | 1248,6                                                                                                                    | 1248,6                                                                                                           | 1248,6                                                                                                               | 33,748,6                                 | 33,748,6                                    |                              | 37,145,9                                | 4451                                                       | 3648,0                                                     | 2949,5                             | 3047,6                               |
| Диапазон<br>значений э.и.и.м.<br>(дБВт)                             | 5,555                                                                                                                    | 5,555                                                                                                                     | 5,555                                                                                                            | 5,555                                                                                                                | 27,448,6                                 | 27,448,6                                    |                              | 20,536,4                                | 33,151,2                                                   | 13,343,0                                                   | 19,549,5                           | 23,538,9                             |
| Диапазон<br>плотности э.и.и.м.<br>(дБВт/МГц) <sup>(1)</sup>         | -13,545                                                                                                                  | -13,545                                                                                                                   | -13,545                                                                                                          | -13,545                                                                                                              | 15,937,1                                 | 15,937,1                                    |                              | 16,532,4                                | 15,333,4<br>(мода 28,5)                                    | -2,727,0<br>(мода 15,9)                                    | 14,144,1                           | 9,024,4                              |
| Типичный коэффициент шума приемника (дБ)                            | 2,56                                                                                                                     | 2,56                                                                                                                      | 2,56                                                                                                             | 2,58                                                                                                                 | 4                                        | 4                                           |                              | 4                                       | 5                                                          | 5                                                          | 4,55                               | 4                                    |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/МГц) | -141,5<br>-138,0                                                                                                         | -141,5<br>-138,0                                                                                                          | -141,5<br>-138,0                                                                                                 | -141,5<br>-136                                                                                                       | -140                                     | -140                                        |                              | -140                                    | -139                                                       | -139                                                       | -139,5<br>-139                     | -140                                 |

#### ТАБЛИЦА 9 (окончание)

| Полоса частот<br>(ГГц)                                                         | 7,110-                 | 7,110-7,900 7,725-8,500 |                               | 8,500               | 10–10,5           |                   | 10,5–10,68     |                | 10,7–11,7         |                            | 12,75–13,25          |            |
|--------------------------------------------------------------------------------|------------------------|-------------------------|-------------------------------|---------------------|-------------------|-------------------|----------------|----------------|-------------------|----------------------------|----------------------|------------|
| Нормированный входной уровень $Rx$ для $BER$ $1 \times 10^{-6}$ (дБВт/МГц)     | -121,0<br>-117,5       | -112,5<br>-115,0        | -121,0<br>-117,5              | -111,3<br>-106,5    | -126,5            | -110,5            |                | -117           | -118,5            | -112,5                     | -126<br>-125,5       | -117       |
| Номинальная плотность мощности долговременной помехи (дБВт/МГц) <sup>(2)</sup> | -141,5<br>-138,0 + I/N | -138,0 + <i>I/N</i>     | -141,5<br>-138,0 + <i>I/N</i> | -141,5<br>-136+ I/N | -140 + <i>I/N</i> | -140 + <i>I/N</i> | $N_{RX} + I/N$ | $N_{RX} + I/N$ | -139 + <i>I/N</i> | -139 + <i>I</i> / <i>N</i> | -139,5<br>-139 + I/N | -140 + I/N |

ПРИМЕЧАНИЕ. — Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совмести мости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные **полужирным шрифтом**. При наличии наиболее вероятного значения (моды) его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(2)</sup> Номинальная плотность мощности долговременных помех определяется как "плотность мощности шума приемника + (требуемое значение I/N)", как описано в пункте 4.13 в Приложении 2 (см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Данное значение разноса каналов не указано в справочной Рекомендации.

ТАБЛИЦА 10 Параметры систем для систем РР ФС в распределенных полосах частот между 14 и 34 ГГц

