

Рекомендация МСЭ-R BT.1847 (01/2009)

Формат изображения 1280 × 720, 16:9, получаемого путем построчного сканирования, для производства и международного обмена программами в среде с частотой 50 Гц

Серия ВТ

Радиовещательная служба (телевизионная)

Предисловие

Роль Сектора радиосвязи заключается в обеспечении рационального, справедливого, эффективного и экономичного использования радиочастотного спектра всеми службами радиосвязи, включая спутниковые службы, и проведении в неограниченном частотном диапазоне исследований, на основании которых принимаются Рекомендации.

Всемирные и региональные конференции радиосвязи и ассамблеи радиосвязи при поддержке исследовательских комиссий выполняют регламентарную и политическую функции Сектора радиосвязи.

Политика в области прав интеллектуальной собственности (ПИС)

Политика МСЭ-R в области ПИС излагается в общей патентной политике МСЭ-Т/МСЭ-R/ИСО/МЭК, упоминаемой в Приложении 1 к Резолюции 1 МСЭ-R. Формы, которые владельцам патентов следует использовать для представления патентных заявлений и деклараций о лицензировании, представлены по адресу: http://www.itu.int/ITU-R/go/patents/en, где также содержатся Руководящие принципы по выполнению общей патентной политики МСЭ-Т/МСЭ-R/ИСО/МЭК и база данных патентной информации МСЭ-R.

Серии Рекомендаций МСЭ-R			
	(Представлены также в онлайновой форме по адресу: http://www.itu.int/publications/R-REC/en .)		
Серия	Название		
BO	Спутниковое радиовещание		
BR	Запись для производства, архивирования и воспроизведения; пленки для телевидения		
BS	Радиовещательная служба (звуковая)		
BT	Радиовещательная служба (телевизионная)		
F	Фиксированная служба		
M	Подвижная спутниковая служба, спутниковая служба радиоопределения, любительская спутниковая служба и относящиеся к ним спутниковые службы		
P	Распространение радиоволн		
RA	Радиоастрономия		
RS	Системы дистанционного зондирования		
S	Фиксированная спутниковая служба		
SA	Космические применения и метеорология		
SF	Совместное использование частот и координация между системами фиксированной спутниковой службы и фиксированной службы		
SM	Управление использованием спектра		
SNG	Спутниковый сбор новостей		
TF	Передача сигналов времени и эталонных частот		
V	Словарь и связанные с ним вопросы		

Примечание. — Настоящая Рекомендация MCЭ-R утверждена на английском языке в соответствии с процедурой, изложенной в Резолюции 1 MCЭ-R.

Электронная публикация Женева, 2010 г.

© ITU 2010

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

РЕКОМЕНДАЦИЯ МСЭ-R ВТ.1847*

Формат изображения 1280 × 720, 16:9, получаемого путем построчного сканирования, для производства и международного обмена программами в среде с частотой 50 Гц

(Вопрос МСЭ-R 1/6)

(2008)

Сфера применения

В настоящей Рекомендации приводятся параметры формата телевидения 1280 × 720, 16:9 с построчной разверткой в среде 50 Гц для производства и обмена программами.

Ассамблея радиосвязи МСЭ,

учитывая,

- а) что формат изображения 720/Р обеспечивает промежуточное разрешение между значениями, приведенными в Рекомендациях МСЭ-R ВТ.601 и МСЭ-R ВТ.709, которое является вариантом для определенных применений, связанных со съемкой, производством и хранением;
- b) что производство цифрового контента будет все больше включать смесь контентов, относящихся к аудиосигналам, видеоизображениям, данным и интерактивности;
- с) что все большее значение имеет функциональная совместимость формата изображения с компьютерными применениями, и формат 720/Р полностью соответствует им, поскольку в нем используются квадратные пиксели;
- d) что пригодному для производственного применения преобразованию форматов содействует получение изображения путем построчного сканирования;
- е) что формат производства 720/Р предоставляет формат разрешения, при котором перенос сигналов осуществляется с использованием широко применяемого для производства последовательного цифрового интерфейса со скоростью 1,5 Гбит/с;
- f) что в Рекомендации МСЭ-R BT.1543 содержатся значения параметров для формата 720/P, $60 \, \Gamma \text{II}$:
- g) что существует цифровое оборудование для производства, спроектированное для работы с разнообразными форматами изображения, включая формат изображения 1280×720 , 16:9, получаемого путем построчного сканирования (720/P),

