РЕКОМЕНДАЦИЯ МСЭ-R ВТ.1368-6*

Критерии планирования для услуг наземного цифрового телевидения в диапазонах ОВЧ/УВЧ

(Вопрос МСЭ-R 4/6)

(1998-1998-2000-2002-2004-2005-2006)

Сфера применения

В настоящей Рекомендации определяются критерии планирования для различных методов предоставления услуг наземного цифрового телевидения в диапазонах ОВЧ/УВЧ.

Ассамблея радиосвязи МСЭ,

учитывая,

- а) что разрабатываются системы для передачи сигналов услуг цифрового наземного телевидения в диапазонах ОВЧ/УВЧ;
- b) что ОВЧ/УВЧ телевизионные диапазоны уже заняты аналоговыми телевизионными службами;
- с) что аналоговые телевизионные службы будут использоваться еще в течение продолжительного периода времени;
- d) что наличие совместимых наборов критериев планирования, согласованных администрациями, облегчит внедрение услуг наземного цифрового телевидения,

рекомендует,

1 чтобы в качестве основы для частотного планирования услуг наземного цифрового телевидения использовались соответствующие защитные отношения (3O) и соответствующие минимальные значения напряженности поля, приведенные в Приложениях 1, 2 и 3, а также дополнительная информация, приведенная в Приложениях 4, 5, 6 и 7.

Введение

В настоящей Рекомендации содержатся следующие Приложения:

- Приложение 1 Критерии планирования для систем цифрового телевидения ATSC в диапазонах ОВЧ/УВЧ
- Приложение 2 Критерии планирования для систем цифрового телевидения DVB-T в диапазонах ОВЧ/УВЧ
- Приложение 3 Критерии планирования для систем цифрового телевидения ISDB-Т в диапазонах ОВЧ/УВЧ
- Приложение 4 Другие факторы планирования
- Приложение 5 Метод субъективного сравнения (SCM) с эталонным источником помех при оценке защитных отношений для аналоговых телевизионных систем
- Приложение 6 Методы проверки измерения защитных отношений для полезных цифровых наземных сигналов

Приложение 7 – Тропосферные и непрерывные помехи.

* Администрации Исламской Республики Иран, Сирийской Арабской Республики и Объединенных Арабских Эмиратов сохраняют свою позицию и не придерживаются в полной мере данной Рекомендации.

Общие положения

Защитное РЧ отношение представляет собой минимальное значение отношения полезного сигнала к мешающему сигналу на входе приемника, обычно выраженное в децибелах.

Эталонный уровень цифрового сигнала определяется как среднеквадратичное значение мощности излучаемого сигнала в полосе канала. Его предпочтительно измерять тепловым ваттметром. Все защитные отношения для полезных цифровых сигналов измеряются при мощности на входе приемника –60 дБм.

Эталонный уровень аналогового модулированного видеосигнала определяется как среднеквадратичное значение видеонесущей в точках, соответствующих пикам огибающей модулированного сигнала. Все значения защитных отношений для полезных аналоговых сигналов измеряются при мощности на входе приемника –39 дБм (70 дБ(мкВ) при 75 Ом).

1 Системы цифрового наземного телевидения с полезным сигналом

Защитные отношения для систем цифрового наземного телевидения применяются как к непрерывным, так и к тропосферным помехам. Защитные отношения относятся к центральной частоте системы цифрового наземного телевидения с полезным сигналом.

Поскольку цифровой телевизионный приемник должен успешно функционировать в присутствии сильных аналоговых сигналов в соседних каналах, требуется высокий уровень линейности входных характеристик приемника.

Защитные отношения для систем цифрового наземного телевидения, которые выступают в качестве мешающих, такие же, как и в том случае, когда полезный и мешающий сигналы не синхронизированы и/или исходят из разных программных источников. Результаты, относящиеся к одночастотным сетям (ОЧС), пока еще не получены.

Для системы цифрового наземного телевидения ATSC защитные отношения измеряются при значениях $KOE = 3 \times 10^{-6}$ на входе демультиплексора MPEG-2.

Для систем цифрового наземного телевидения (наземное цифровое телевизионное вещание (DVB-T) и наземное цифровое радиовещание с интеграцией служб (ISDB-T)) защитные отношения измеряются между внутренним и внешним кодами перед декодером Рида-Соломона для $KOE = 2 \times 10^{-4}$; это соответствует значению $KOE < 1 \times 10^{-11}$ на входе демультиплексора MPEG-2. Для бытовых приемников может оказаться невозможным измерить КОБ перед декодированием Рида-Соломона. Значение КОБ для таких случаев изучается.

Для уменьшения числа измерений и таблиц было предложено измерять защитные отношения для систем DVB-T в следующих трех предпочтительных режимах, показанных в таблице 1. Значения защитных отношений для различных требуемых рабочих режимов в случае приема на фиксированное, переносное или подвижное оборудование можно рассчитать, используя приведенные измеренные значения. Формула для расчета изучается.

ТАБЛИЦА І
Предлагаемые предпочтительные режимы измерения защитных отношений для DVB-T

Модуляция	Кодовая скорость	<i>C/N</i> ⁽¹⁾ (д Б)	Битовая скорость ⁽²⁾ (Мбит/с)
ЧФМН	2/3	6,9	≈ 7
16-KAM	2/3	13,1	≈ 13
64-KAM	2/3	18,7	≈ 20

 $^{^{(1)}}$ Значения приведены для гауссовского канала (включая типичный запас на реализацию) для $KOE < 1 \times 10^{-11}$.

2 Системы аналогового наземного телевиления с полезным сигналом

Измерения защитных отношений для видеосигнала системы аналогового наземного телевидения с полезным сигналом лучше всего проводить с помощью метода субъективного сравнения с применением эталонного источника синусоидальных помех, как это описано в Приложении 5.

Значения таких защитных отношений применяются к помехам, исходящим от одного источника. Если не указано иное, такие отношения применяются к тропосферным помехам (T) и во многом совпадают с условием приема со слегка раздражающими искажениями. Такие искажения считаются приемлемыми только в том случае, когда помехи действуют в течение небольшого процента времени, не определенного точно, но обычно находящегося в пределах от 1% до 10%. Для мешающих сигналов, которые не подвержены существенному замиранию, необходимо обеспечить более высокий уровень защиты и следует использовать защитные отношения для непрерывных помех (C) (см. Приложение 7).

Если полезным сигналом является аналоговый телевизионный сигнал, то следует рассматривать два или более значений защитных отношений – одно для защитного отношения для видеосигнала, а другие – для защитных отношений для звуковых сигналов. В таком случае следует использовать наиболее жесткое значение.

В связи с нелинейностью воздействия приемника для существенно более сильных полезных входных сигналов могут потребоваться более высокие защитные отношения.

Для систем с 625 строками эталонные уровни искажений — это уровни, соответствующие защитным отношениям по совмещенному каналу в 30 дБ и 40 дБ, когда используется сдвиг строк значением в две трети, см. Рекомендацию МСЭ-R ВТ.655. Такие условия приближаются к искажениям класса 3 (слегка раздражающие) и 4 (ощутимые, но не раздражающие) и применяются к тропосферным (T) и непрерывным (C) помехам, соответственно.

⁽²⁾ Для защитного интервала, равного 1/4.

СОДЕРЖАНИЕ

Прил			терии планирования для систем цифрового телевидения ATSC в 34/УВЧ		
1	Защитные отношения для полезных сигналов цифрового наземного телевидения ATSC				
	1.1	Защита сигнала цифрового наземного телевидения ATSC, испытывающего помехи от сигнала цифрового наземного телевидения ATSC			
	1.2		цифрового наземного телевидения ATSC, испытывающего помехи от ового наземного телевидения		
		1.2.1	Защита от помех по совмещенному каналу		
		1.2.2	Защита от помех нижнего соседнего канала $(N-1)$		
		1.2.3	Защита от помех верхнего соседнего канала $(N+1)$		
		1.2.4	Защита от помех других каналов		
2	испыт	ывающи	ошения для полезных сигналов аналогового наземного телевидения, х помехи от мешающих сигналов цифрового наземного телевидения		
	2.1	Защитн	ные отношения для телевизионных систем с 525 строками		
		2.1.1	Защита для видеосигналов, испытывающих помехи от цифрового телевидения ATSC		
	2.2	Защитн	ные отношения для телевизионных систем с 625 строками		
		2.2.1	Защита полезных видеосигналов, испытывающих помехи от цифрового наземного телевидения ATSC		
			2.2.1.1 Защита от помех по совмещенному каналу		
			2.2.1.2 Защита от помех нижнего соседнего канала		
			2.2.1.3 Защита от помех верхнего соседнего канала		
3	наземі	ного теле	ошения для звуковых сигналов полезных сигналов аналогового евидения, испытывающих помехи от мешающих сигналов цифрового евидения ATSC		
	3.1	3ащита звуковых сигналов NTSC (система BTSC MTS и SAP), испытывающих помехи от сигнала цифрового телевидения ATSC			
4	Мини	мальная	напряженность поля для наземного цифрового телевидения ATSC		
Допо	лнение	1 к Прил	пожению 1 – Вывод значений по методу показателя полезности		
Прил			терии планирования для систем цифрового телевидения DVB-T в 84/УВЧ		
1			ошения для полезных сигналов цифрового наземного телевидения		
	1.1		сигнала цифрового наземного телевидения DVB-T, испытывающего от сигнала цифрового наземного телевидения DVB-T		
	1.2		цифрового наземного телевидения DVB-T, испытывающего помехи от ового наземного телевидения		
		1.2.1	Защита от помех по совмещенному каналу		
		1.2.2	Защита от помех нижнего соседнего канала $(N-1)$		
		1.2.3	Защита от помех верхнего соседнего канала (N + 1)		
		1.2.4	Защита от помех перекрывающих каналов		