| Полоса частот (ГГц)                                                            | 14,4–                                          | 15,35                                         | 17,7–1                                                                                                        | 19,7                                                                                                                      | 21,2–23,6                                                                     |                                                                        | 24,25                                                                                | -29,50                                                                                                     | 31,8–33,4                                  |                                                    |
|--------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                   | F.6                                            | 536                                           | F.59                                                                                                          | 5                                                                                                                         | F.                                                                            | 637                                                                    | F.                                                                                   | 748                                                                                                        | F.1520                                     |                                                    |
| Модуляция                                                                      | QPSK                                           | 128-QAM                                       | QPSK                                                                                                          | 64-QAM                                                                                                                    | QPSK                                                                          | 128-QAM                                                                | 16-QAM <sup>(4)</sup>                                                                | 128-QAM <sup>(5)</sup>                                                                                     | QPSK                                       | 256-QAM                                            |
| Разнос каналов и ширина полосы шума приемника (МГц)                            | 2,5; <b>3,5</b> ; 7;<br>14; 28; 40;<br>56; 112 | 2,5; 3,5; 7;<br>14; <b>28;</b> 40;<br>56; 112 | 1,25; 1,75; 2,5;<br>3,5; 5; 7; 7,5;<br>10;13,75; 20;<br>27,5; 30; 40; 50;<br>55; 60 <sup>(6)</sup> ; 110; 220 | 1,25; 1,75;<br>2,5; 3,5; 5; 7;<br>7,5; 10; 13,75;<br>20; 27,5; 30;<br><b>40</b> ; 50; 55;<br>60 <sup>(6)</sup> ; 110; 220 | 2,5; 3,5; 7;<br>14; <b>25</b> <sup>(3)</sup> ; 28;<br>30; 50; 56;<br>112; 224 | 2,5; 3,5; 7; 14;<br>28; <b>30</b> <sup>(3)</sup> ; 50;<br>56; 112; 224 | 2,5; 3,5; 7; 14;<br>28; 30;40 <sup>(6)</sup> ; 56;<br><b>60</b> <sup>(6)</sup> ; 112 | 2,5; 3,5; 7; 14;<br>28; <b>30</b> ; 40 <sup>(4)(6)</sup> ;<br>56; <b>60</b> <sup>(4)(6)</sup> ; <b>112</b> | 3,5; 7; 14;<br>28; 56 <sup>(6)</sup> ; 112 | 3,5; 7; 14;<br><b>28</b> ; 56 <sup>(6)</sup> ; 112 |
| Диапазон выходной мощности Тх (дБВт)                                           | -21,03,0                                       | -18,64                                        | -373,0                                                                                                        | -100                                                                                                                      | -28,03,0                                                                      | -27,010,0                                                              | -3919                                                                                | -100                                                                                                       | -299                                       | -2915                                              |
| Диапазон плотности выходной мощности Тх (дБВт/М $\Gamma$ ц) $^{(1)}$           | -26,48,4                                       | -33,1<br>-18,5                                | -45,419,0                                                                                                     | -26                                                                                                                       | -42,017,0                                                                     | -41,824,8                                                              | -53,833,8 <sup>(7)</sup>                                                             | -24,814,8                                                                                                  | -37,517,5                                  | -43,5<br>-29,5                                     |
| Диапазон потерь<br>в фидере/мультиплексоре (дБ)                                | 010,0                                          | 010,0                                         | 0,09,3                                                                                                        | 09,3                                                                                                                      | 0,06,3                                                                        | 05,9                                                                   | 0,06,3                                                                               | 0,06,3                                                                                                     | 01,5                                       | 01,5                                               |
| Диапазон коэффициента усиления антенны (дБи)                                   | 31,949,0                                       | 31,949,0                                      | 21,748,3                                                                                                      | 3248                                                                                                                      | 32,349,7                                                                      | 32,349,7                                                               | 31,548                                                                               | 31,548                                                                                                     | 37,843                                     | 37,843                                             |
| Диапазон значений э.и.и.м. (дБВт)                                              | 16,937                                         | 19,936                                        | -11,743                                                                                                       | -1,136                                                                                                                    | 9,434,7                                                                       | 12,829,6                                                               | -13,929                                                                              | 15,248                                                                                                     | 7,334,0                                    | 7,328,05                                           |
| Диапазон плотности э.и.и.м. $(дБВт/M\Gamma u)^{(1)}$                           | 11,531,6                                       | 5,421,5                                       | -20,427,3<br>(мода 16,2)                                                                                      | -17,120<br>(мода 8,0)                                                                                                     | -4,620,7                                                                      | -2,014,8                                                               | -28,714,2 <sup>(7)</sup>                                                             | 0,433,2                                                                                                    | -1,125,5                                   | -7,213,5                                           |
| Типичный коэффициент шума приемника                                            | 5                                              | 5                                             | 5,0                                                                                                           | 5                                                                                                                         | 6                                                                             | 5                                                                      | 6,5                                                                                  | 6,5                                                                                                        | 6                                          | 6                                                  |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/М $\Gamma$ ц)   | -139                                           | -139                                          | -139                                                                                                          | -139                                                                                                                      | -138                                                                          | -139                                                                   | -137,5                                                                               | -137,5                                                                                                     | -138                                       | -138                                               |
| Нормированный входной уровень Rx для BER 1 × 10 <sup>-6</sup> (дБВт/МГц)       | -125,5                                         | -109,5                                        | -125,5                                                                                                        | -112,5                                                                                                                    | -124,5<br>-119,5                                                              | -116                                                                   | -117                                                                                 | -108                                                                                                       | -131,3                                     | -107,3                                             |
| Номинальная плотность мощности долговременной помехи (дБВт/МГц) <sup>(2)</sup> | -139+ I/N                                      | -139136 +<br>I/N                              | -139 + I/N                                                                                                    | -139 + I/N                                                                                                                | -138 + I/N                                                                    | -139 + I/N                                                             | -137,5 + <i>I</i> / <i>N</i>                                                         | -137,5 + I/N                                                                                               | -138 + I/N                                 | -138 + I/N                                         |

ПРИМЕЧАНИЕ. — Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совмести мости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные полужирным шрифтом. При наличии наиболее вероятного значения (моды) его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(2)</sup> Номинальная плотность мощности долговременных помех определяется как "плотность мощности шума приемника + (требуемое значение I/N)", как описано в пункте 4.13 в Приложении 2 (см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Данное значение разноса каналов не указано в справочной Рекомендации.

<sup>(4)</sup> В данной системе применяется адаптивная модуляция между QPSK и 16-QAM, а при обычных условиях выбирается 16-QAM. В этой системе используется полоса частот 25,27–26,98 ГГц.

<sup>(5)</sup> В Районе 2 эта система используется в полосе частот 25,25–27,3 ГГц.

<sup>(6)</sup> Ширина полосы частотного блока.

<sup>(7)</sup> Эти значения плотности э.и.и.м. Тх получены из разноса канала (ширины полосы) 30 МГц в пределах частотного блока 60 МГц.

ТАБЛИЦА 11 Параметры систем для систем РР ФС в распределенных полосах частот между 36 и 59 ГГц

| Полоса частот<br>(ГГц)                                                                        | 36,0–40,5                                      |                                                                         | 40,5-                           | -43,5                           | 51,4                  | -52,6                 | 55,78–59,0                                                                                                                                      |                                |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| Ссылка на Рекомендацию МСЭ-R                                                                  | F.7                                            | 49                                                                      | F.2                             | 005                             | F.1                   | 496                   | F.1497                                                                                                                                          |                                |  |
| Модуляция                                                                                     | QPSK                                           | 32-QAM                                                                  | QPSK                            | 256-QAM                         |                       |                       | FSK                                                                                                                                             |                                |  |
| Разнос каналов и ширина полосы шума приемника (МГц)                                           | 2,5; 3,5; 7; 14; <b>28</b> ; 56; 112; 140; 224 | 2,5; 3,5; 7; 10;<br>14; 28; 30; 40;<br>50; <b>56</b> ; 112; 140;<br>224 | 7; 14; <b>28</b> ; 56; 112; 224 | 7; 14; 28; <b>56</b> ; 112; 224 | 3,5; 7; 14; 28;<br>56 | 3,5; 7; 14; 28;<br>56 | 3,5; 7; <b>10</b> <sup>(3)</sup> ; 14; <b>20</b> <sup>(3)</sup> ; 28; <b>30</b> <sup>(3)</sup> ; <b>40</b> <sup>(3)</sup> ; <b>50</b> ; 56; 100 | 3,5; 7; 14; 28;<br>50; 56; 100 |  |
| Диапазон выходной мощности Тх (дБВт)                                                          | -6015                                          | -37,516,5                                                               | -10                             | -17                             | ПРИМЕ-                | ПРИМЕ-                | -203                                                                                                                                            | ПРИМЕ-                         |  |
| Диапазон плотности выходной мощности $Tx (дБВт/M\Gamma \iota \iota)^{(1)}$                    | -68,423,4                                      | -45,933,9                                                               | -24,5                           | -34,5                           | ЧАНИЕ                 | ЧАНИЕ                 | -37,07,0                                                                                                                                        | ЧАНИЕ                          |  |
| Диапазон потерь в фидере/мультиплексоре (дБ)                                                  | 0                                              | 0                                                                       | 02,5                            | 02,5                            |                       |                       | 02,5                                                                                                                                            |                                |  |
| Диапазон коэффициента усиления антенны (дБи)                                                  | 3445                                           | 3446                                                                    | 3844                            | 3844                            |                       |                       | 40,148,8                                                                                                                                        |                                |  |
| Диапазон значений э.и.и.м. (дБВт)                                                             | -20,830                                        | -1,729,5                                                                | 25,534                          | 18,527                          |                       |                       | 17,651,8                                                                                                                                        |                                |  |
| Диапазон плотности э.и.и.м. $(дБВт/M\Gamma u)^{(1)}$                                          | -29,221,5                                      | -15,712,1                                                               | 1119,5                          | 1,09,5                          |                       |                       | 0,641,8                                                                                                                                         |                                |  |
| Типичный коэффициент шума приемника (дБ)                                                      | 8                                              | 7                                                                       | 7                               | 7                               |                       |                       | 7                                                                                                                                               |                                |  |
| Типичная плотность мощности шума приемника $(=N_{RX})$ (дБВт/МГц)                             | -136                                           | -137,7                                                                  | -137                            | -137                            |                       |                       | -137                                                                                                                                            |                                |  |
| Нормированный входной уровень $Rx$ для $BER\ 1 \times 10^{-6}$ (д $\overline{B}BT/M\Gamma$ ц) | -122,5                                         | -114,2                                                                  | -123,5                          | -104,4                          |                       |                       | -123,6                                                                                                                                          |                                |  |
| Номинальная плотность мощности долговременной помехи (дБВт/МГц) <sup>(2)</sup>                | -136 + I/N                                     | -137,7 + I/N                                                            | -137+ I/N                       | -137 + I/N                      | $N_{RX} + I/N$        | $N_{RX} + I/N$        | -137 + I/N                                                                                                                                      | $N_{RX} + I/N$                 |  |

