Radio-frequency channel arrangements based on a homogeneous pattern for fixed wireless systems operating in the 4 GHz (3 400-4 200 MHz) band

F Series
Fixed service
Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

Series of ITU-R Recommendations

(Also available online at http://www.itu.int/publ/R-REC/en)

<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO</td>
<td>Satellite delivery</td>
</tr>
<tr>
<td>BR</td>
<td>Recording for production, archival and play-out; film for television</td>
</tr>
<tr>
<td>BS</td>
<td>Broadcasting service (sound)</td>
</tr>
<tr>
<td>BT</td>
<td>Broadcasting service (television)</td>
</tr>
<tr>
<td>F</td>
<td>Fixed service</td>
</tr>
<tr>
<td>M</td>
<td>Mobile, radiodetermination, amateur and related satellite services</td>
</tr>
<tr>
<td>P</td>
<td>Radiowave propagation</td>
</tr>
<tr>
<td>RA</td>
<td>Radio astronomy</td>
</tr>
<tr>
<td>RS</td>
<td>Remote sensing systems</td>
</tr>
<tr>
<td>S</td>
<td>Fixed-satellite service</td>
</tr>
<tr>
<td>SA</td>
<td>Space applications and meteorology</td>
</tr>
<tr>
<td>SF</td>
<td>Frequency sharing and coordination between fixed-satellite and fixed service systems</td>
</tr>
<tr>
<td>SM</td>
<td>Spectrum management</td>
</tr>
<tr>
<td>SNG</td>
<td>Satellite news gathering</td>
</tr>
<tr>
<td>TF</td>
<td>Time signals and frequency standards emissions</td>
</tr>
<tr>
<td>V</td>
<td>Vocabulary and related subjects</td>
</tr>
</tbody>
</table>

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication
Geneva, 2013

© ITU 2013
All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.
RECOMMENDATION ITU-R F.635-7*

Radio-frequency channel arrangements based on a homogeneous pattern for fixed wireless systems operating in the 4 GHz (3 400-4 200 MHz) band

(Question ITU-R 247/5)

Scope

This Recommendation provides radio-frequency (RF) channel arrangements for fixed wireless systems (FWSs) operating in the 4 GHz frequency range (3 400-4 200 MHz), which may be used for low, medium- and high-capacity systems. The main text presents a homogeneous pattern of 10 MHz slots, with which specific arrangements for channels multiple of the slots can be designed. Annex 1 presents a number of RF arrangements with channel separation of 30, 40 and 80 MHz, designed in this frequency band, according to the recommended 10 MHz pattern.

The ITU Radiocommunication Assembly,

considering

a) that high-capacity digital radio-relay systems of the order of 140 Mbit/s or synchronous digital hierarchy (SDH) bit rates are required in the 4 GHz radio-frequency (RF) bands;
b) that the lower band limits of the 4 GHz RF bands are not uniform and vary internationally from 3 400 to 3 800 MHz;
c) that efficient use of bands of different width can be achieved by RF channel arrangements matched to the width of the band available;
d) that a high degree of compatibility between RF channels of different arrangements can be achieved by selecting all channel centre frequencies from a uniform basic pattern;
e) that the centre gaps of the individual channel arrangements and the guard spacing at the edges of the band can be chosen by non-occupancy of a suitable number of RF-channel positions in a homogeneous basic pattern;
f) that the uniform basic pattern spacing should not be unjustifiably small (i.e. the number of RF-channel positions too high) nor so large as to jeopardize efficient use of the available spectrum;
g) that the absolute frequencies of the basic pattern should be defined by a single reference frequency;
h) that single- and multi-carrier digital radio-relay systems are both useful concepts to achieve the best technical and economic trade-off in the system design,

recommends

that the preferred RF channel arrangement for high-capacity digital radio-relay systems of the order of 140 Mbit/s or SDH bit rates (see Note 1), operating in the 4 GHz band (see Note 1), should be selected from a homogeneous pattern with the following characteristics.