признавая,

- а) что в МСЭ Рекомендация МСЭ-R ВТ.709 является признанным стандартом телевидения высокой четкости,
- b) что настоящая Рекомендация не должна оказывать воздействия на Рекомендации (МСЭ-R BT.601 и МСЭ-R BT.709), упомянутые в пункте 1 раздела учитывая,

рекомендует

1 использовать параметры, приведенные в Приложении 1, когда может потребоваться промежуточное разрешение между значениями, которые относятся к форматам изображения, указанным в Рекомендациях МСЭ-R ВТ.601 и МСЭ-R ВТ.709 для производства и международного обмена программ в среде 50 Гц.

^{* 6-}я Исследовательская комиссия по радиосвязи внесла редакционные поправки в настоящую Рекомендацию в ноябре 2009 года в соответствии с Резолюцией МСЭ-R 1.

Приложение 1

Система получения изображения $1280 \times 720, 50 \ \Gamma$ ц, путем построчного сканирования

1 Оптоэлектронное преобразование1

Пункт	Параметр	Значе	ние
1.1	Характеристики оптоэлектронной передачи перед нелинейной предкоррекцией	Предполагаются линейными	
1.2	Общие характеристики оптоэлектронной передачи источника	$V = 1,099 L^{0,45} - 0,099$ $V = 4,500 L$ где: L : яркость изображени	для $0.018 > L \ge 0$, ня $0 \le L \le 1$
	(975 4004)	V: соответствующий э.	лектрический сигнал
1.3	Координаты цветности (СІЕ, 1931) Основные: – красный (<i>R</i>) – зеленый(<i>G</i>)	0,640 0,300	0,330 0,600
	синий (B)	0,150	0,060
1.4	Предполагаемая цветность при равных основных сигналах (опорный белый):	D_{65}	
		X	y
	$- E_R = E_G = E_B$	0,3127	0,3290

2 Характеристики изображения

Пункт	Параметр	Значение
2.1	Формат изображения	16:9
2.2	Отсчеты на активную строку	1 280
2.3	Сетка дискретизации	Ортогональная
2.4	Активные строки на изображение	720
2.5	Соотношение размеров элемента изображения	1:1 (квадратные пикселы)

¹ Оптоэлектронным преобразованием называется преобразование оптического сигнала (светового сигнала возбуждения) в электрический сигнал и наоборот. В рамках настоящей Рекомендации сигнал возбуждения создается цифровым устройством формирования изображения.