ПРИМЕЧАНИЕ. – Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совместимости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные полужирным шрифтом. При наличии наиболее вероятного значения (моды), его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(2)</sup> Номинальная плотность мощности долговременных помех определяется как "плотность мощности шума приемника + (требуемое значение I/N)", как описано в пункте 4.13 в Приложении 2 (см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Данное значение разноса каналов не указано в справочной Рекомендации.

**Рек. МСЭ-R F.758-8** 

ТАБЛИЦА 12 Параметры систем для систем РР ФС в распределенных полосах частот выше 59 ГГц

| Полоса частот<br>(ГГц)                                                                | 59                | 9–64                                                         | 64–6                       | 66                                                              | 71–76/81–86<br>F.2006                                           |                |  |
|---------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------------|--|
| Ссылка на Рекомендацию МСЭ-R                                                          | F.                | 1497                                                         | F.14                       | 97                                                              |                                                                 |                |  |
| Модуляция                                                                             | QPSK              | 64-QAM                                                       | BPSK                       | 64-QAM                                                          | QPSK                                                            | 64 QAM         |  |
| Разнос каналов и ширина полосы шума приемника (МГц)                                   | 50; 100           | 50; 100; 150; 250;<br><b>500</b> <sup>(3)</sup> ; 1250; 2500 | <b>30</b> ; 50             | 50; 100; 150;<br>250; <b>500</b> <sup>(3)</sup> ;<br>1250; 2500 | 250; 500; 750; 1000;<br><b>1250</b> ; 1500; 1750;<br>2000; 2250 | 500; 700; 1000 |  |
| Диапазон выходной мощности Тх (дБВт)                                                  | -2220             | -24                                                          | -1512                      | -24                                                             | -10                                                             | -20            |  |
| Диапазон плотности выходной мощности $Tx$ (д $Б$ $Bт$ / $M$ $\Gamma$ $\mu$ ) $^{(1)}$ | -4240             | -51                                                          | -29,826,8                  | -51                                                             | -41                                                             | -4750          |  |
| Диапазон потерь в фидере/мультиплексоре (дБ)                                          | 02,5              | 02,5                                                         | 02,5                       | 02,5                                                            | 0                                                               | 0              |  |
| Диапазон коэффициента усиления антенны (дБи)                                          | 3848              | 3848                                                         | 4850                       | 3848                                                            | 54                                                              | 4450           |  |
| Диапазон значений э.и.и.м. (дБВт)                                                     | 13,528            | 11,524                                                       | 30,538                     | 11,524                                                          | 44                                                              | 2430           |  |
| Диапазон плотности э.и.и.м. (дБВт/МГц)(1)                                             | -6,58             | -15,53,0                                                     | 15,823,3                   | -15,53,0                                                        | 13                                                              | -63            |  |
| Типичный коэффициент шума приемника (дБ)                                              | 8                 | 8                                                            | 9                          | 8                                                               | 10                                                              | 8              |  |
| Типичная плотность мощности шума приемника $(=N_{RX})$ (дБВт/МГц)                     | -136              | -136                                                         | -135                       | -136                                                            | -134                                                            | -136           |  |
| Нормированный входной уровень Rx для BER $1 \times 10^{-6}$ (дБВт/МГц)                | -122,5            | -109,5                                                       | -124,5                     | -109,5                                                          | -120,5                                                          | -9491          |  |
| Номинальная плотность мощности долговременной помехи (дБВт/М $\Gamma$ ц) $^{(2)}$     | -136 + <i>I/N</i> | -136 + I/N                                                   | -135 + <i>I</i> / <i>N</i> | -136 + I/N                                                      | -134 + <i>I</i> / <i>N</i>                                      | -136 + I/N     |  |

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные полужирным шрифтом. При наличии наиболее вероятного значения (моды), его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(2)</sup> Номинальная плотность мощности долговременных помех определяется как "плотность мощности шума приемника + (требуемое значение *I/N*)", как описано в пункте 4.13 в Приложении 2 (см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Данное значение разноса каналов не указано в справочной Рекомендации.