	1.3			фрового наземного телевидения DVB-T от непрерывных сигналов ЧМ	
	1.4			ифрового наземного телевидения DVB-T от сигналов	
	1.5	1.5 Защита DVB-Т от широкополосных сигналов, помимо сигналов наземного радиовещания			
		1.5.1		е отношения для DVB-T, испытывающей помехи от анной службы (настраиваемая система)	
		1.5.2		е отношения для DVB-T, испытывающей помехи от системы гного доступа с разделением каналов (МДРК)	
2	испыт	ывающих	к помехи от	полезных сигналов аналогового наземного телевидения, мешающих сигналов цифрового наземного телевидения	
	2.1	Защитн	ые отношен	ия для телевизионных систем с 625 строками	
		2.1.1		олезных видеосигналов, испытывающих помехи от сигнала о наземного телевидения DVB-T	
			2.1.1.1	Защита от помех по совмещенному каналу	
			2.1.1.2	Защита от помех нижнего соседнего канала	
			2.1.1.3	Защита от помех верхнего соседнего канала	
			2.1.1.4	Защита от помех канала изображения	
			2.1.1.5	Защита от помех перекрывающихся каналов	
3	телеви телеви	дения, и дения D	спытываюц VB-Т	овых сигналов полезных сигналов аналогового наземного цих помехи от мешающих сигналов цифрового наземного	
	3.1	систем,	испытыван	ых сигналов ЧМ, АМ и NICAM аналоговых телевизионных ощих помехи от сигналов цифрового наземного телевидения	
4		итные отношения для сигнала T-DAB, испытывающего помехи от мешающего ала цифрового наземного телевидения			
5	Минимальная напряженность поля для наземного цифрового телевидения DVB-T, фиксированный прием				
6				папряженность поля при приеме на подвижное оборудование	
	6.1	Необхо	димое средн	нее значение C/N для приема на подвижное оборудование	
Пото	6.2			риемника	
допо		•		- Расчет минимальной напряженности поля и минимальной напряженность поля	
Прил	ожение	3 — Крит	герии плани	прования для систем цифрового телевидения ISDB-T в	
1	Защит	ные отно	шения для	полезных сигналов цифрового наземного телевидения	
	1.1	Защита	сигнала ци	фрового наземного телевидения ISDB-T, испытывающего ого телевизионного сигнала ISDB-T	
	1.2			наземного телевидения ISDB-T, испытывающего помехи от	
	· =			ного телевидения	
		1.2.1	Защита от	помех по совмещенному каналу	
		1.2.2	Защита от	помех нижнего соседнего канала $(N-1)$	
		1 2 3	Зашита от	r помех верхнего соседнего канала $(N+1)$	

2	испы	тывающи	ошения для полезных сигналов аналогового наземного телевидения, х помехи от мешающих сигналов цифрового наземного телевидения				
	2.1		шье отношения для телевизионных систем с 525 строками				
	2.1	2.1.1	Защита видеосигналов NTSC, испытывающих помехи от сигналов цифрового телевидения ISDB-T				
3	телев	идения с	ошения для звуковых сигналов систем аналогового наземного полезным сигналом, испытывающих помехи от систем цифрового видения ISDB-T с мешающим сигналом				
	3.1		звуковых сигналов NTSC, испытывающих помехи от цифровых ионных сигналов ISDB-T				
4	Мини	имальная і	напряженность поля для наземного цифрового телевидения ISDB-T				
Доп			пожению 3 – Исчисление на основе метода с использованием показателя				
При	ложени	ие 4 — Дру	гие факторы планирования				
1			напряженности поля в зависимости от мест приема				
2	Прие	Прием с помощью переносного оборудования в зданиях и транспортных средствах					
	2.1	Потери	по высоте: L_h				
	2.2	Потери	на входе в здание: L_b				
	2.3	Потери	на входе в транспортное средство: L_{ν}				
3	Изби	рательнос	ть приемной антенны				
4	Анте	нны для п	риема на переносное и подвижное оборудование				
	4.1	Антенн	ы для приема на переносное оборудование				
	4.2	Антенн	ы для приема на портативное оборудование				
	4.3	Антенн	ы для приема на подвижное оборудование				
При			од субъективного сравнения (SCM) с эталонным источником помех при ых отношений для аналоговых телевизионных систем				
1	Введ	Введение					
2	SCM при оценке защитных отношений с использованием эталонной синусоидальной помехи						
	2.1	Общее	описание				
	2.2	Получе	ние эталонного источника помех				
	2.3	Услови	я испытаний				
	2.4	Предст	авление результатов				
3	Таблі	ица наибо	лее важных параметров				
При			оды проверки измерения защитных отношений для полезных цифровых алов				
1	Базов	вая инфор	мация				
2		Метод субъективного определения местонахождения неисправности (SFP) для измерения защитных отношений					
Ппи	пожени	re 7 – T n oi	посферные и непрерывные помехи				

Список таблиц

Таблица 1 –	Предлагаемые предпочтительные режимы измерения защитных отношений для DVB-T	
Таблица 2 –	Защитные отношения по совместному каналу (дБ) для сигнала ATSC, испытывающего помехи от сигнала ATSC	
Таблица 3 —	Защитные отношения (дБ) для сигнала ATSC, испытывающего помехи от сигнала ATSC в нижнем $(N-1)$ и верхнем $(N+1)$ соседних каналах	
Таблица 4 –	Защитные отношения (дБ) для ATSC, испытывающей помехи от сигнала ATSC в канале $N\pm 2$ и других внеполосных каналах	
Таблица 5 –	Защитные отношения по совмещенному каналу (дБ) для сигнала ATSC, испытывающего помехи от аналогового телевизионного сигнала	
Таблица 6 –	Защитные отношения (дБ) в случае помех нижнего соседнего канала $(N-1)$ для сигнала ATSC, испытывающего помехи от аналогового телевизионного сигнала, включая звуковой сигнал.	
Таблица 7 — Защитные отношения (дБ) в случае помех верхнего соседнего канала ($N+1$ для сигнала ATSC, испытывающего помехи от аналогового телевизионного сигнала		
Таблица 8 –	Защитные отношения (дБ) для сигнала ATSC 6 МГц, испытывающего помехи от сигнала M/NTSC и других внеполосных каналов	
Таблица 9 –	Защитные отношения (дБ) для полезного аналогового видеосигнала (NTSC, 6 МГц), испытывающего помехи от мешающего сигнала ATSC	
Таблица 10 –	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от мешающего сигнала ATSC 6 МГц	
Таблица 11 –	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала ATSC 6 МГц (нижнего соседнего канала)	
Таблица 12 –	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала ATSC 6 МГц (верхнего соседнего канала)	
Таблица 13 –	Вывод значений по методу показателя полезности системы ATSC 6 МГц	
Таблица 14 –	Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T, испытывающего помехи от сигнала DVB-T	
Таблица 15 –	Защитные отношения (дБ) для сигнала DVB-T, испытывающего помехи от сигнала DVB-T в нижнем $(N-1)$ и верхнем $(N+1)$ соседних каналах	
Таблица 16 –	ца 16 — Защитные отношения по совмещенному каналу (дБ) для сигналов DVB-T 7 МГц и 8 МГц, испытывающих помехи от сигналов аналогового телевидения (условия с неуправляемой частотой)	
Таблица 17 –	17 — Защитные отношения (дБ) в случае помех нижнего соседнего канала $(N-1)$ для сигналов DVB-T 7 МГц и 8 МГц, испытывающих помехи от аналоговых телевизионных сигналов, включая звуковой сигнал	
Таблица 18 –	Защитные отношения (дБ) в случае помех верхнего соседнего канала $(N+1)$ для сигналов DVB-T 7 МГц и 8 МГц, испытывающих помехи от аналоговых телевизионных сигналов	

Таблица 19 –	Защитные отношения (дБ) для сигнала DVB-T 8 МГц, испытывающего помехи от перекрывающего сигнала PAL B, включая звуковой сигнал		
Таблица 20 —	0 — Защитные отношения (дБ) для сигнала DVB-T 7 МГц, испытывающего помехи от перекрывающего аналогового ТВ сигнала 7 МГц, включая звуковой сигнал		
Таблица 21 –	21 — Защитные отношения (дБ) для сигнала DVB-T 7 МГц, испытывающего помехи от перекрывающего аналогового ТВ сигнала 8 МГц, включая звуковой сигнал		
Таблица 22 –	Защитные отношения (дБ) для сигнала DVB-T 8 МГц, испытывающего помехи от перекрывающего аналогового ТВ сигнала 8 МГц, включая звуковой сигнал		
Таблица 23 –	Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от CW или ЧМ несущей (неконтролируемый сдвиг частоты)		
Таблица 24 — Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 7 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от CW или ЧМ несущей (неконтролируемый сдвиг частоты)			
Таблица 25 –	ца 25 — Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 7 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от CW несущей (сдвиг управляемой частоты)		
Таблица 26 –	Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 7 МГц и 8 МГц, испытывающего помехи от сигнала T-DAB		
Таблица 27 –	Защитные отношения (дБ) для сигнала DVB-T 7 МГц и 8 МГц, испытывающего помехи от сигнала T-DAB в нижнем $(N-1)$ или верхнем $(N+1)$ соседних каналах		
Таблица 28 –	Защитные отношения для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от излучений фиксированной службы		
Таблица 29 –	Защитные отношения для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от излучений МДКР-1X		
Таблица 30 –	Защитные отношения для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скорость 2/3, испытывающего помехи от излучений МДКР-3X		
Таблица 31 —	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от мешающего сигнала DVB-T 8 МГц		
Таблица 32 –	- Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от мешающего сигнала DVB-T 7 МГц		
Таблица 33 —	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигналов DVB-T 7 МГц и 8 МГц (нижний соседний канал)		
Таблица 34 —	— Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигналов DVB-T 7 МГц и 8 МГц (верхний соседний канал)		
Таблица 35 —	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала DVB-T 8 МГц (канал изображения)		

Таблица 36 –	Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала DVB-T 7 МГц (канал изображения)	
Таблица 37 —	Защитные отношения (дБ) для аналоговых видеосигналов B, D, D1, G, H, K/PAL, испытывающих помехи от сигнала DVB-T 7 МГц (перекрывающие каналы)	
Таблица 38 –	— Защитные отношения (дБ) для аналоговых видеосигналов B, D, D1, G, H, K/PAL, испытывающих помехи от сигнала DVB-T 8 МГц (перекрывающие каналы)	
Таблица 39 –	Защитные отношения по совмещенному каналу (дБ) для полезного звукового сигнала, испытывающего помехи от сигналов цифрового наземного телевидения DVB-T	
Таблица 40 –	Защитные отношения (дБ) для полезного звукового сигнала ЧМ, испытывающего помехи от сигнала DVB-T 7 МГц (перекрывающие каналы)	
Таблица 41 —	Защитные отношения (дБ) для полезного звукового сигнала АМ, испытывающего помехи от сигнала DVB-T 8 МГц при различных частотных сдвигах (верхний соседний канал)	
Таблица 42 –	Защитные отношения (дБ) для сигнала T-DAB, испытывающего помехи от сигнала DVB-T 8 МГц	
Таблица 43 –	Защитные отношения (дБ) для сигнала T-DAB, испытывающего помехи от сигнала DVB-T 7 МГц	
Таблица 44 —	Расчет минимального уровня напряженности поля системы DVB-T 8 МГц	
Таблица 45 –	Необходимое среднее значение C/N , предельная скорость для приема на подвижное оборудование при отсутствии разнесения	
Таблица 46 –	Необходимое среднее значение C/N , предельная скорость для приема на подвижное оборудование для случая разнесения	
Таблица 47 –	Параметры канала для измерения необходимого среднего значения C/N при "типовом городском" приеме на подвижное оборудование DVB-T	
Таблица 48 –	Защитные отношения по совмещенному каналу (дБ) для ISDB-T 6 МГц, испытывающей помехи от ISDB-T 6 МГц	
Таблица 49 –	Защитные отношения (дБ) для ISDB-Т 6 МГц, испытывающей помехи от ISDB-Т 6 МГц в нижнем соседнем канале $(N-1)$	
Таблица 50 –	Защитные отношения (дБ) для ISDB-Т 6 МГц, испытывающей помехи от ISDB-Т 6 МГц в верхнем соседнем канале $(N+1)$	
Таблица 51 –	Защитные отношения по совмещенному каналу (дБ) для ISDB-Т 6 МГц, испытывающей помехи от аналогового телевидения	
Таблица 52 –	Защитные отношения (дБ) в случае помех нижнего соседнего канала $(N-1)$ для ISDB-T 6 МГц, испытывающей помехи от сигналов NTSC, включая звуковые сигналы.	
Таблица 53 –	Защитные отношения (дБ) в случае помех верхнего соседнего канала $(N+1)$ для ISDB-T 6 МГц, испытывающей помехи от сигнала NTSC 6 МГц	
Таблица 54 –	Защитные отношения (дБ) для аналогового видеосигнала (NTSC, 6 МГц), испытывающего помехи от сигнала ISDB-Т	