Centre frequencies f_n of the RF channels within the basic pattern

\[f_n = 4 200 - 10 m \text{ MHz} \quad (1) \]

* Radiocommunication Study Group 5 made editorial amendments to this Recommendation in 2009 in accordance with Resolution ITU-R 1.
where:

\[m: \text{ integral number depending on available frequency band: 1, 2, 3, \ldots } \text{ (see Note 2);} \]

2 that all the go channels should be in one half of the band and all the return channels should be in the other half of the band;

3 that the channel spacing \(X_S \), the centre gap \(Y_S \), the guard spaces \(Z_1 S \) and \(Z_2 S \) at the edges of the band and the antenna polarization should be agreed between the administrations concerned;

4 that the alternated or co-channel arrangement plan should be used, examples of which are shown in Fig. 1 (see also Note 3);

5 that if multi-carrier transmission (see Note 4 and Annex 1, § 3) is employed, the overall number of \(n \) carriers will be regarded as a single channel, the centre frequency and channel spacing of which will be that defined according to Fig. 1, disregarding the actual centre frequencies of the individual carriers, which may vary, for technical reasons, according to practical implementations.

NOTE 1 – Actual gross bit rates including overhead may be as much as 5% or more higher than net transmission rates.

NOTE 2 – Due regard should be taken of the fact that in some countries where additional RF channels interleaved between those of the main patterns are required, the values of the centre frequencies of these RF channels should be 5 MHz below those of the corresponding main channel centre frequencies as shown in the following equation:

\[f_n = 4 195 - 10 m \text{ MHz} \]

NOTE 3 – Due regard should be taken of the fact that in some countries the band 3 700-4 200 MHz is used. A RF channel arrangement, using this band and based on the homogeneous pattern is given in Annex 1, § 2.

NOTE 4 – A multi-carrier system is a system with \(n \) (where \(n > 1 \)) digitally modulated carrier signals simultaneously transmitted (or received) by the same RF equipment. The centre frequency should be regarded as the arithmetic average of the \(n \) individual carrier frequencies of the multi-carrier system.
Annex 1

Frequency arrangements derived from a homogeneous frequency pattern for the 4 GHz band

RF channel arrangements derived from recommends 1 for the 4 GHz band are described below.

1 40 MHz RF channel arrangement

In countries where the lower band limit is 3 600 MHz, the following frequency arrangement suitable for up to 155 Mbit/s or 2×155 Mbit/s radio systems with a suitable higher level modulation and spectrum efficiency up to 7.25 bit/s/Hz.

The frequency channel arrangement shown in Figs 2a) and 2b) gives a pattern of 7 go and 7 return channels with centre frequencies as follows:

\[f_n : \text{centre frequency of one RF channel in the go (return) channel of the band (MHz)} \]

\[f_n = 4200 - 10m, \text{ where } m = 58, 54, 50, 46, 42, 38, 34 \text{ in Fig. 2a)} \]

or \[m = 57, 53, 49, 45, 41, 37, 33 \text{ in Fig. 2b)} \]

\[f'_n : \text{centre frequency of one RF channel in the return (go) channel of the band (MHz)} \]

\[f'_n = 4200 - 10m, \text{ where } m = 26, 22, 18, 14, 10, 6, 2 \text{ in Fig. 2a)} \]

or \[m = 27, 23, 19, 15, 11, 7, 3 \text{ in Fig. 2b)}. \]
In the above arrangement band reuse by co-channel dual polarization (CCDP) may be utilized.