ТАБЛИЦА 13 Параметры систем РМР ФС на частотах ниже 0,47 ГГц

| Полоса частот<br>(ГГц)                                                              | 0,457–0,                            | ,464                             |
|-------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                        |                                     |                                  |
| Модуляция                                                                           | Центральные станции<br>4-FSK, QPSK  | Оконечные станции<br>4-FSK, QPSK |
| Разнос каналов и ширина полосы шума приемника (МГц)                                 | 0,0125                              | 0,0125                           |
| Максимальный диапазон выходной мощности Тх (дБВт)                                   | 1–10                                | 1–10                             |
| Максимальный диапазон плотности выходной мощности $Tx (дБВт/M\Gamma ц)^{(1)}$       | 20–29                               | 20–29                            |
| Минимальный диапазон потерь в фидере/мультиплексоре (дБ)                            | 1–3                                 | 1–4                              |
| Максимальный диапазон коэффициента усиления антенны (дБи)                           | 2–11<br>(всенаправленная/секторная) | 8–17<br>(направленная)           |
| Максимальный диапазон значений э.и.и.м. (дБВт)                                      | 14–20                               | 18–24                            |
| Максимальный диапазон плотности э.и.и.м. $(дБВт/M\Gamma u)^{(1)}$                   | 33–39                               | 37–43                            |
| Коэффициент шума приемника (дБ)                                                     | 4                                   | 4                                |
| Типичная плотность мощности шума приемника $(=N_{RX})$ (дБВт/МГц)                   | -140 <sup>(1)</sup>                 | -140 <sup>(1)</sup>              |
| Нормированный входной уровень $Rx$ для $BER = 1 \times 10^{-6}$ (д $BET/M\Gamma$ ц) | -121(2)                             | -121 <sup>(2)</sup>              |
| Номинальная плотность мощности долговременной помехи (дБВт/М $\Gamma$ ц) $^{(2)}$   | $-140 + I/N^{(3)}$                  | $-140 + I/N^{(3)}$               |

 $<sup>^{(1)}</sup>$  Плотность мощности шума приемника в канале будет равна -159 дБВт/12,5 кГц.

<sup>&</sup>lt;sup>(2)</sup> Нормированный уровень входной мощности на приемнике для BER =  $1 \times 10^{-6}$  в канале будет равен  $-140~\rm{дБBr}/12,5~\rm{к}$  Гц.

 $<sup>^{(3)}</sup>$  Номинальная плотность мощности долговременной помехи в канале будет равна (-159 + I/N) дБВт/12,5 кГц.

ТАБЛИЦА 14 Параметры систем для систем РМР ФС в распределенных полосах частот между 1,3 до 11 ГГц

| Полоса частот<br>(ГГц)                                                            | ,                      | -2,69<br>ны 1,35–2,5) | )                                                             | -2,69<br>оны 2,5-2,69)       | 3,40-3                                                        | 3,80                                            | 10,15–1                                                                    | 0,68                                  |  |
|-----------------------------------------------------------------------------------|------------------------|-----------------------|---------------------------------------------------------------|------------------------------|---------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|--|
| Ссылка на Рекомендацию МСЭ-R                                                      | F.7                    | 701                   | F.′                                                           | 701                          | F.148                                                         | 38                                              | F.747, F.1568                                                              |                                       |  |
| Формат модуляции                                                                  | Центральные<br>станции | Оконечные<br>станции  | Центральные<br>станции<br>от QPSK<br>до 64-QAM <sup>(5)</sup> | Оконечные<br>станции<br>QPSK | Центральные<br>станции<br>от QPSK<br>до 64-QAM <sup>(5)</sup> | Оконечные<br>станции<br>QPSK                    | Центральные<br>станции<br>64-QAM                                           | Оконечные<br>станции<br>64-QAM        |  |
| Разнос каналов и ширина полосы шума приемника (МГц)                               | Кратно 0,5             | Кратно 0,5            | 5; 5,5; 6 <sup>(6)</sup>                                      | 5; 5,5; 6 <sup>(6)</sup>     | 25 <sup>(4)</sup> ; 1,75; 3,5;14 <sup>(7)</sup>               | 25 <sup>(4)</sup> ; 1,75; 3,5;14 <sup>(7)</sup> | <b>1,75</b> <sup>(3)</sup> ; 2,5; 5; 28 <sup>(4)</sup> ; 30 <sup>(4)</sup> | <b>1,75</b> (3); 2,5; 5; 28(4); 30(4) |  |
| Диапазон выходной мощности Тх (дБВт)                                              | ПРИМЕ-                 | ПРИМЕ-                | 513                                                           | -60                          | 513                                                           | -60                                             | -3                                                                         | -12                                   |  |
| Диапазон плотности выходной мощности $Tx$ (дБВт/М $\Gamma$ ц) $^{(1)}$            | ЧАНИЕ                  | ЧАНИЕ                 | -2,786,01                                                     | -13,86,99                    | -6,4610,6                                                     | -17,52,43                                       | -5,43                                                                      | -14,4                                 |  |
| Диапазон потерь в фидере/мультиплексоре (дБ)                                      |                        |                       | 3                                                             | 0                            | 2                                                             | 0                                               | 0,5                                                                        | 0                                     |  |
| Тип антенны и диапазон коэффициента<br>усиления (дБи)                             |                        |                       | 13<br>(всенаправленная)<br>16 (секторная)                     | 13<br>(всенаправленная)      | 10<br>(всенаправленная)<br>18 (секторная)                     | 8<br>(внутренняя)<br>18 (наружная)              | 15<br>(90° микрополоско-<br>вая секторная)                                 | 18<br>(панельная)                     |  |
| Диапазон значений э.и.и.м. (дБВт)                                                 | 1                      |                       | 2326                                                          | 32                           | 2129                                                          | 818                                             | 11,5                                                                       | 6                                     |  |
| Диапазон плотности э.и.и.м. (дБВт/МГц)(1)                                         |                        |                       | 15,219,0                                                      | 24,225,0                     | 9,5426,5                                                      | -3,4615,6                                       | 9,07                                                                       | 3,57                                  |  |
| Типичный коэффициент шума приемника (дБ)                                          |                        |                       | 4                                                             | 4                            | 3                                                             | 3                                               | 5                                                                          | 5                                     |  |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/МГц)               |                        |                       | -140                                                          | -140                         | -141                                                          | -141                                            | -139                                                                       | -139                                  |  |
| Нормированный входной уровень $Rx$ для BER $1 \times 10^{-6}$ (дБВт/М $\Gamma$ ц) |                        |                       | -126,5113,5                                                   | -126,5                       | -127,5114,5                                                   | -127,5                                          | -112,5                                                                     | -112,5                                |  |
| Номинальная плотность мощности долговременной помехи (дБВт/МГц) <sup>(2)</sup>    | $N_{RX} + I/N$         | $N_{RX} + I/N$        | -140 + I/N                                                    | -140 + I/N                   | -141 + I/N                                                    | -141 + I/N                                      | -139 + I/N                                                                 | -139 + I/N                            |  |

ПРИМЕЧАНИЕ. – Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совместимости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

- (3) Данное значение разноса каналов не указано в справочной Рекомендации.
- (4) Ширина полосы частотного блока.
- (5) Формат модуляции обычно изменяется динамически в соответствии с ухудшением условий распространения.
- (6) В Рекомендации МСЭ-R F.701 приведен лишь базовый интервал 0,5 МГц (или кратное ему целое значение). Значения 5; 5,5 и 6 МГц предложены в качестве наиболее распространенных разносов каналов для этих систем.
- (7) В Рекомендации МСЭ-R F.1488 приведен лишь базовый интервал 0,25 МГц (или кратное ему целое значение). Значения 1,75; 3,5... 14 МГц предложены в качестве наиболее распространенных разносов каналов для этих систем.