		Cmp.
Таблица 55 —	Качество звука, соотнесенное с защитным отношением для видеоканала класса 3, в случае, когда сигнал NTSC 6 МГц испытывает помехи от сигнала ISDB-T 6 МГц	40
Таблица 56 –	Исчисление на основе "метода напряжений" для системы ISDB-T 6 МГц	41
Таблица 57 –	Различные потери на входе в здание в диапазонах IV/V УВЧ	45
Таблица 58 –	Усиление антенны (дБд) при приеме на переносное оборудование	46
Таблица 59 –	Усиление антенны (дБд) при приеме на портативное оборудование	47
Таблица 60 –	Усиление антенны (дБд) при приеме на подвижное оборудование	47
Таблица 61 –	Базовые термины и соотношения для SCM	50
	Список рисунков	
		Стр.
Рисунок 1 – 1	Необходимое среднее значение C/N в подвижном канале распространения	33
	Отношение (дБ) напряженности поля для заданного процента мест приема к напряженности поля для 50% мест приема	44
Рисунок 3 –	SCM лля оценки зацитных отношений	49

Приложение 1

Критерии планирования для систем цифрового телевидения ATSC в диапазонах ОВЧ/УВЧ

1 Защитные отношения для полезных сигналов цифрового наземного телевидения ATSC

В таблицах 2–4 и 5–8 представлены защитные отношения для сигнала цифрового наземного телевидения ATSC, испытывающего помехи от сигнала цифрового наземного телевидения ATSC и сигнала аналогового наземного телевидения, соответственно.

1.1 Защита сигнала цифрового наземного телевидения ATSC, испытывающего помехи от сигнала цифрового наземного телевидения ATSC

ТАБЛИЦА 2

Защитные отношения по совместному каналу (дБ) для сигнала ATSC, испытывающего помехи от сигнала ATSC

Полезный сигнал	Мешающий сигнал
	ATSC 6 МГц
ATSC 6 МГц	15 19 ⁽¹⁾

⁽¹⁾ На основе равномерного распределения шума и помехи.

ТАБЛИЦА 3 Защитные отношения (дБ) для сигнала ATSC, испытывающего помехи от сигнала ATSC

Канал	N-1	N + 1
ATSC 6 МГц	-27	-27

в нижнем (N-1) и верхнем (N+1) соседних каналах

Защитные отношения приводятся в дБ и применяются как к непрерывным, так и к тропосферным помехам.

ТАБЛИЦА 4

Защитные отношения (дБ) для ATSC, испытывающей помехи от сигнала ATSC

Канал	$N\pm 2$ и другие внеполосные каналы
ATCC 6 MEn	50

в канале $N\pm 2$ и других внеполосных каналах

1.2 Защита цифрового наземного телевидения ATSC, испытывающего помехи от аналогового наземного телевидения

1.2.1 Защита от помех по совмещенному каналу

ТАБЛИЦА 5

Защитные отношения по совмещенному каналу (дБ) для сигнала ATSC, испытывающего помехи от аналогового телевизионного сигнала

Полезный сигнал	Мешающий сигнал (аналоговый ТВ сигнал, включая звуковые несущие)		
	M/NTSC	PAL B	
ATSC 6 МГц	2 ⁽¹⁾ 7	9	
ATSC 6 МГц с каскадным решетчатым кодированием со скоростью 1/2	1	3	
ATSC 6 МГц с каскадным решетчатым кодированием со скоростью 1/4	-2	0	

⁽¹⁾ С использованием гребенчатого фильтра в цифровом телевизионном приемнике и при отношении C/N, равном 19 дБ.

1.2.2 Защита от помех нижнего соседнего канала (N-1)

ТАБЛИЦА 6

Защитные отношения (дБ) в случае помех нижнего соседнего канала (N-1) для сигнала ATSC, испытывающего помехи от аналогового телевизионного сигнала, включая звуковой сигнал

Полезный сигнал	Мешающий сигнал (аналоговый ТВ сигнал, включая звуковые несущие)
	M/NTSC
ATSC 6 МГц	-48

1.2.3 Защита от помех верхнего соседнего канала (N+1)

ТАБЛИЦА 7

Защитные отношения (дБ) в случае помех верхнего соседнего канала (N+1) для сигнала ATSC, испытывающего помехи от аналогового телевизионного сигнала

Полезный сигнал	Мешающий сигнал (аналоговый ТВ сигнал, включая звуковые несущие)
	M/NTSC
ATSC 6 МГц	-49

1.2.4 Защита от помех других каналов

ТАБЛИЦА 8

Защитные отношения (дБ) для сигнала ATSC 6 МГц, испытывающего помехи от сигнала M/NTSC и других внеполосных каналов

Полезный сигнал	Мешающий сигнал	Мешающие каналы	Защитное отношение
ATSC	M/NTSC	$N \pm 2 - N \pm 8$	-58

2 Защитные отношения для полезных сигналов аналогового наземного телевидения, испытывающих помехи от мешающих сигналов цифрового наземного телевидения ATSC

В таблице 9 и таблицах 10–12 приводятся защитные отношения для полезных сигналов аналогового телевидения с 525 строками и 625 строками, соответственно, испытывающих помехи от сигналов цифрового наземного телевидения ATSC.

2.1 Защитные отношения для телевизионных систем с 525 строками

2.1.1 Защита для видеосигналов, испытывающих помехи от цифрового телевидения ATSC

В данном разделе защитные отношения для полезного аналогового сигнала, испытывающего помехи от мешающего цифрового сигнала ATSC, применяются только к помехам, несущим изображения и цвета.

ТАБЛИЦА 9

Защитные отношения (дБ) для полезного аналогового видеосигнала (NTSC, 6 МГц), испытывающего помехи от мешающего сигнала ATSC

Мешающий цифровой канал	Тропосферные помехи класса 3	Непрерывные помехи класса 4
N-1 (нижний)	-16	
N (совмещенный канал)	34	
N+1 (верхний)	-17	
N+14 (канал изображения)	-33	
N+15 (канал изображения)	-31	
$N\pm 2$	-24	
$N\pm3$	-30	
$N\pm 4$	-25	
N ± 7	-34	
$N\pm 8$	-32	

2.2 Защитные отношения для телевизионных систем с 625 строками

2.2.1 Защита полезных видеосигналов, испытывающих помехи от цифрового наземного телевидения ATSC

В данном разделе защитные отношения для полезного аналогового сигнала, испытывающего помехи от мешающего цифрового сигнала, относятся только к помехе видеосигналу.

Приведенные защитные отношения касаются внеканального затухания спектра мешающего передатчика DVB-T в 40 дБ.

2.2.1.1 Защита от помех по совмещенному каналу

ТАБЛИЦА 10

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от мешающего сигнала ATSC 6 МГц

Полезный сигнал:	Мешающий сигнал: ATSC 6 МГц	
аналоговая система	Тропосферные помехи	Непрерывные помехи
B/PAL	38	45

2.2.1.2 Зашита от помех нижнего соселнего канала

ТАБЛИЦА 11

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала ATSC 6 МГц (нижнего соседнего канала)

Полезный сигнал: аналоговая система	Мешающий сигнал: сигнал ATSC 6 МГц (нижний соседний канал)		
аналоговая система	Тропосферные помехи	Непрерывные помехи	
B/PAL	-7	-1	

2.2.1.3 Защита от помех верхнего соседнего канала

ТАБЛИЦА 12

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала ATSC 6 МГц (верхнего соседнего канала)

Полезный сигнал: аналоговая система	Мешающий сигнал: сигнал ATSC 6 МГц (верхний соседний канал)		
аналоговая система	Тропосферные помехи	Непрерывные помехи	

- 3 Защитные отношения для звуковых сигналов полезных сигналов аналогового наземного телевидения, испытывающих помехи от мешающих сигналов цифрового наземного телевидения ATSC
- 3.1 Защита звуковых сигналов NTSC (система BTSC MTS и SAP), испытывающих помехи от сигнала цифрового телевидения ATSC (см. Примечание 1)

В случае мешающего верхнего соседнего цифрового канала N+1 параметры аудиосигналов ухудшаются быстрее, чем параметры видеосигналов. Измеренное значение защитного отношения для помехи в звуковых сигналах BTSC MTS и SAP составило -12 дБ. (Защитное отношение для видеосигнала в канале N+1 равно -17 дБ.) Значение защитного отношения, равное -12 дБ для звуковых сигналов, относится к уровню полезной видеонесущей NTSC.

ПРИМЕЧАНИЕ 1. – BTSC MTS: многоканальный звук для телевидения Комитета систем телевизионного радиовещания; SAP: звуковая аудиопрограмма.

4 Минимальная напряженность поля для наземного цифрового телевидения ATSC

ТАБЛИЦА 13 Вывод значений по методу показателя полезности системы ATSC 6 МГ \mathfrak{n}^*

Планируемый параметр ⁽¹⁾	Нижняя часть диапазона ОВЧ 54-88 МГц	Верхняя часть диапазона ОВЧ 174–216 МГц	Диапазон УВЧ 470-806 МГц
Частота (МГц)	69	194	615
<i>C/N</i> (дБ)	19,5 ⁽²⁾	19,5 ⁽²⁾	19,5 ⁽²⁾
<i>k</i> (дБ)	-228,6	-228,6	-228,6
В (дБ(Гц)) (6 МГц)	67,8	67,8	67,8
G _{1m} 2 (дБ)	-1,8	7,3	17,2
G_D (д $\overline{\mathbf{b}}$)	6	8	10
G_I (дБ)	8,2	10,2	12,2
Потери в линии передачи (дБ) α_{line}	1,1	1,9	3,3
Потери на симметрирующем устройстве антенны $300/75$ (дБ) α_{balun}	0,5	0,5	0,5
Значение шума приемника (дБ)	5	5	10
$T_{rx}(K)$	627,1	627,1	2 610
$T_{line}\left(\mathbf{K}\right)$	65,0	102,9	154,4
Значение шума LNA (дБ)	5	5	5
Усиление LNA (дБ)	20	20	20
T_{LNA} (дБ)	627,1	627,1	627,1
T_{balun} (K)	31,6	31,6	31,6
$T_a(K)$	9 972,1	569,1	Пренебрежимо мало
$T_a \alpha_{balun}(K)$	8 885,1	507,1	Пренебрежимо мало
$T_{line}/\alpha G(K)$	0,8	1,6	3,3
$T_{rx}/\alpha G(K)$	8,1	9,7	55,8
$T_{e}\left(\mathrm{K}\right)$	9 552,6	1 176,8	717,8
$10 \log(T_e)$ (дБ(K))	39,8	30,7	28,6
G_A (д $\overline{\mathrm{B}}$)	7,7	9,7	11,7
$E_{rx} (дБ(мкВ/м))^{(2), (3)} (TВС)$	35	33	39

Значения, приведенные в таблице, были рассчитаны для *C/N* при типичном искажении многолучевого приема и равном распределении шума и помехи. Модель принимающей системы – это типичное приемное устройство, расположенное возле границ охвата и состоящее из внешней смонтированной антенны, смонтированного на антенне малошумного усилителя (LNA), соединительного кабеля и приемника ATSC.