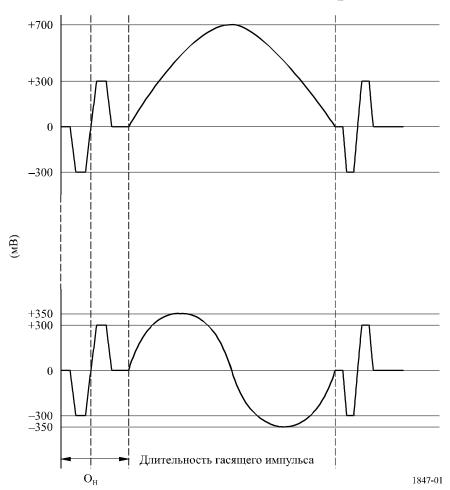
3 Формат сигнала

Пункт	Параметр	Значение
3.1	Концептуальная нелинейная предкоррекция первичных сигналов	γ = 0,45 (см. пункт 1.2)
3.2	Получение сигнала яркости E_Y'	$E'_{Y} = 0.2126 \ E'_{R} + 0.7152 \ E'_{G} + 0.0722 \ E'_{B}$
3.3	Получение цветоразностного сигнала (аналоговое кодирование)	$E'_{CB} = \frac{E'_B - E'_Y}{1,8556}$
		$= \frac{-0.2126 E_R' - 0.7152 E_G' + 0.9278 E_B'}{1.8556}$
		$E'_{CR} = \frac{E'_R - E'_Y}{1,5748}$
		$= \frac{0.7874 E_R' - 0.7152 E_G' - 0.0722 E_B'}{1.5748}$
3.4	Квантование сигналов RGB , яркости и цветоразностного сигнала $^{(1),(2)}$	$D_R' = INT[(219 E_R' + 16) \cdot 2^{n-8}]$
		$D'_G = INT[(219 E'_G + 16) \cdot 2^{n-8}]$
		$D_B' = INT[(219 E_B' + 16) \cdot 2^{n-8}]$
		$D'_Y = INT[(219 E'_Y + 16) \cdot 2^{n-8}]$
		$D'_{CB} = INT[(224 \ E'_{CB} + 128) \cdot 2^{n-8}]$
		$D'_{CR} = INT[(224 E'_{CR} + 128) \cdot 2^{n-8}]$
3.5	Получение сигнала яркости и цветоразностного сигнала с помощью квантованных сигналов <i>RGB</i>	$D'_{Y} = INT \left[0.2126 \ D'_{R} + 0.7152 \ D'_{G} + 0.0722 \ D'_{B} \right]$
		$D'_{CB} = INT \begin{bmatrix} -\frac{0,2126}{1,8556}D'_R - \frac{0,7152}{1,8556}D'_G \\ +\frac{0,9278}{1,8556}D'_B \end{bmatrix} \cdot \frac{224}{219} + 2^{n-1} \end{bmatrix}$
		$D'_{CR} = INT \begin{bmatrix} \left(\frac{0,7874}{1,5748} D'_{R} - \frac{0,7152}{1,5748} D'_{G} - \frac{0,0722}{1,5748} D'_{B} \right) \cdot \frac{224}{219} + 2^{n-1} \end{bmatrix}$

 $^{^{(1)}}$ "n" означает количество бит в квантованном сигнале.

⁽²⁾ Оператор INT возвращает значение 0 для дробных частей в диапазоне от 0 до $0,4999\dots$ и +1 для дробных частей в диапазоне от 0,5 до 0,9999, т. е. он округляет в большую сторону дроби выше 0,5.

4 Цифровое представление


Пункт	Параметр	Знач	ение
4.1	Кодированный сигнал	R, G, B или Y, C_B, C_R	
4.2	Сетка дискретизации: - R, G, B, Y	Ортогональные, линейные и повторяющиеся от кадра к кадру	
4.3	Сетка дискретизации: $-C_B, C_R$	Ортогональные, линейные и повторяющиеся от кадра к кадру, совмещенные друг с другом и с чередующимися отсчетами ⁽¹⁾ <i>Y</i>	
4.4	Число активных отсчетов на строку:	1 280 640	
4.5	Формат кодирования	Линейное, 8 или 10 б	оит на составляющую
4.6	Уровни квантования:	8-битовое кодирование	10-битовое кодирование
	Уровень черного:- R, G, B, Y	16	64
	- Ахроматическая составляющая: $-C_B, C_R$	128	512
	 Номинальное пиковое значение: - R, G, B, Y - C_B, C_R 	235 16 и 240	940 64 и 960
4.7	Распределение уровней квантования:	8-битовое кодирование	10-битовое кодирование
	данные видеоизображенияопорные моменты	1–254 0 и 255	4–1 019 0–3 и 1 020–1 023
4.8	Характеристики фильтра ⁽²⁾ :		
	$ \begin{array}{ll} - & R, G, B, Y \\ - & C_B, C_R \end{array} $	См. рис. 4a См. рис. 4b	

Первые активные цветоразностные отсчеты совмещены с первым активным отсчетом яркости. Эти шаблоны фильтров определены в качестве руководящих принципов.

5 Аналоговое представление

Пункт	Параметр	Значение
5.1	Номинальный уровень (мВ):	Опорный уровень черного: 0
	$-E'_R, E'_G, E'_B, E'_Y$	Опорный уровень белого: 700 (см. рис. 1)
5.2	Номинальный уровень (мВ):	±350
	$-E'_{C_B}, E'_{C_R}$	(см. рис. 1)
5.3	Форма сигнала синхронизации	Трехуровневый биполярный (см. рис. 3)
5.4	Опорный момент строчной синхронизации	O _H (см. рис. 3)
5.5	Уровень синхронизации (мВ)	±300 ±2%
5.6	Распределение сигналов синхронизации	Синхронизация по всем составляющим (см. таблицу 1, рис. 2 и 3)
5.7	Точность синхронизации между составляющими	Неприменимо
5.8	Длительность гасящего импульса	(см. таблицу 2 и рис. 2)
5.9	Всего строк	750