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные полужирным шрифтом. При наличии наиболее вероятного значения (моды) его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(</sup>см. также пункт 4.1 в Приложении 1).

ТАБЛИЦА 15 Параметры систем для систем РМР ФС в распределенных полосах частот выше 11 ГГц

| Полоса частот<br>(ГГц)                                                            | 17,70                            | -19,70               | 21,20                       | )-23,60              |                                                                                                                               | 24,25–29,50                                                                               |                                                                                           | 31,                                                | 8–33,4                                             | 38,6                        | 5–40,00              |
|-----------------------------------------------------------------------------------|----------------------------------|----------------------|-----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------|----------------------|
| Ссылка на Рекомендацию МСЭ-R                                                      | F.5                              | 595                  | F.                          | .637                 |                                                                                                                               | F.748                                                                                     |                                                                                           | F.1520                                             |                                                    | F.749                       |                      |
| Модуляция                                                                         | Цент-<br>ральная<br>станция      | Оконечные<br>станции | Цент-<br>ральная<br>станция | Оконечные<br>станции | Станция с многопунктовой (решетчатой) антенной 60 см, имеющей высокий коэффициент усиления, от QPSK до 256-QAM <sup>(6)</sup> | Центральная станция от QPSK до 16-QAM <sup>(6)</sup>                                      | Оконечные станции от QPSK до 16-QAM <sup>(6)</sup>                                        | Цент-<br>ральная<br>станция                        | Оконечные<br>станции                               | Цент-<br>ральная<br>станция | Оконечные<br>станции |
| Разнос каналов и ширина полосы шума приемника (МГц)                               | 2,5; 5; 10;<br>20; 30; 40;<br>50 |                      | 3,5; 7; 14;<br>28           | 3,5; 7; 14;<br>28    | 40; 50; 56; 100; 112                                                                                                          | 3,5; 7; 14; 28; <b>30</b> <sup>(3)</sup> ; 56; 112; 40 <sup>(4)</sup> ; 60 <sup>(4)</sup> | 3,5; 7; 14; 28; <b>30</b> <sup>(3)</sup> ; 56; 112; 40 <sup>(4)</sup> ; 60 <sup>(4)</sup> | 3,5; 7; 14;<br>28; 56 <sup>(4)</sup> ;<br>112; 168 | 3,5; 7; 14;<br>28; 56 <sup>(4)</sup> ;<br>112; 168 | 50(4); 60(4)                | 50(4); 60(4)         |
| Диапазон выходной мощности Тх (дБВт)                                              | ПРИМЕ-<br>ЧАНИЕ                  | ПРИМЕ-<br>ЧАНИЕ      | ПРИМЕ-<br>ЧАНИЕ             | ПРИМЕ-<br>ЧАНИЕ      | -125                                                                                                                          | -19                                                                                       | [-3919]                                                                                   | ПРИМЕ-<br>ЧАНИЕ                                    | ПРИМЕ-<br>ЧАНИЕ                                    | ПРИМЕ-<br>ЧАНИЕ             | ПРИМЕ-<br>ЧАНИЕ      |
| Диапазон плотности выходной мощности Тх (дБВт/М $\Gamma$ ц) $^{(1)}$              |                                  |                      |                             |                      | <b>−62 −28</b>                                                                                                                | -33,8 <sup>(6)</sup>                                                                      | $-53,8$ $-33,8^{(5)}$                                                                     |                                                    |                                                    |                             |                      |
| Диапазон потерь<br>в фидере/мультиплексоре (дБ)                                   |                                  |                      |                             |                      | 01                                                                                                                            | 0                                                                                         | 0                                                                                         |                                                    |                                                    |                             |                      |
| Тип антенны и диапазон коэффициента усиления (дБи)                                |                                  |                      |                             |                      | 43<br>(направленная)                                                                                                          | 6,5<br>(всенаправленная)                                                                  | 15<br>(плоская)35                                                                         |                                                    |                                                    |                             |                      |
| Диапазон значений э.и.и.м. (дБВт)                                                 |                                  |                      |                             |                      | 2936,5 дБВт                                                                                                                   | -12,5                                                                                     | -7,512,5                                                                                  |                                                    |                                                    |                             |                      |
| Диапазон плотности э.и.и.м. $(д BT/M \Gamma \eta)^{(1)}$                          |                                  |                      |                             |                      | 1718                                                                                                                          | -27,3 <sup>(5)</sup>                                                                      | -22,32,3 <sup>(5)</sup>                                                                   |                                                    |                                                    |                             |                      |
| Типичный коэффициент шума приемника (дБ)                                          |                                  |                      |                             |                      | 6                                                                                                                             | 8                                                                                         | 8                                                                                         |                                                    |                                                    |                             |                      |
| Типичная плотность мощности шума приемника (= NRX) (дБВт/МГц)                     |                                  |                      |                             |                      | -138                                                                                                                          | -136                                                                                      | -136                                                                                      |                                                    |                                                    |                             |                      |
| Нормированный входной уровень $Rx$ для BER $1 \times 10^{-6}$ (дБВт/МГц)          |                                  |                      |                             |                      | -130                                                                                                                          | -122,5<br>-115,5                                                                          | -122,5<br>-115,5                                                                          |                                                    |                                                    |                             |                      |
| Номинальная плотность мощности долговременной помехи (дБВт/М $\Gamma$ ц) $^{(2)}$ | $N_{RX} + I/N$                   | $N_{RX} + I/N$       | $N_{RX} + I/N$              | $N_{RX} + I/N$       | -138 + I/N                                                                                                                    | -136 + <i>I/N</i>                                                                         | -136 + I/N                                                                                | $N_{RX} + I/N$                                     | $N_{RX} + I/N$                                     | $N_{RX} + I/N$              | $N_{RX} + I/N$       |

ПРИМЕЧАНИЕ. — Заданный набор параметров для двух эталонных систем в целях проведения исследований совместного использования частот/совместимости в настоящее время недоступен или доступен лишь частично. В качестве временной меры можно использовать параметры, приведенные в Приложении 3 для тех же полос частот.