 $^{^{(1)}}$ Определения приведены в Дополнении 1 к Приложению 1.

⁽²⁾ Цифры должны быть скорректированы в меньшую сторону (к лучшим показателям работы) на 6 дБ для каскадного решетчатого кодирования со скоростью 1/2 или 9 дБ для каскадного решетчатого кодирования со скоростью 1/4.

 $^{^{(3)}}$ См. формулу в Дополнении 1 к Приложению 1.

Дополнение 1 к Приложению 1

Вывод значений по методу показателя полезности

Требуемая напряженность поля

$$E_{rx} (\pi B(B/M)) = \phi (\pi B(BT/M^2)) + 10 \log(120 \pi)$$

$$C/N = \varphi - G_{lm}^2 + G_A/T_e - k - B_{rf}$$

$$E_{rx}$$
 (дБ(мкВ/м)) = ϕ (дБ(Вт/м²)) + 25,8 (дБ) + 120 (дБ)
= $145,8 + C/N + G_{lm}^2 - G_A/T_e + 10 \log(k) + 10 \log(B_{rf})$

 E_{rx} : требуемая напряженность поля на приемной антенне системы

Ф: плотность потока мощности на приемной антенне системы

C/N: соотношение несущая/шум

 G_{lm}^2 : усиление на 1 м²

 G_A/T_e : значение полезности принимающей системы

k: постоянная Больцмана (Дж/K)

 B_{rf} : эквивалентная шумовая полоса системы.

Значение полезности принимающей системы

(Для модели принимающей системы с LNA)

$$G_A/T_e = (G-L)/(\alpha_{balun} T_a + T_{balun} + T_{LNA} + T_{line}/(\alpha_{line} G_{LNA}) + T_{rx}/(\alpha_{line} G_{LNA}))$$

Шумовая температура приемника

$$T_{\rm rr} = (10^{NF/10} - 1) \times 290^{\circ}$$

Шумовая температура LNA

$$T_{LNA} = (10^{NF/10} - 1) \times 290^{\circ}$$

Шумовая температура линии передачи

$$T_{line} = (1 - \alpha_{line}) \times 290^{\circ}$$

Шумовая температура симметрирующего устройства

$$T_{balun} = (1 - \alpha_{balun}) \times 290^{\circ}$$

Шумовая температура антенны

$$T_a = 10^{(6,63-2,77(\log f))} \times 290^{\circ}$$
 (для диполя),

где f выражается в М Γ ц.

Шумовая температура антенны (относительно входа LNA)

$$\alpha T_a = T_a(\alpha_{balun})$$

Шумовая температура системы

$$T_e = (\alpha_{balun} T_a + T_{balun} + T_{LNA} + T_{line} / (\alpha_{line} G_{LNA}) + T_{rx} / (\alpha_{line} G_{LNA}))$$

$$T_e \left(\text{дБ(K)} \right) = 10 \log(\alpha_{balun} \, T_a + T_{balun} + T_{LNA} + T_{line} \, / \, (\alpha_{line} \, G_{LNA}) + T_{rx} \, / \, (\alpha_{line} \, G_{LNA}))$$
 или
$$= 10 \log(T_{balun} + T_{LNA} + T_{line} \, / \, (\alpha_{line} \, G_{LNA}) + T_{rx} \, / \, (\alpha_{line} \, G_{LNA})) + N_{ext},$$

где T_a неизвестно.

 $Усиление на <math>1 M^2$

$$G_{1M}^2 = 10 \log(4 \pi / \lambda \lambda^2)$$

Заданное значение

 G_I : усиление антенны (изотропной) (дБ)

L: потери на линии передачи (дБ)

α_{line}: потери на линии передачи (численное значение)

 T_a : шумовая температура антенны (K)

 T_{rx} : шумовая температура приемника (K)

 n_f : коэффициент шума (численное значение)

NF: показатель шума (дБ)

 T_0 : эталонная температура = 290 K

λ: длина волны рабочей частоты

 G_A : усиление системы (дБ)

 T_e : шумовая температура системы (K)

 N_{ext} : величина в дБ, отражающая вносимую величину внешнего шума

k: постоянная Больцмана $1,38 \times 10^{-23}$ (-228,6 дБ) (Дж/К)

B: эквивалентная шумовая полоса системы (дБ(Γ ц))

α_{balun}: потери на симметрирующем устройстве антенны 300/75 (численное значение)

LNA: малошумный усилитель

 T_{LNA} : шумовая температура LNA (K)

Приложение 2

Критерии планирования для систем цифрового телевидения DVB-T в лиапазонах ОВЧ/УВЧ

1 Защитные отношения для полезных сигналов цифрового наземного телевидения DVB-T

В таблицах 14–15, 16–22, 23–25 и 26–27 приводятся защитные отношения для полезных сигналов цифрового наземного телевидения DVB-T, испытывающих помехи от:

- сигналов цифрового наземного телевидения DVB-T;
- сигналов аналогового наземного телевидения;
- одной непрерывной волны (CW) или несущей ЧМ;
- сигналов наземного цифрового аудиовещания (T-DAB), соответственно.

1.1 Защита сигнала цифрового наземного телевидения DVB-T, испытывающего помехи от сигнала цифрового наземного телевидения DVB-T

ТАБЛИЦА 14

Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T, испытывающего помехи от сигнала DVB-T

Модуляция	Кодовая скорость	Гауссовский канал	Райсовский канал	Рэлеевский канал
ЧФМН	1/2	5	6	8
ЧФМН	2/3	7	8	11
16-KAM	1/2	10	11	13
16-KAM	2/3	13	14	16
16-KAM	3/4	14	15	18
64-KAM	1/2	16	17	19
64-KAM	2/3	19	20	23
64-KAM	3/4	20	21	25

Защитные отношения приведены для трех типов каналов передачи (т. е. гауссовский, райсовский и рэлеевский). Для приема на фиксированное и переносное оборудование следует принять значения, относящиеся к райсовскому и рэлеевскому каналам, соответственно.

Те же защитные отношения применяются для систем DVB-T с шириной полосы 6, 7 и 8 МГц.

Значения защитных отношений округлены до ближайшего целого числа.

Для перекрывающихся каналов при отсутствии измерительной информации, а также когда перекрывающаяся ширина полосы между полезным и мешающим сигналами меньше $1\,\mathrm{M}\Gamma$ ц, защитное отношение PR экстраполируется на основе защитного отношения по совмещенному каналу следующим образом:

$$PR = CCI + 10 \log_{10}(BO/BW),$$

где:

CCI: защитное отношение по совмещенному каналу

ВО: ширина полосы (МГц), в которой перекрываются два сигнала DVB-T

BW: ширина полосы (МГц) полезного сигнала

PR = следует использовать значение -30 дБ, если приведенная выше формула дает значение PR < -30 дБ.

Вместе с тем, требуются дополнительные исследования по данной теме.

ТАБЛИЦА 15

Защитные отношения (дБ) для сигнала DVB-T, испытывающего помехи от сигнала DVB-T в нижнем (N-1) и верхнем (N+1) соседних каналах

Канал	N-1	N+1
PR	-30	-30

Защитные отношения даны в дБ и применяются как к непрерывным, так и к тропосферным помехам.

Приведенные значения применяются в случае, когда полезный и мешающий сигналы DVB-T имеют одну и ту же ширину полосы. Для других сочетаний ширины каналов необходимы дополнительные исследования.

На основе измерений для существующих приемников известно, что для них подходят и более низкие значения зашитных отношений.

Однако для целей планирования желательно иметь указанное значение.

1.2 Защита цифрового наземного телевидения DVB-T, испытывающего помехи от аналогового наземного телевидения

1.2.1 Защита от помех по совмещенному каналу

Защитные отношения по совмещенному каналу (дБ) для сигналов DVB-T 7 МГц и 8 МГц, испытывающих помехи от сигналов аналогового телевидения (условия с неуправляемой частотой)

ТАБЛИЦА 16

			1	
Модуляция	Кодовая скорость	Гауссовский канал	Райсовский канал	Рэлеевский канал
ЧФМН	1/2	-12		-12
ЧФМН	2/3	-8		-8
ЧФМН	3/4	-4		
ЧФМН	5/6	3		
ЧФМН	7/8	9		
16-KAM	1/2	-8		-8
16-KAM	2/3	-3		3
16-KAM	3/4	0		5
16-KAM	5/6	9		
16-KAM	7/8	16		
64-KAM	1/2	-3		3
64-KAM	2/3	3		6
64-KAM	3/4	9		15
64-KAM	5/6	15		
64-KAM	7/8	20		

 Π РИМЕЧАНИЕ 1. — Значения для систем PAL/SECAM справедливы для следующих режимов звуковой несущей:

- МОНО ЧМ с одной звуковой несущей на уровне −10 дБ относительно видеонесущей;
- СДВОЕННАЯ ЧМ и ЧМ + NICAM с двумя звуковыми несущими на уровне −13 дБ и −20 дБ;
- АМ + NICAM с двумя звуковыми несущими на уровне −10 дБ и −27 дБ, соответственно.

В соответствии с имеющимися результатами измерений те же самые значения защитных отношений применимы для режимов 2k и 8k.

Во всех таблицах, за исключением таблицы 25, использованы так называемые неуправляемые условия.

Фактические результаты измерений защитных отношений будут отражать циклические вариации, которые возникают при изменении величины сдвига между полезным сигналом DVB-Т и мешающим аналоговым сигналом в диапазоне частот, эквивалентном разнесению между несущими в системах с кодовым ортогональным частотным уплотнением (COFDM). Приведенные защитные отношения представляют собой заниженные, но реалистичные значения, которые учитывают ожидаемые частотные сдвиги в существующих приемниках. Введение точного значения сдвига между сигналами СОFDM и мешающими аналоговыми ТВ сигналами позволит улучшить защитное отношение на 3 дБ. Требуемая стабильность частоты передатчика такая же, что и для сдвига точного аналогового сигнала, т. е. колеблется в пределах ±1 Гц.