РИСУНОК 1 **Аналоговые уровни и опорный момент О** $_{\mathbf{H}}$

6 Характеристики получения изображения

· · · · · · · · · · · · · · · · · · ·		
Пункт	Параметр	Значение
6.1	Порядок представления выборок в системе сканирования	Слева направо, сверху вниз
6.2	Частота съемки (Гц)	50
6.3	Частота кадров (Гц)	50
6.4	Частота строк (Гц)	37 500
6.5	Отсчеты на полную строку:	
	$ \begin{array}{ll} - & R, G, B, Y \\ - & C_B, C_r \end{array} $	1 980 990
6.6	Номинальные значения ширины полосы канала (МГц)	(Для составляющих R, G, B, Y) 30
6.7	Частота дискретизации (МГц):	
	-R,G,B,Y	74,25
6.8	Частота дискретизации ⁽¹⁾ (МГц):	
	$-C_B, C_R$	37,125

⁽¹⁾ Частота дискретизации C_B , C_R составляет половину частоты дискретизации сигнала яркости.

ТАБЛИЦА 1 Характеристика синхронизации уровня и строки (см. рис. 2 и 3)

Обозначение	Параметр	Значения для системы
T	Длительность тактового сигнала (мкс)	1/74,25
а	Ширина сигнала синхронизации строки отрицательной полярности $^{(1)}(T)$	40 ± 3
b	Конец активного видеосигнала $^{(2)}(T)$	+6
		440
		-0
С	Ширина сигнала синхронизации строки положительной полярности (T)	40 ± 3
d	Период фиксации (Т)	110 ± 3
e	Начало активного видеосигнала (Т)	+6
		260
		-0
f	Время нарастания/спада (Т)	4 ± 1,5
$t_2 - t_1$	Симметрия нарастающего фронта	Симметрия около T_r
_	Длительность активной строки (T)	+0
		1 280
		-12
S_m	Амплитуда импульса отрицательной полярности (мВ)	300 ± 6
S_p	Амплитуда импульса положительной полярности (мВ)	300 ± 6
\overline{V}	Амплитуда видеосигнала (мВ)	700

T означает длительность тактового сигнала или обратную величину тактовой частоты.

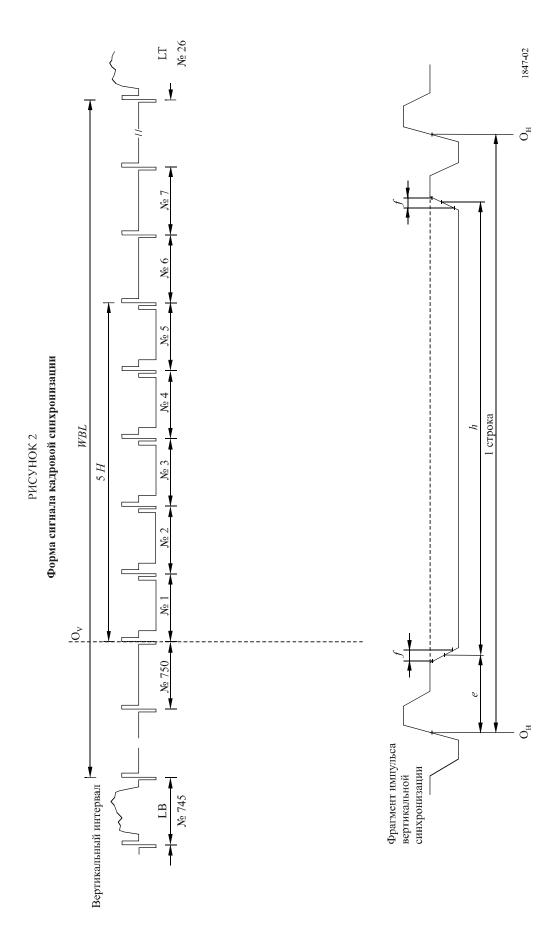
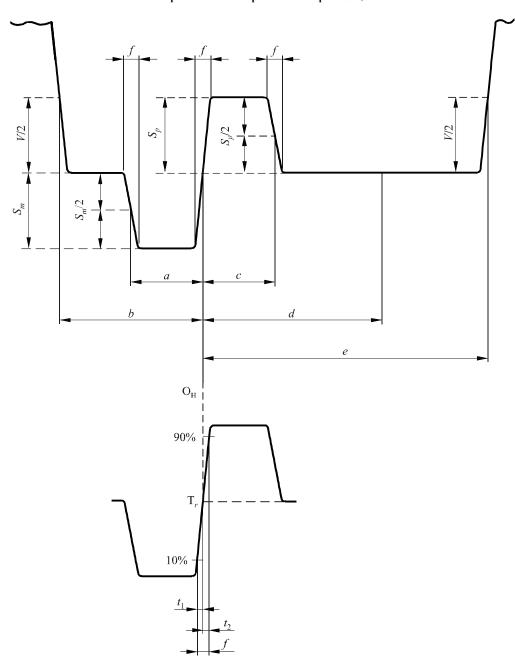
ТАБЛИЦА 2 Характеристики синхронизации кадров (см. рис. 2 и 3)