- (3) Данное значение разноса каналов не указано в справочной Рекомендации.
- (4) Ширина полосы частотного блока.
- (5) Эти значения плотности мощности передатчика или э.и.и.м. рассчитаны для разноса каналов (ширины полосы частот) 30 МГц в блоке частот шириной 60 МГц.
- (6) Формат модуляции обычно изменяется динамически в соответствии с ухудшением условий распространения.

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. передатчика необходимо определить разнос каналов/ширину полосы канала. В приведенных таблицах используются цифры разноса каналов, обозначенные **полужирным шрифтом**. При наличии наиболее вероятного значения (моды) его следует принимать в качестве ориентировочного в заданном диапазоне, и может потребоваться дополнительный анализ чувствительности в каждом отдельном случае для оценки потенциала данной помехи, обусловленного изменениями в пределах указанного диапазона.

<sup>(2)</sup> Номинальная плотность мощности долговременных помех определяется как "плотность мощности шума приемника + (требуемое значение I/N)", как описано в пункте 4.13 в Приложении 2 (см. также пункт 4.1 в Приложении 1).

### Прилагаемый документ 1 к Приложению 2

#### Примеры исследований статистического распределения

Значения, приведенные в следующих примерах, получены путем анализа некоторых сетей РР в сетях инфраструктуры подвижной связи, при этом статистические функции привязаны к статистике базовых станций подвижной связи на территории одной администрации. Указанные сети описываются следующим образом:

- 1335 линий с диапазоном протяженности 16–0,4 км в диапазоне 11 ГГц;
- 1285 линий с диапазоном протяженности 8,7–0,1 км в диапазоне 15 ГГц;
- 1058 линий с диапазоном протяженности 5,1–0,1 км в диапазоне 18 ГГц.

Полученные в результате статистические распределения э.и.и.м. для этих линий представлены в таблице 16.

ТАБЛИЦА 16

Разность между теоретическим максимумом и статистическим разбросом фактических значений э.и.и.м.; на примере трех систем одной администрации

| Полоса частот<br>(ГГц)                                              | 10,715–10,955<br>11,245–11,485 | 14,5–14,660<br>14,970–15,130 | 17,850–17,970<br>18,600–18,720 |
|---------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------|
| Теоретический максимум <sup>(1)</sup>                               | 40,3                           | 38,1                         | 35                             |
| Фактическое максимальное значение                                   | 38,8                           | 35,4                         | 33                             |
| Фактическое среднее значение (μ)                                    | 31,7                           | 28,4                         | 22,8                           |
| Стандартное отклонение фактических значений (σ)                     | 3,2                            | 3,2                          | 4,3                            |
| Разность между теоретическим и фактическим максимальными значениями | 1,5                            | 2,7                          | 2                              |
| $\mu + 2\sigma$                                                     | 38,1                           | 34,8                         | 31,4                           |
| Теоретический максимум (μ + 2σ)                                     | 2,2                            | 3,3                          | 3,6                            |
| $\mu + 1,64\sigma$                                                  | 37                             | 33,7                         | 29,9                           |
| Теоретический максимум (μ + 1,64σ)                                  | 3,3                            | 4,4                          | 5,1                            |

<sup>(1)</sup> Теоретический максимум = выходная мощность Тх (максимальная) — потери в фидере/мультиплексоре (минимальные) + коэффициент усиления антенны (максимальный); это значение может и не быть фактическим максимальным значением.

Значения разности между теоретическим и фактическим максимальными уровнями лежат в диапазоне от 1,5 до 2,7 дБ. Фактические данные передатчика для этих систем включают более 2000 точек данных. Затем, предполагая, что массив данных, содержащий более 2000 точек, подчиняется нормальному распределению, можно вычислить значения 2  $\sigma$  и 1,64  $\sigma$ . Здесь  $\sigma$  — стандартное отклонение, а  $\mu$  — среднее значение. Порядка 95% точек данных находятся в пределах 2  $\sigma$  от среднего значения, и около 90% — в пределах 1,64  $\sigma$  от среднего значения. Уровень э.и.и.м. снижается от теоретического максимума примерно на 3 дБ для 95% точек и на 4 дБ для 90%.

Следует отметить, что подобный анализ может привести к несколько различающимся результатам в зависимости от статистического распределения данных.

Тем не менее можно показать, что на практике существует некоторая разность между теоретическим максимумом и максимальными значениями фактических данных.

#### Приложение 3

#### Другие конкретные параметры систем ФС

В настоящем Приложении также представлены реальные системы, развернутые на протяжении определенного времени. Некоторые из этих параметров могут быть устаревшими, но дело в том, что от администраций пока не поступало обновленных сводных наборов параметров; тем не менее приведенные параметры могут все же использоваться, если в таблицах Приложения 2 отсутствуют справочные данные по системам для рассматриваемых полос частот.

Настоящее Приложение создано на базе Отчета МСЭ-R F.2108. Обновлены следующие термины:

- Термины "Концентратор", "Базовая станция", "Центральная станция" сведены в единый термин "Центральная станция".
- Термины "Удаленная станция" ("Remote station", "Out station"), "Оконечная станция" сведены в единый термин "Оконечная станция".

Для каждого диапазона частот в таблицах 17–20 два столбца относятся к репрезентативным значениям для более простых и более сложных систем соответственно (см. пункт 4.3 Приложения 2).