Защитные отношения для DVB-T 6 МГц не представлены ввиду отсутствия результатов измерений.

1.2.2 Защита от помех нижнего соседнего канала (N-1)

ТАБЛИЦА 17

Защитные отношения (дБ) в случае помех нижнего соседнего канала (N-1) для сигналов DVB-T 7 МГц и 8 МГц, испытывающих помехи от аналоговых телевизионных сигналов, включая звуковой сигнал

Полезный	і́ сигнал		Мешающий сигнал								
Созвездие	Кодовая скорость	PAL B	ALB PALG, B1 PALI PALD, K SECAML								
ЧФМН	1/2		-44								
ЧФМН	2/3	-44	-44								
16-КАМ	1/2		-43	-43							
16-KAM	2/3	-42	-42								
16-KAM	3/4		-38								
64-KAM	1/2		-40	-38							
64-KAM	2/3	-35	-35	-34		-35	-37				
64-KAM	3/4		-32								

Все значения применимы к условиям приема на фиксированное и переносное оборудование.

1.2.3 Защита от помех верхнего соседнего канала (N+1)

ТАБЛИЦА 18

Защитные отношения (дБ) в случае помех верхнего соседнего канала (N+1) для сигналов DVB-T 7 МГц и 8 МГц, испытывающих помехи от аналоговых телевизионных сигналов

Полезны	й сигнал	Мешающий сигнал
Созвездие	Кодовая скорость	PAL/SECAM
ЧФМН	2/3	-4 7
16-KAM	2/3	-43
64-KAM	2/3	-38

1.2.4 Защита от помех перекрывающих каналов

ТАБЛИЦА 19 тные отношения (дБ) для сигнала DVB-Т 8 МГц, испытывающего по

Защитные отношения (дБ) для сигнала DVB-Т 8 МГц, испытывающего помехи от перекрывающего сигнала PAL B, включая звуковой сигнал

Мешающий сигнал: аналоговая ТВ система PAL В		Полезный сигнал: DVB-T, 8 МГц, 64-КАМ, кодовая скорость 2/3											
Δf (М Γ ц)	-9,75	9,75 -9,25 -8,75 -8,25 -6,75 -3,95 -3,75 -2,75 -0,75 2,25 3,25 4,75 5,25											
PR	-37	7 -14 -8 -4 -2 1 3 3 3 2 -1 -29 -36											

Разность частот Δf представляет собой разницу между частотой видеонесущей аналогового телевизионного сигнала и средней частотой сигнала DVB-T.

ТАБЛИЦА 20 Защитные отношения (дБ) для сигнала DVB-T 7 МГц, испытывающего помехи от перекрывающего аналогового ТВ сигнала 7 МГц, включая звуковой сигнал

Мешающий сигнал: аналоговая ТВ система 7 МГц		Полезный сигнал: DVB-T, 7 МГц, 64-КАМ, кодовая скорость 2/3												
$\Delta f(M\Gamma \mathbf{u})$	-9,25	0,25												
PR	-35	-12	-11	-5	-3	-1	4	1	0	2	-5	-5	-36	-38

Разность частот Δf представляет собой разницу между частотой видеонесущей аналогового телевизионного сигнала и средней частотой сигнала DVB-T.

ТАБЛИЦА 21 Защитные отношения (дБ) для сигнала DVB-T 7 МГц, испытывающего помехи от перекрывающего аналогового ТВ сигнала 8 МГц, включая звуковой сигнал

Мешающий сигнал: аналоговая ТВ система 8 МГц				Пол	іезный	сигна. кодов		-Т, 7 М рость 2		-KAN	1,			
$\Delta f(M\Gamma \mathbf{u})$	-10,25	10,25 -9,75 -9,25 -8,75 -7,25 -3,45 -3,25 -2,25 -1,25 0 1,75 2,75 4,25 4,75												
PR	-35	-12 -11 -5 -3 -1 4 1 0 2 -5 -5 -36 -38												

Разность частот Δf представляет собой разницу между частотой видеонесущей аналогового телевизионного сигнала и средней частотой сигнала DVB-T.

ТАБЛИЦА 22

Защитные отношения (дБ) для сигнала DVB-Т 8 МГц, испытывающего помехи от перекрывающего аналогового ТВ сигнала 8 МГц, включая звуковой сигнал

Мешающий сигнал: аналоговая ТВ система 8 МГц		Полезный сигнал: DVB-T, 8 МГц, 64-КАМ, кодовая скорость 2/3												
$\Delta f(M\Gamma \mathbf{u})$	-10,75	-10,25	-9,75	-9,25	-7,75	-3,45	-3,25	-2,25	-1,25	0	2,25	3,25	4,75	5,25
PR	-35	-12	-11	-5	-3	-1	4	1	0	2	-5	-5	-36	-38

Разность частот Δf представляет собой разницу между частотой видеонесущей аналогового телевизионного сигнала и средней частотой сигнала DVB-T.

1.3 Защита сигнала цифрового наземного телевидения DVB-T от непрерывных сигналов (CW) или сигналов ЧМ

ТАБЛИЦА 23

Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-Т 8 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от CW или ЧМ несущей (неконтролируемый сдвиг частоты)

Мешающий сигнал: CW или ЧМ несущая	Полезный сигнал: DVB-T, 8 МГц, 64-КАМ, кодовая скорость 2/3							
$\Delta f(M\Gamma \mathbf{u})$	-12	-4,5	-3,9	0	3,9	4,5	12	
PR	-38	-33	-3	-3	-3	-33	-38	

ТАБЛИЦА 24

Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 7 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от CW или ЧМ несущей (неконтролируемый сдвиг частоты)

Мешающий сигнал: CW или ЧМ несущая	Полезный сигнал: DVB-T, 7 МГц, 64-КАМ, кодовая скорость 2/3							
$\Delta f(M\Gamma \mathbf{u})$	-10,5	-4,0	-3,4	0	-3,4	4,0	10,5	
PR	-38	-33	-3	-3	-3	-33	-38	

Приведенные таблицы с защитными отношениями могут использоваться для мешающих сигналов с узкой полосой, например аналоговых звуковых несущих или не радиовещательных служб.

ТАБЛИЦА 25

Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 7 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от CW несущей (сдвиг управляемой частоты)

Мешающий сигнал: CW несущая	Полезный сигнал: DVB-T, 7 МГц, 64-КАМ, кодовая скорость 2/3							
$\Delta f(\text{M}\Gamma\text{H})$	-8	-4	-3	0	3	4	8	
PR	-48	-41	-8	-9	-6	-39	-48	

Приведенные таблицы с защитными отношениями могут использоваться для мешающих сигналов с узкой полосой, например аналоговых звуковых несущих или не радиовещательных служб. Следует отметить, что точная структура защитного отношения и частотного сдвига между сигналом OFDM и мешающим сигналом CW подвержена циклическим вариациям. Приведенные в таблице 25 значения относятся к оптимальному сдвигу.

1.4 Защита сигналов цифрового наземного телевидения DVB-T от сигналов T-DAB

ТАБЛИЦА 26

Защитные отношения по совмещенному каналу (дБ) для сигнала DVB-T 7 МГц и 8 МГц, испытывающего помехи от сигнала T-DAB

Полезный с	игнал DVB-T	PR
Созвездие	Кодовая скорость	
ЧФМН	1/2	10
ЧФМН	2/3	12
ЧФМН	3/4	14
16-KAM	1/2	15
16-KAM	2/3	18
16-KAM	3/4	20
64-KAM	1/2	20
64-KAM	2/3	24
64-KAM	3/4	26
64-KAM	7/8	31

ПРИМЕЧАНИЕ 1. – Приведенные защитные отношения для сигналов DVB-T представляют собой наихудший случай помех от T-DAB.

ТАБЛИЦА 27

Защитные отношения (дБ) для сигнала DVB-T 7 МГц и 8 МГц, испытывающего помехи от сигнала T-DAB в нижнем (N-1) или верхнем (N+1) соседних каналах

Канал	N-1	N+1
PR	-30	-30

Величина защитного отношения приведена в дБ.

1.5 Защита DVB-T от широкополосных сигналов, помимо сигналов наземного радиовещания

1.5.1 Защитные отношения для DVB-T, испытывающей помехи от фиксированной службы (настраиваемая система)

ТАБЛИЦА 28

Защитные отношения для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от излучений фиксированной службы

Δf (М Γ ц)	-12	-4,5	-3,75	0	3,75	4,5	12
PR (дБ)	-45	-27	1	4	1	-27	-45

 $[\]Delta f$: разница между средними частотами.

Технические характеристики источника помех

– Модуляция: 2-FSK

Ширина полосы: 750 кГц (3 дБ)

1.5.2 Защитные отношения для DVB-T, испытывающей помехи от системы многократного доступа с разделением каналов (МДРК)

Следует отметить, что таблицы 27 и 28 относятся к ситуации, когда один канал системы МДКР причиняет помехи системе DVB-T.

ТАБЛИЦА 29

Защитные отношения для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скоростью 2/3, испытывающего помехи от излучений МДКР-1X

$\Delta f(M\Gamma \mathbf{u})$	-12	-4,5	-3,75	0	3,75	4,5	12
PR (дБ)	-38	-20	-3	10	-3	-20	-38

 $[\]Delta f$: разница между средними частотами.

Характеристики мешающего сигнала

Модуляция: ЧФМН

— Ширина полосы: 1,25 МГц (99%)

ТАБЛИЦА 30

Защитные отношения для сигнала DVB-T 8 МГц, 64-КАМ с кодовой скорость 2/3, испытывающего помехи от излучений МДКР-3X

$\Delta f(M\Gamma_{II})$	-12	-4,5	-3,75	0	3,75	4,5	12
PR (дБ)	-38	8	13	18	13	8	-38

 $[\]Delta f$: разница между средними частотами.

Характеристики мешающего сигнала

– Модуляция: ЧФМН

— Ширина полосы: 4 МГц (99%)

2 Защитные отношения для полезных сигналов аналогового наземного телевидения, испытывающих помехи от мешающих сигналов цифрового наземного телевидения DVB-T

В таблицах 31–38 приводятся защитные отношения для полезного аналогового телевизионного сигнала с 625 строками, испытывающего помехи от сигнала цифрового наземного телевидения DVB-T.

2.1 Защитные отношения для телевизионных систем с 625 строками

2.1.1 Защита полезных видеосигналов, испытывающих помехи от сигнала цифрового наземного телевидения DVB-T

В этом разделе защитные отношения для полезного аналогового сигнала, испытывающего помехи от мешающего цифрового сигнала DVB-T, относятся только к помехам видеосигналу.

Приведенные значения защитных отношений относятся к внеканальному ослаблению спектра мешающего передатчика DVB-T в 40 дБ.