FIGURE 2
Radio-frequency channel arrangement for the 4 GHz band
(All frequencies in MHz)

\[\begin{align*}
\chi S &= 80 \text{ MHz} \\
\gamma S &= 80 \text{ MHz} \\
Z_1 S &= 20 \text{ MHz} \\
Z_2 S &= 20 \text{ MHz} \\
\end{align*}\]
2 Description of the RF channel arrangement for the band 3.7-4.2 GHz

2.1 The RF channel arrangement for a band 500 MHz wide and for up to six go and six return channels (Group 1) and an interleaved pattern of six go and six return channels (Group 2) is shown in Fig. 3 and is derived as follows:

let \(f_r \) be the frequency of the lower edge of the band of frequencies occupied (MHz),

\(f_n \) be the centre frequency of one RF channel in the go (return) channel of the band (MHz),

\(f_n' \) be the centre frequency of one RF channel in the return (go) channel of the band (MHz),

then the frequencies of individual channels are expressed by the following relationships:

Group 1

- go (return) channel, \(f_n = f_r - 50 + 80n \) MHz
- return (go) channel, \(f_n' = f_r - 10 + 80n \) MHz

where:

\(n = 1, 2, 3, 4, 5 \) and 6.

Group 2

- go (return) channel \(f_n = f_r - 70 + 80(n - 6) \) MHz
- return (go) channel \(f_n' = f_r - 30 + 80(n - 6) \) MHz

where:

\(n = 7, 8, 9, 10, 11 \) and 12.

FIGURE 3

Radio-frequency channel arrangements for the 3.7-4.2 GHz band

(All frequencies in MHz)
2.2 In a section over which international connections are arranged, the go and return channels are in the same group and are adjacent channels in that group.

2.3 In any section, both the go and return channels of any one group are of one polarization.

2.4 In any section, the channels of each group are of different polarizations.

2.5 In general, the value of f_r is 3 700 MHz.

3 80 MHz CCDP channel arrangements

The channel arrangements depicted in Figs 4a), 4b), 4c) are based upon the use of a 2-carrier system transmitting $2 \times 2 \times 155.52$ Mbit/s ($4 \times$ STM-1) via two carrier pairs using both polarizations in the CCDP mode.

The radio channelling plan shown in Fig. 4a) is optimized for the frequency band 3 580-4 200 MHz.

A channel arrangement applicable to the whole frequency band 3 400-4 200 MHz is shown in Fig. 4b).

The proposed channel arrangements shown in Figs 4a) and 4b) use the maximum possible number of 155.52 Mbit/s signals. In addition to the quadruplets of carriers in both go and return sub-band, two pairs of cross-polar single carriers are introduced as protection channels if necessary. Due to the fact that each carrier, i.e. baseband bit stream, can be switched individually, this $(n + 2)$-configuration acts at least as efficient as a $(n/2 + 1)$-configuration when used for frequency diversity.

Figure 4c) shows a channel arrangement for 3 400-3 800 MHz.
a) Channel arrangement in the band 3 580-4 200 MHz using a 2-carrier system transmitting $(12 + 2) \times 155.52 \text{ Mbit/s (STM-1)}$ in CCDP mode as available in Germany

b) Possible channel arrangement in the band 3 400-4 200 MHz using a 2-carrier system transmitting $(16 + 2) \times 155.52 \text{ Mbit/s (STM-1)}$ in CCDP mode

c) Channel arrangement in the band 3 400-3 800 MHz using a 2-carrier system transmitting $8 \times 155.52 \text{ Mbit/s (STM-1)}$ in CCDP mode as used in Switzerland
30 MHz CCDP channel arrangement

In countries where the lower limit is 3 600 MHz, the following frequency arrangement allows the use of the band for the transmission of up to $18 \times$ STM-1 systems.

The frequency arrangement shown in Fig. 5 gives a co-channel pattern of 9 go and 9 return channels with centre frequencies as follows:

\[f_n : \] centre frequency of one RF channel in the go (return) part of the band (MHz)
\[f_n = 4200 - 10 m, \text{ where } m = 58, 55, 52, 49, 46, 43, 40, 37, 34 \]
\[f_n' : \] centre frequency of one RF channel in the return (go) part of the band (MHz)
\[f_n' = 4200 - 10 m, \text{ where } m = 26, 23, 20, 17, 14, 11, 8, 5, 2. \]