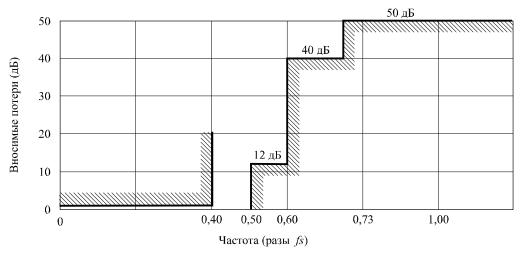
Обозначение	Параметр	Значения для системы
$H^{(1)}$	Общая длительность строки $(T)^{(2)}$	1 980
Н	Ширина сигнала вертикальной синхронизации (T)	1 280 ± 3
LT	Верхняя строка изображения	№ 26
LB	Нижняя строка изображения	№ 745
WBL	Интервал гашения кадра	30 H
	Начало кадра	№ 1
	Конец кадра	№ 750

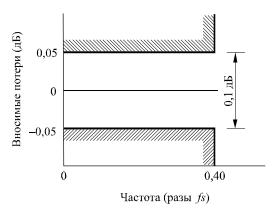
 $^{^{(1)}}$ H означает длительность строки или обратную величину частоты строк (см. п. 6). Строка начинается в опорный момент строчной синхронизации O_H (включая его) и заканчивается непосредственно перед последующим O_H (исключая его).

⁽²⁾ Строка начинается в опорный момент строчной синхронизации O_H (включая его) и заканчивается непосредственно перед последующим O_H (исключая его).

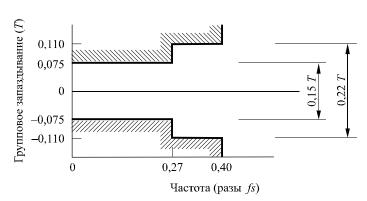
⁽²⁾ Т означает длительность тактового сигнала или обратную величину тактовой частоты (см. таблицу 1).


РИСУНОК 3 Форма сигнала строчной синхронизации

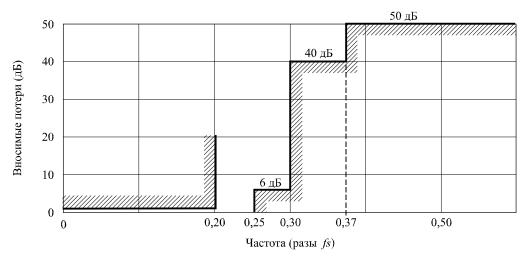

(Форма сигнала является симметричной относительно точки T_{r})

1847-03

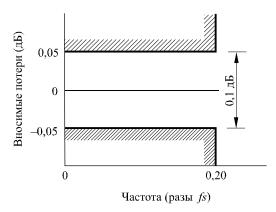

РИСУНОК 4а **Характеристики фильтров** для сигналов R, G, B и Y

а) Шаблон для вносимых потерь

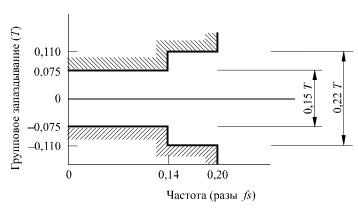
b) Допустимая неравномерность в полосе пропускания



с) Групповое запаздывание в полосе пропускания


Примечание 1. — fs означает частоту дискретизации яркости, значение которой приведено в п. 6.7. Примечание 2. — Неравномерность и групповое запаздывание определены относительно их значений на 100 кГц.

1847-04a


$\label{eq:pucyhok4b} \text{ Napaktepuctuku фильтров для сигналов C_B и C_R}$

а) Шаблон для вносимых потерь

b) Допустимая неравномерность в полосе пропускания

с) Групповое запаздывание в полосе пропускания

Примечание $1.-f_8$ означает частоту дискретизации яркости, значение которой приведено в п. 6.7. Примечание 2.- Неравномерность и групповое запаздывание определены относительно их значений на $100~\mathrm{kT}$ ц.

1847-04b