2.1.1.1 Защита от помех по совмещенному каналу

ТАБЛИЦА 31

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от мешающего сигнала DVB-Т 8 МГц

Полезный сигнал:	Мешающий сигнал: DVB-T, 8 МГц				
аналоговая система	Тропосферные помехи	Непрерывные помехи			
B, D, D1, G, H, K/PAL	34	40			
I/PAL	37	41			
B, D, K, L/SECAM	35	41			

ТАБЛИЦА 32

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от мешающего сигнала DVB-T 7 МГц

Полезный сигнал:	Мешающий сигнал: DVB-T, 7 МГц				
аналоговая система	Тропосферные помехи	Непрерывные помехи			
B/PAL, B/SECAM	35	41			

2.1.1.2 Защита от помех нижнего соседнего канала

ТАБЛИЦА 33

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигналов DVB-T 7 МГц и 8 МГц (нижний соседний канал)

Полезный сигнал: аналоговая система	Мешающий сигнал: DVB-T, 7 МГц или 8 МГц (нижний соседний канал)				
anasioroban enercina	Тропосферные помехи	Непрерывные помехи			
B, D, D1, G, H, I, K/PAL	_9	-5			
B, D, K, L/SECAM	-5	-1			

2.1.1.3 Защита от помех верхнего соседнего канала

ТАБЛИЦА 34

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигналов DVB-T 7 МГц и 8 МГц (верхний соседний канал)

Полезный сигнал:	Мешающий сигнал: DVB-T, 7 МГц или 8 МГц (верхний соседний канал)				
аналоговая система	Тропосферные помехи	Непрерывные помехи			
PAL и SECAM	-8	-5			

2.1.1.4 Защита от помех канала изображения

ТАБЛИЦА 35

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала DVB-T 8 МГц (канал изображения)

Полезная аналоговая система	Мешающий канал DVB-T	Тропосферные помехи	Непрерывные помехи
D1, G/PAL	N + 9	-19	-15
I/PAL	N+9		
L/SECAM ⁽¹⁾	N + 9	-24	-22
D, K/SECAM ⁽¹⁾	N + 8, N + 9	-16	-11
D, K/PAL	N + 8, N + 9		

⁽¹⁾ Предварительные значения, которые все еще изучаются.

ТАБЛИЦА 36

Защитные отношения (дБ) для полезного аналогового видеосигнала, испытывающего помехи от сигнала DVB-T 7 МГц (канал изображения)

Полезная	Мешающий канал	Тропосферные	Непрерывные	
аналоговая система	DVB-T	помехи	помехи	
B/PAL	N+10, N+11	-22	-18	

2.1.1.5 Защита от помех перекрывающихся каналов

ТАБЛИЦА 37

Защитные отношения (дБ) для аналоговых видеосигналов* В, D, D1, G, H, K/PAL, испытывающих помехи от сигнала DVB-T 7 МГц (перекрывающие каналы)

		Защитное	отношение
	-4,25 -3,75 -3,25 -2,75 -1,75 -0,75 2,25 4,25 5,25 6,25	Тропосферные помехи	Непрерывные помехи
	-7,75	-16	-11
(N-1)	-4,75	-9	-5
	-4,25	-3	4
	-3,75	13	21
	-3,25	25	31
	-2,75	30	37
	-1,75	34	40
	-0,75	35	41
(N)	2,25	35	41
	4,25	35	40
	5,25	31	38
	6,25	28	35
	7,25	26	33
	8,25	6	12
(<i>N</i> + 1)	9,25	-8	-5
	12,25	-8	-5

^{*} Аналогичные значения ожидаются для всех систем SECAM. Эти значения все еще изучаются.

ТАБЛИЦА 38

Защитные отношения (дБ) для аналоговых видеосигналов* В, D, D1, G, H, K/PAL, испытывающих помехи от сигнала DVB-T 8 МГц (перекрывающие каналы)

	Разница между средней частотой мешающего сигнала DVB-T и частотой вилеонесушей		отношение
	сигнала DVB-T и частотой видеонесущей пезного аналогового телевизионного сигнала (МГц) - 8,25 1) -5,25 - 4,75 - 4,25 - 3,75 - 3,25 - 2,25 - 1,25 2,75	Тропосферные помехи ⁽¹⁾	Н епрерывные помехи ⁽¹⁾
	- 8,25	-16	-11
(N-1)	-5,25	-9	-5
	- 4,75	-4	3
	- 4,25	12	20
	-3,75	24	30
	-3,25	29	36
	-2,25	33	39
	-1,25	34	40
(N)	2,75	34	40
	4,75	34	39
	5,75	30	37
	6,75	27	34
	7,75	25	32
	8,75	5	11
(N+1)	9,75	-8	-5
	12,75	-8	-5

^{*} Аналогичные значения ожидаются для всех систем SECAM. Эти значения все еще изучаются.

3 Защитные отношения звуковых сигналов полезных сигналов аналогового наземного телевидения, испытывающих помехи от мешающих сигналов цифрового наземного телевиления DVB-T

В таблицах 39–41 настоящего Приложения приводятся защитные отношения для полезных телевизионных звуковых несущих ЧМ, АМ и NICAM, испытывающих помехи от мешающих сигналов цифрового наземного телевидения.

Все защитные отношения в этом разделе относятся к уровню полезных телевизионных звуковых несущих. Эталонный уровень звуковых несущих представляет собой среднеквадратичное значение немодулированной несущей.

Качество звука при тропосферных помехах соответствует классу 3, при непрерывных помехах – классу 4.

Эталонные значения отношения сигнал/шум (S/N) для звуковых сигналов ЧМ являются следующими:

- 40 дБ (приближается к искажениям класса 3) тропосферные помехи;
- 48 дБ (приближается к искажениям класса 4) непрерывные помехи.

⁽¹⁾ Значения тропосферных и непрерывных помех получены расчетным путем из таблицы 35.

Эталонные значения S/N измеряются как взвешенные значения пиковых уровней S/N, приведенных в Рекомендации МСЭ-R BS.468 и Рекомендации МСЭ-R BS.412.

Эталонный уровень звукового сигнала ЧМ соответствует максимальному отклонению частоты в $\pm 50~\mathrm{k}\Gamma\mathrm{u}$.

Эталонные значения КОБ для цифровых звуковых сигналов NICAM являются следующими:

- $KOE = 1 \times 10^{-4}$ (приближается к искажениям класса 3) тропосферные помехи;
- KOБ = 1×10^{-5} (приближается к искажениям класса 4) непрерывные помехи.

При передаче с двумя звуковыми несущими каждый из двух звуковых сигналов должен рассматриваться в отдельности. Мультиплексные модулированные звуковые сигналы могут потребовать более высокой защиты.

3.1 Защита для звуковых сигналов ЧМ, АМ и NICAM аналоговых телевизионных систем, испытывающих помехи от сигналов цифрового наземного телевидения DVB-T

ТАБЛИЦА 39

Защитные отношения по совмещенному каналу (дБ) для полезного звукового сигнала, испытывающего помехи от сигналов цифрового наземного телевидения DVB-T

	е отношение, отнесенное к несущей олезного звукового сигнала	Мешающий сигнал	
1	Толезный звуковой сигнал	DVB-T 7 МГц	DVB-T 8 МГц
ЧМ	Тропосферные помехи	6	5
	Непрерывные помехи	16	15
AM	Тропосферные помехи	21	20
	Непрерывные помехи	24	23
NICAM	Тропосферные помехи	5	4
PAL B/G	Непрерывные помехи	6	5
NICAM	Тропосферные помехи		
Система I	Непрерывные помехи		
NICAM	Тропосферные помехи	12	11
Система L	Непрерывные помехи	13	12

ТАБЛИЦА 40

Защитные отношения (дБ) для полезного звукового сигнала ЧМ, испытывающего помехи от сигнала DVB-T 7 МГц (перекрывающие каналы)

		Частота сигнала DVB-T на уровне 3 дБ за вычетом частоты звуковой несущей					_	
Частота сигнала DVB-Т относительно несущей ЧМ	Защитное отношение, отнесенное к несущей полезного звукового сигнала	–500 кГц	–250 кГц	-50 кГц	0,0 кГц	50 кГц	250 кГц	500 кГц
DVB-Т ниже ЧМ	Тропосферные помехи	0	0	0	5	5	6	6
DVB-1 ниже ЧМ	Непрерывные помехи	9	9	9	14	14	15	16
DVB-Т выше ЧМ	Тропосферные помехи	5	5	4	3	-9	-22	-32
D v D-1 Billie Aivi	Непрерывные помехи	15	15	14	12	-6	-16	-27

ПРИМЕЧАНИЕ 1. – Значения защитных отношений отнесены к внеканальному ослаблению спектра в 40 дБ.

ПРИМЕЧАНИЕ 2. – Эта таблица все еще изучается.

ТАБЛИЦА 41

Защитные отношения (дБ) для полезного звукового сигнала AM, испытывающего помехи от сигнала DVB-T 8 МГц при различных частотных сдвигах (верхний соседний канал)

	Средняя частота сигнала DVB-T за вычетом частоты звуковой несущей								
Защитное отношение, отнесенное к несущей	С отрицательным сдвигом	Без сдвига	С положительным сдвигом						
полезного звукового сигнала	4,250 — 0,166 МГц = 4,084 МГц	4,250 МГц	4,250 + 0,166 МГц = 4,416 МГц						
Тропосферные помехи	-1	-2	-4						
Непрерывные помехи	+1	0	-2						

4 Защитные отношения для сигнала T-DAB, испытывающего помехи от мешающего сигнала цифрового наземного телевидения

ТАБЛИЦА 42

Защитные отношения (дБ) для сигнала T-DAB, испытывающего помехи от сигнала DVB-T 8 МГп

64-КАМ, кодовая скорость 2/3										
$\Delta f^{(1)}$ (МГц)	-5	-4,2	- 4	-3	0	3	4	4,2	5	
PR	-50	- 1	0	1	1	1	0	-1	-50	

⁽¹⁾ Δf : средняя частота сигнала DVB-T за вычетом средней частоты сигнала T-DAB.

ТАБЛИЦА 43

Защитные отношения (дБ) для сигнала T-DAB, испытывающего помехи от сигнала DVB-T 7 МГц

64-КАМ, кодовая скорость 2/3										
$\Delta f^{(1)} (\mathrm{M}\Gamma \mathrm{II})$	-4,5	-3,7	-3,5	-2,5	0	2,5	3,5	3,7	4,5	
PR	-49	0	1	2	2	2	1	0	-49	

⁽¹⁾ Δf : средняя частота сигнала DVB-T за вычетом средней частоты сигнала T-DAB.