38 Рек. МСЭ-R F.758-8

ТАБЛИЦА 17 Параметры систем для систем РР ФС в распределенных полосах частот ниже 3 ГГц

| Полоса частот<br>(ГГц)                                                                   | 0,4061-0,450                                                                             |                                                                                        | 1,350                   | -1,530                  | ,          | -2,100<br>-2,300 | 1,900-                                           | -2,300                             | 2,290–2,670                                         |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|-------------------------|------------|------------------|--------------------------------------------------|------------------------------------|-----------------------------------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                             | F.                                                                                       | 1567                                                                                   | F.1                     | 242                     | F.3        | 382              | F.1                                              | 098                                | F.1243                                              |
| Модуляция                                                                                | QPSK                                                                                     | 32-QAM                                                                                 | MSK                     | QPSK                    | O-QPSK     | QPSK             | QPSK                                             | 256-QAM                            | MSK                                                 |
| Разнос каналов и ширина полосы шума приемника (МГц)                                      | 0,05; 0,1;<br>0,15; 0,2;<br><b>0,25</b> ; 0,3; 0,5;<br>0,6; 0,75; 1;<br>1,75; <b>3,5</b> | 0,05; 0,1; 0,15;<br><b>0,2</b> ; 0,25; 0,3;<br>0,5; 0,6; 0,75; 1;<br><b>1,75</b> ; 3,5 | 0,25; 0,5; 1;<br>2; 3,5 | 0,25; 0,5; 1;<br>2; 3,5 | 29         | 29               | 1,75; <b>2,5</b> ; 3,5; <b>7</b> ; 10; <b>14</b> | 1,75; 2,5; <b>3,5</b> ; 7; 10; 14  | 0,25; 0,5; 1;<br>1,75; 2; 2,5;<br>3,5; 7; <b>14</b> |
| Максимальный диапазон выходной мощности Тх (дБВт)                                        | 7                                                                                        | 0                                                                                      | 7                       | 07                      | 7          | 3                | -97                                              | -12                                | 5                                                   |
| Максимальный диапазон плотности выходной мощности Тх (дБВт/МГц) <sup>(1)</sup>           | 1,613                                                                                    | -2,47,0                                                                                | 4,0                     | -3,07                   | -7,6       | -12              | -141,5                                           | -6,43,4                            | -6,5                                                |
| Минимальный диапазон потерь в фидере/мультиплексоре (дБ)                                 | 2                                                                                        | 2                                                                                      | 5                       | 15                      | 3          | 1                | 36                                               | 02                                 | 4                                                   |
| Максимальный диапазон коэффициента усиления антенны (дБи)                                | 25                                                                                       | 25                                                                                     | 16                      | 1633                    | 33         | 31               | 2830                                             | 3338                               | 25                                                  |
| Максимальный диапазон значений э.и.и.м. (дБВт)                                           | 30                                                                                       | 23                                                                                     | 20                      | 2039                    | 40         | 34               | 1430                                             | 3240                               | 26                                                  |
| Максимальный диапазон плотности э.и.и.м. (дБВт/М $\Gamma$ ц) $^{(1)}$                    | 2536                                                                                     | 2130                                                                                   | 17                      | 1739                    | 25         | 19               | 1019                                             | 2735                               | 15                                                  |
| Коэффициент шума приемника (дБ)                                                          | 5                                                                                        | 3,5                                                                                    | 4                       | 47                      | 4          | 4                | 46                                               | 34                                 | 4                                                   |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/МГц)                      | -139                                                                                     | -140,5                                                                                 | -140                    | -140137                 | -140       | -140             | -140138                                          | -141140                            | -140                                                |
| Нормированный входной уровень Rx для BER 1 $\times$ 10 <sup>-6</sup> (дБВт/М $\Gamma$ ц) | -125,5                                                                                   | -117                                                                                   | -126,5                  | -126,5<br>-123,5        | -126,5     | -126,5           | -126,5<br>-124,5                                 | -108,4<br>-107,4                   | -126,5                                              |
| Номинальная плотность мощности долговременной помехи (дБВт/МГц) $^{(2)}$                 | -139 + I/N                                                                               | -140,5 + <i>I/N</i>                                                                    | -140 + I/N              | -140<br>-137 + I/N      | -140 + I/N | -140 + I/N       | -140<br>-138 + I/N                               | -141<br>-140 + <i>I</i> / <i>N</i> | -140 + I/N                                          |

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. Тх необходимо определить разнос/ширину полосы канала. В приведенных таблицах используются цифры разноса канала, обозначенные полужирным шрифтом.

<sup>(2)</sup> Номинальная плотность мощности долговременной помехи определяется следующим образом: "Плотность мощности шума приемника + (требуемое отношение *I/N*)", как описано в пункте 4.13 Приложения 2 (см. также пункт 4.1 в Приложении 1).

ТАБЛИЦА 18 Параметры систем для систем РР ФС в распределенных полосах частот между 3 и 12 ГГц

| Полоса частот<br>(ГГц)                                                              | 3,600–4,200                            |                                   | 3,700–4,200   | 10,5–10,68          |                           |
|-------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|---------------|---------------------|---------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                        | F.635                                  |                                   | F.382         | F.747               |                           |
| Модуляция                                                                           | 64-QAM                                 | 512-QAM                           | QPSK          | QPSK <sup>(3)</sup> | 128-TCM                   |
| Разнос каналов и ширина полосы шума приемника (МГц)                                 | <b>10</b> ; <b>30</b> ; 40; 60; 80; 90 | 10; 30; <b>40</b> ; 60;<br>80; 90 | 28; <b>29</b> | 1,25; 2,5; 3,5; 7   | 1,25; <b>2,5</b> ; 3,5; 7 |
| Максимальный диапазон выходной мощности Тх (дБВт)                                   | -1                                     | 7                                 | 0             | -2                  | -3                        |
| Максимальный диапазон плотности выходной мощности Тх $(д B B T / M \Gamma u)^{(1)}$ | -1611                                  | -9,0                              | -15           | -10                 | -7,0                      |
| Минимальный диапазон потерь в фидере/мультиплексоре (дБ)                            | 0                                      | 3                                 | 3             | 0                   | 0                         |
| Максимальный диапазон коэффициента усиления антенны (дБи)                           | 42                                     | 40                                | 37            | 49                  | 51                        |
| Максимальный диапазон значений э.и.и.м. (дБВт)                                      | 41                                     | 44                                | 38            | 47                  | 48                        |
| Максимальный диапазон плотности э.и.и.м. (дБВт/МГц)(1)                              | 2631                                   | 28                                | 23            | 39                  | 44                        |
| Коэффициент шума приемника (дБ)                                                     | 3                                      | 2                                 | 4             | 3                   | 4                         |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/М $\Gamma$ ц)        | -141                                   | -142                              | -140          | -141                | -140                      |
| Нормированный входной уровень Rx для BER 1 × 10 <sup>-6</sup> (дБВт/МГц)            | -114,5                                 | -106,5                            | -126,5        | -127,5              | -116,4                    |
| Номинальная плотность мощности долговременной помехи $(д EBT/M \Gamma \iota)^{(2)}$ | -141 + I/N                             | -142 + I/N                        | -140 + I/N    | -141 + I/N          | -140 + I/N                |

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. Тх необходимо определить разнос/ширину полосы канала. В приведенных таблицах используются цифры разноса канала, обозначенные **полужирным шрифтом**.