5 Минимальная напряженность поля для наземного цифрового телевидения DVB-T, фиксированный прием

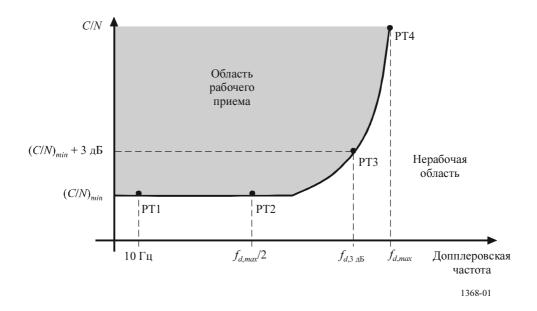
Формула для расчета минимальной напряженности поля приводится в Дополнении 1 к Приложению 2.

ТАБЛИЦА 44 Расчет минимального уровня напряженности поля системы DVB-T 8 МГц

Частота (МГц)	200				550		700			
Вариант системы с защитным интервалом 1/4	ЧФМН 2/3	16-KAM 2/3	64-KAM 2/3	ЧФМН 2/3	16-KAM 2/3	64-KAM 2/3	ЧФМН 2/3	16-KAM 2/3	64-KAM 2/3	
Значение шума приемника, <i>F</i> (дБ)	5	5	5	7	7	7	7	7	7	
Отношение несущая/шум на приемнике $^{(1)}$ (C/N) (дБ)	8	14	20	8	14	20	8	14	20	
Потери на фидере A_f (дБ)	3	3	3	3	3	3	5	5	5	
Усиление антенны, G (дБ)	5	5	5	10	10	10	12	12	12	
Минимальная напряженность поля при фиксированном приеме, E_{min} (дБ(мкВ/м)) ⁽²⁾	27	33	39	33	39	45	35	41	47	

⁽¹⁾ Для райсовского канала.

6 Минимальная медианная напряженность поля при приеме на подвижное оборудование DVB-T


Уравнения для расчета минимальной медианной напряженности поля приведены в Дополнении 1 к настоящему Приложению. Вводимые величины для расчетов приводятся в настоящем разделе и в Приложении 4. Прием на подвижное оборудование следует рассчитывать со значением вероятности мест приема в 99%.

6.1 Необходимое среднее значение С/N для приема на подвижное оборудование

Для конкретного типа DVB-T необходимое среднее значение C/N для определенных уровней качества зависит только от допплеровской частоты, и можно построить график, подобный приведенному на рис. 1.

⁽²⁾ Формула приведена в Дополнении 1 к Приложению 2.

РИСУНОК 1 Необходимое среднее значение *C/N* в подвижном канале распространения

Минимальные необходимые средние значения C/N (C/N_{min}), допплеровская частота для среднего значения C/N, равного C/N_{min} + 3 дБ, и максимальные предельные допплеровские значения (скорость) для приема на подвижное оборудование приводятся в таблице 45 и таблице 46. Предельные значения скорости для C/N_{min} + 3 дБ приводятся для трех частот (200 МГц, 500 МГц и 800 МГц). Среднее значение C/N, C/N_{min} + 3 дБ, подходит для расчета необходимой напряженности поля. В таблице 45 приведены величины для необходимого среднего значения C/N и предельные значения скорости при отсутствии разнесения. В таблице 46 содержатся соответствующие величины для случая разнесения. Приведенные значения основаны на типовых параметрах канала "типовой городской", которые показаны в таблице 47. Критерием качества является субъективное местонахождение неисправности (SFP), соответствующее коэффициенту секунд с ошибками -ESR = 5% и коэффициенту пакетных ошибок $PER = 1 \times 10^{-4}$.

ТАБЛИЦА 45 **Необходимое среднее значение** *C/N*, предельная скорость для приема на подвижное оборудование при отсутствии разнесения

Защитный	интервал =	= 1/32	2k	2k						8k Скорость при F_d , 3 дБ					
Модуляция	Скорость (Мбит/с)	Кодо- вая ско- рость	<i>C/N_{min}</i> (д Б)	F _{d, max} (Гц)	F _d при C/N _{min} + 3 дБ	200 МГц	500 МГц	800 МГц	<i>C/N_{min}</i> (д Б)	F _{d, max} (Гц)	F _d при C/N _{min} + 3 дБ	200 МГц	500 МГц	800 МГц	
ЧФМН	6,03	1/2	13,0	318	259	1 398	559	349	13,0	76	65	349	140	87	
ЧФМН	8,04	2/3	16,0	247	224	1 207	483	302	16,0	65	53	286	114	71	
16-KAM	12,06	1/2	18,5	224	182	985	394	246	18,5	59	47	254	102	64	
16-KAM	16,09	2/3	21,5	176	147	794	318	199	21,5	41	35	191	76	48	
64-KAM	18,10	1/2	23,5	141	118	635	254	159	23,5	35	29	159	64	40	
64-KAM	24,13	2/3	27,0	82	65	349	140	87	27,0	24	18	95	38	24	

ТАБЛИЦА 46 Необходимое среднее значение *C/N*, предельная скорость для приема на подвижное оборудование для случая разнесения

Защитный	интервал	= 1/32	2k	2k						8k п) Скорость при F_d , 3 дБ (км					
Модуляция	Скорость (Мбит/с)		<i>C/N_{min}</i> (дБ)	F _{d, max} (Гц)	<i>F_d</i> при <i>C/N_{min}</i> + 3 дБ	200 МГц	500 МГц	800 МГц	<i>C/N_{min}</i> (д Б)	F _{d, max} (Гц)	<i>F_d</i> при <i>C/N_{min}</i> + 3 дБ	200 МГц	500 МГц	800 МГц	
ЧФМН	6,03	1/2	7,0	560	518	2 795	1 118	699	7,0	140	129	699	280	175	
ЧФМН	8,04	2/3	10,0	494	447	2 414	966	604	10,0	129	106	572	229	143	
16-KAM	12,06	1/2	12,5	447	365	1 969	788	492	12,5	118	94	508	203	127	
16-KAM	16,09	2/3	15,5	353	294	1 588	635	397	15,5	82	71	381	152	95	
64-KAM	18,10	1/2	17,5	282	235	1 271	508	318	17,5	71	59	318	127	79	
64-KAM	24,13	2/3	21,0	165	129	699	280	175	21,0	47	35	191	76	48	

ТАБЛИЦА 47

Параметры канала для измерения необходимого среднего значения *C/N* при "типовом городском" приеме на подвижное оборудование DVB-T

Номер отвода	Задержка (мкс)	Мощность (дБ)	Допплеровская категория			
1	0	-3	Рэлеевская			
2	0,2	0	Рэлеевская			
3	0,5	-2	Рэлеевская			
4	1,6	-6	Рэлеевская			
5	2,3	-8	Рэлеевская			
6	5	-10	Рэлеевская			

Значения для скорости соответствуют кратчайшему защитному интервалу 1/32, который в допплеровских значениях является наименее критическим. Следует полагать, что при увеличении защитного интервала максимальная скорость снижается. Например, при защитном интервале 1/4 максимальная допплеровская частота $F_{d,max}$ уменьшается примерно на 85%.

Характеристики работы в подвижном канале в существенной степени зависят от конструкции приемника DVB-T. Повышения качества можно добиться при разработке приемников, сконструированных специально для приема на подвижное оборудование.

В случае DVB-H система передачи DVB-T используется как физическая среда, при этом на канальном уровне добавляются дополнительное исправление ошибок и механизм интервалов времени. Максимальная допплеровская частота (скорость) при приеме на подвижное оборудование будет повышена в связи с дополнительным уплотнением времени. Значения C/N для приема на DVB-H предстоит разработать.

6.2 Показатель шума приемника

Показатель шума в 5 дБ применяется для интегрированных подвижных приемников транспортных средств. Более низкий показатель шума возможен в случаях, когда антенна внутренне согласована с первым каскадом усилителя без необходимости соединения через цепь.

Дополнение 1 к Приложению 2

Расчет минимальной напряженности поля и минимальной медианной эквивалентной напряженность поля

Значения минимальной напряженности поля и минимальной медианной эквивалентной напряженности поля рассчитываются с использованием следующих уравнений:

$$P_n = F + 10 \log(k T_0 B)$$

$$P_{s min} = C/N + P_n$$

$$A_a = G + 10 \log(1,64\lambda^2/4 \pi)$$

$$\varphi_{min} = P_{s min} - A_a + L_f$$

$$E_{min}$$
 = $\varphi_{min} + 120 + 10 \log(120 \pi)$
= $\varphi_{min} + 145.8$

 $E_{med} = E_{min} + P_{mmn} + C_1$ для приема на фиксированное

оборудование, установленное на

уровне крыши

$$E_{med} = E_{min} + P_{mmn} + C_1 + L_h$$
 для приема на переносное

оборудование вне помещений и на

подвижное оборудование

$$E_{med} = E_{min} + P_{mmn} + C_1 + L_h + L_b$$
 для приема на переносное

оборудование внутри помещений и на подвижное портативное

оборудование

$$C_l = \mu \cdot \sigma_t$$

$$\sigma_t = \sqrt{\sigma_b^2 + \sigma_m^2}$$

где:

 P_n : мощность шума на входе приемника (дБВт)

F: показатель шума приемника (дБ)

k: постоянная Больцмана ($k = 1,38 \times 10^{-23}$ (Дж/K))

 T_0 : абсолютная температура ($T_0 = 290 \text{ (K)}$)

B: шумовая полоса приемника ($B = 7.61 \times 10^6 \, (\Gamma \text{ц})$)

 $P_{s \, min}$: минимальная мощность на входе приемника (дБВт)

C/N: соотношение РЧ сигнал/шум на входе приемника, требуемое системой (дБ)

 A_a : эффективная апертура антенны (дБм²)

G: усиление антенны, отнесенное к усилению полуволнового диполя (дБд)

λ: длина волны сигнала (м)

 ϕ_{min} : минимальная п.п.м. в месте приема (дБ(B_T/M^2))

 L_f : потери в фидере (дБ)

 E_{min} : эквивалентная минимальная напряженность поля в месте приема (дБ(мкВ/м))

 E_{med} : минимальная медианная эквивалентная напряженность поля, планируемое значение (дБ(мкВ/м))

 P_{mmn} : допуск на антропогенный шум (дБ)

 L_h : потери по высоте (точка приема на 1,5 м выше уровня земли (дБ))

 L_b : потери на входе для здания или транспортного средства (дБ)

 C_i : поправочный коэффициент для местоположения (дБ)

 σ_t : суммарное стандартное отклонение (дБ)

 σ_m : стандартное макроструктурное отклонение ($\sigma_m = 5.5$ (дБ))

 σ_b : стандартное отклонение на потери при входе в здание (дБ)

µ: коэффициент распределения, равный 0,52 для 70%, 1,28 для 90%, 1,64 для 95% и 2,33 для 99%.

Критерии планирования для систем цифрового телевидения ISDB-T в диапазонах ОВЧ/УВЧ

1 Защитные отношения для полезных сигналов цифрового наземного телевидения ISDBT

В таблицах 48–50 и 51–53 приводятся защитные отношения для полезного сигнала цифрового наземного телевидения ISDB-T, испытывающего помехи от сигнала цифрового наземного телевидения ISDB-T и сигнала аналогового наземного телевидения, соответственно.