<sup>(2)</sup> Номинальная плотность мощности долговременной помехи определяется следующим образом: "Плотность мощности шума приемника + (требуемое отношение *I/N*)", как описано в пункте 4.13 Приложения 2 (см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Описываются два вида модуляции (QPSK и 4-FSK) и выбрана модуляция QPSK.

ТАБЛИЦА  $19^{(*)}$  Параметры систем для систем РР ФС в распределенных полосах частот выше 12 ГГц

| Полоса частот<br>(ГГц)                                                            | 12,75–13,25    | 51,4–52,6                                          |                            |
|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------------------|
| Ссылка на Рекомендацию МСЭ-R                                                      | F.497          | F.1                                                | 496                        |
| Модуляция                                                                         | QPSK           | 4-FSK                                              | 32-QAM                     |
| Разнос каналов и ширина полосы шума приемника (МГц)                               | 3,5; 7; 14; 28 | <b>3,5</b> ; <b>7</b> ; <b>14</b> ; <b>28</b> ; 56 | 3,5; 7; <b>14</b> ; 28; 56 |
| Максимальный диапазон выходной мощности Тх (дБВт)                                 | 10             | -20                                                | -20                        |
| Максимальный диапазон плотности выходной мощности $Tx (дБВт/M\Gamma ц)^{(1)}$     | -4,54,6        | -3425                                              | -31                        |
| Минимальный диапазон потерь в фидере/мультиплексоре (дБ)                          | 0              | 0                                                  | 0                          |
| Максимальный диапазон коэффициента усиления антенны (дБи)                         | 49             | 50                                                 | 50                         |
| Максимальный диапазон значений э.и.и.м. (дБВт)                                    | 45             | 30                                                 | 30                         |
| Максимальный диапазон плотности э.и.и.м. (дБВт/МГц)(1)                            | 3140           | 1625                                               | 19                         |
| Коэффициент шума приемника (дБ)                                                   | 10             | 11                                                 | 7                          |
| Типичная плотность мощности шума приемника (= $N_{RX}$ ) (дБВт/МГц)               | -134           | -133                                               | -137                       |
| Нормированный входной уровень Rx для BER $1 \times 10^{-6}$ (дБВт/МГц)            | -120,5         | -109,9                                             | -113,5                     |
| Номинальная плотность мощности долговременной помехи (дБВт/М $\Gamma$ ц) $^{(2)}$ | -134 + I/N     | -133 + I/N                                         | -137 + I/N                 |

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. Тх необходимо определить разнос/ширину полосы канала. В приведенных таблицах используются цифры разноса канала, обозначенные **полужирным шрифтом**.

<sup>(2)</sup> Номинальная плотность мощности долговременной помехи определяется следующим образом: "Плотность мощности шума приемника + (требуемое отношение *I/N*)", как описано в пункте 4.13 Приложения 2 (см. также пункт 4.1 в Приложении 1).

ТАБЛИЦА 20<sup>(\*)</sup>

### Параметры систем для линий связи РМР ФС в распределенных полосах частот ниже 11 ГГц

| Полоса частот<br>(ГГц)                                                              | 1,35–2,69<br>(субполоса 1,35–2,5)                                         |                                                              |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Ссылка на Рекомендацию МСЭ-R                                                        | F.701                                                                     |                                                              |  |
| Формат модуляции                                                                    | Центральные<br>станции<br>QPSK <sup>(3)</sup>                             | Оконечные<br>станции<br>QPSK $^{(3)}$                        |  |
| Разнос каналов и ширина полосы шума приемника (МГц)                                 | 2; 3,5 <sup>(4)</sup>                                                     | 2; 3,5 <sup>(4)</sup>                                        |  |
| Максимальный диапазон выходной мощности Тх (дБВт)                                   | 07                                                                        | 07                                                           |  |
| Максимальный диапазон плотности выходной мощности $Tx$ (дБВт/М $\Gamma$ ц) $^{(1)}$ | -3,01,6                                                                   | -3,01,6                                                      |  |
| Минимальный диапазон потерь в фидере/мультиплексоре (дБ)                            | 04,4                                                                      | 04                                                           |  |
| Максимальный диапазон коэффициента усиления антенны (дБи)                           | 13 (всенаправленная/<br>секторная)<br>17 (всенаправленная/<br>секционная) | 17,5 (волновой канал/рупорная) 27 (параболическая/ рупорная) |  |
| Максимальный диапазон значений э.и.и.м. (дБВт)                                      | 624                                                                       | 1634                                                         |  |
| Максимальный диапазон плотности э.и.и.м. (дБВт/М $\Gamma$ ц) $^{(1)}$               | 3,019                                                                     | 1329                                                         |  |
| Коэффициент шума приемника (дБ)                                                     | 3,54                                                                      | 3,54                                                         |  |
| Типичная плотность мощности шума приемника $(=N_{RX})$ (дБВт/МГц)                   | -140,5140                                                                 | -140,5140                                                    |  |
| Нормированный входной уровень Rx для BER 1 $\times$ 10 <sup>-6</sup> (дБВт/МГц)     | -127126,5                                                                 | -127126,5                                                    |  |
| Номинальная плотность мощности долговременной помехи $(дБВт/M\Gamma ц)^{(2)}$       | -140,5140 + <i>I</i> / <i>N</i>                                           | -140,5140 + <i>I</i> / <i>N</i>                              |  |

<sup>(1)</sup> Для расчета значений плотности э.и.и.м. Тх необходимо определить разнос/ширину полосы канала. В приведенных таблицах используются цифры разноса канала, обозначенные полужирным шрифтом.

<sup>&</sup>lt;sup>(2)</sup> Номинальная плотность мощности долговременной помехи определяется следующим образом: "Плотность мощности шума приемника + (требуемое отношение I/N)", как описано в пункте 4.13 Приложения 2 (см. также пункт 4.1 в Приложении 1).

<sup>(3)</sup> Имеются системы, использующие модуляцию O-QPSK и QPSK в данной полосе частот, и выбрана система QPSK, так как она обладает всеми подходящими параметрами.

<sup>(4)</sup> В Рекомендации МСЭ-R F.701 приведен лишь базовый интервал 0,5 МГц (или кратное ему целое значение). Значения 2 и 3,5 МГц предложены в качестве наиболее распространенных разносов канала для этих систем.