1.1 Защита сигнала цифрового наземного телевидения ISDB-T, испытывающего помехи от цифрового телевизионного сигнала ISDB-T

ТАБЛИЦА 48

Защитные отношения по совмещенному каналу (дБ) для ISDB-Т 6 МГц, испытывающей помехи от ISDB-Т 6 МГц

Скорость	Модуляция						
кодирования	ДЧФМН	64-KAM					
7/8	10	17	23				
5/6	9	16	22				
3/4	9	15	21				
2/3	8	14	20				
1/2	6	12	17				

ТАБЛИЦА 49 Защитные отношения (дБ) для ISDB-Т 6 МГц, испытывающей помехи от ISDB-Т 6 МГц в нижнем соседнем канале (N-1)

Скорость	Модуляция						
кодирования	дчФМН	16-KAM	64-KAM				
7/8	-28	-27	-24				
5/6	-28	-27	-25				
3/4	-29	-27	-26				
2/3	-29	-28	-26				
1/2	-29	-28	-27				

ТАБЛИЦА 50 Защитные отношения (дБ) для ISDB-Т 6 МГц, испытывающей помехи от ISDB-Т 6 МГц в верхнем соседнем канале (N+1)

Скорость		Модуляция	
кодирования	дчФМН	16-KAM	64-KAM
7/8	-29	-28	-27
5/6	-29	-28	-27
3/4	-29	-28	-27
2/3	-30	-29	-27
1/2	-30	-29	-28

1.2 Защита цифрового наземного телевидения ISDB-T, испытывающего помехи от аналогового наземного телевидения

1.2.1 Защита от помех по совмещенному каналу

ТАБЛИЦА 51

Защитные отношения по совмещенному каналу (дБ) для ISDB-Т 6 МГц, испытывающей помехи от аналогового телевидения

	Защитное отношение									
Модуляция	ДЧФМН						ЧФМН			
Кодовая скорость	1/2	2/3	3/4	5/6	7/8	1/2	2/3	3/4	5/6	7/8
M/NTSC	-5	-3	-1	2	6	-16	-11	-8	0	2
Модуляция	16-KAM						64-KAM			
Кодовая скорость	1/2	2/3	3/4	5/6	7/8	1/2	2/3	3/4	5/6	7/8
M/NTSC	-11	-5	-1	6	10	-6	-1	5	9	14

ПРИМЕЧАНИЕ 1. – Уровень звуковой несущей на 6 дБ ниже уровня видеонесущей NTSC.

ПРИМЕЧАНИЕ 2. – Приведенные в данной таблице значения показывают порог приема. Принимая во внимание различные характеристики работы домашних приемников, долговременное ухудшение условий приема и т. д., при фактическом планировании частот было бы целесообразным добавить запас в несколько дБ.

1.2.2 Защита от помех нижнего соседнего канала (N-1)

ТАБЛИЦА 52 Защитные отношения (дБ) в случае помех нижнего соседнего канала (N-1) для ISDB-T 6 МГц, испытывающей помехи от сигналов NTSC, включая звуковые сигналы

Полез	Полезный сигнал			
Модуляция	Скорость кодирования	M/NTSC		
ДЧФМН	1/2	-34		
ДЧФМН	2/3	-34		
ДЧФМН	3/4	-33		
16-KAM	1/2	-34		
16-KAM	2/3	-33		
16-KAM	3/4	-32		
64-KAM	2/3	-32		
64-KAM	3/4	-31		
64-KAM	5/6	-29		
64-KAM	7/8	-29		

1.2.3 Защита от помех верхнего соседнего канала (N+1)

ТАБЛИЦА 53

Защитные отношения (дБ) в случае помех верхнего соседнего канала (N+1) для ISDB-Т 6 МГц, испытывающей помехи от сигнала NTSC 6 МГц

Полез	Полезный сигнал			
Модуляция	Скорость кодирования	M/NTSC		
ДЧФМН	1/2	-35		
ДЧФМН	2/3	-35		
ДЧФМН	3/4	-34		
16-KAM	1/2	-35		
16-KAM	2/3	-34		
16-KAM	3/4	-33		
64-KAM	2/3	-33		
64-KAM	3/4	-33		
64-KAM	5/6	-32		
64-KAM	7/8	-31		

2 Защитные отношения для полезных сигналов аналогового наземного телевидения, испытывающих помехи от мешающих сигналов цифрового наземного телевидения ISDB-T

В таблице 54 приведены защитные отношения для аналогового телевизионного сигнала с 525 строками, испытывающего помехи от сигнала цифрового наземного телевидения ISDB-T.

Приведенные защитные отношения соотнесены с прямым ослабление спектра мешающего цифрового сигнала в 38 дБ.

2.1 Защитные отношения для телевизионных систем с 525 строками

2.1.1 Защита видеосигналов NTSC, испытывающих помехи от сигналов цифрового телевидения ISDB-T

ТАБЛИЦА 54

Защитные отношения (дБ) для аналогового видеосигнала (NTSC, 6 МГц), испытывающего помехи от сигнала ISDB-T

Мешающий цифровой канал	Тропосферные помехи	Непрерывные помехи
N – 1 (нижний)	-6	-3
N (совмещенный канал)	39	44
N + 1 (верхний)	-6	-3

- 3 Защитные отношения для звуковых сигналов систем аналогового наземного телевидения с полезным сигналом, испытывающих помехи от систем цифрового наземного телевидения ISDB-T с мешающим сигналом
- 3.1 Защита звуковых сигналов NTSC, испытывающих помехи от цифровых телевизионных сигналов ISDB-T

Как показано в таблице 55, звуковой сигнал радиовещания NTSC четко сопоставляется с видеосигналом в случае помех от сигнала ISDB-Т. Следовательно, защитные отношения для радиовещания NTSC определяются защитными отношениями для видеосигнала, приведенными в таблице 54.

ТАБЛИЦА 55 Качество звука, соотнесенное с защитным отношением для видеоканала класса 3, в случае, когда сигнал NTSC 6 МГц испытывает помехи от сигнала ISDB-T 6 МГц

	Условие измерения (см. Примечание 3)	Качество звука
Помехи по совмещенному каналу	D/U = 39 дБ	> класс 4 (S/N = 54 дБ)
Помехи от верхнего соседнего канала	D/U = -6 дБ	> класс 4 (S/N = 53 дБ)
Помехи от нижнего соседнего канала	<i>D/U</i> = −6 дБ	> класс 4 (S/N = 52 дБ)

ПРИМЕЧАНИЕ 1. – Уровень звуковой несущей на 6 дБ ниже уровня видеонесущей NTSC.

ПРИМЕЧАНИЕ 2. – Эталонный уровень звукового сигнала ЧМ соответствует максимальному отклонению частоты ± 25 к Γ ц.

ПРИМЕЧАНИЕ 3. – Отношение D/U, обеспечивающее качество изображения класса 3 (соответствует защитному отношению для тропосферных помех).

4 Минимальная напряженность поля для наземного цифрового телевидения ISDB-T

С целью сокращения количества таблиц для минимальной напряженности поля системы ISDB-T выведена минимальная напряженность поля с типичными режимами передачи, как это показано в таблице 56. Минимальную напряженность поля для различных режимов можно рассчитать на основе приведенных в таблице 56 значений.

ТАБЛИЦА 56 Исчисление на основе "метода напряжений" для системы ISDB-Т 6 МГц

Частота	Ні	ижний у	ровень Ol	ВЧ	Ве	рхний у	ровень Ol	ВЧ		У	ВЧ	
(МГц)		100			2	00		600				
Система									· ·			64-KAM
	1/2	1/2	3/4	7/8	1/2	1/2	3/4	7/8	1/2	1/2	3/4	7/8
Шумовая полоса частот, $B (M\Gamma \mu)$	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6	5,6
Показатель шума приемника, NF (дБ)	5	5	5	5	5	5	5	5	7	7	7	7
Шумовое напряжение на входе приемника, $U_N^{(1)}$ (дБ(мкВ))	7,1	7,1	7,1	7,1	7,1	7,1	7,1	7,1	9,1	9,1	9,1	9,1
Отношение несущая/шум на приемнике ⁽²⁾ (<i>C/N</i>) (дБ)	6,2	4,9	14,6	22,0	6,2	4,9	14,6	22,0	6,2	4,9	14,6	22,0
Шум в городских условиях (дБ)	1	1	1	1	1	1	1	1	0	0	0	0
Минимальное напряжение на входе приемника, U_{min} (дБ(мкВ)) ⁽¹⁾	14,3	13,0	22,7	30,1	14,3	13,0	22,7	30,1	15,3	14,0	23,7	31,1
Коэффициент преобразования (1) К (дБ)	6,4	6,4	6,4	6,4	12,4	12,4	12,4	12,4	21,9	21,9	21,9	21,9
Потери на фидере, A_f (дБ)	3	3	3	3	3	3	3	3	3	3	3	3
Усиление антенны, <i>G</i> (дБ)	3	5	3	3	5	5	5	5	10	10	10	10
Минимальная напряженность поля при фиксированном приеме, E_{min} (дБ(мкВ/м)) ⁽¹⁾	20,7	23,4	29,1	36,5	24,7	23,4	33,1	40,5	30,2	28,9	38,6	46,0

⁽¹⁾ Формула приведена в Дополнении 1 к Приложению 3.

⁽²⁾ Для шумовой полосы, упомянутой выше.

Дополнение 1 к Приложению 3

Исчисление на основе метода с использованием показателя полезности

Требуемая напряженность поля

$$\begin{split} E_{rx}\left(\mathrm{д}\mathrm{B}(\mathrm{B/m})\right) &= \phi\left(\mathrm{д}\mathrm{B}(\mathrm{B}\mathrm{T/m^2})\right) + 10\log(120~\pi) \\ C/N &= \phi - G_{\mathrm{lm}^2} + G_A/T_e - k - B_{rf} \\ E_{rx}\left(\mathrm{д}\mathrm{B}(\mathrm{MkB/m})\right) &= \phi\left(\mathrm{д}\mathrm{B}(\mathrm{B}\mathrm{T/m^2})\right) + 25,8~(\mathrm{д}\mathrm{B}) + 120~(\mathrm{д}\mathrm{B}) \\ &= 145,8 + C/N + G_{\mathrm{lm}^2} - G_A/T_e + 10\log(k) + 10\log(B_{rf}) \end{split}$$

 E_{rx} : требуемая напряженность поля на приемной антенне системы

ф: плотность потока мощности на приемной антенне системы

C/N: соотношение несущей к шуму

 $G_{\rm lm}^2$: усиление на 1 м²

 G_A/T_e : показатель полезности принимающей системы

k: постоянная Больцмана (Дж/K)

 B_{rf} : эквивалентная шумовая полоса системы.

Показатель полезности принимающей системы

(Для модели принимающей системы с LNA)

$$G_A/T_e = (G-L)/(\alpha_{balun} T_a + T_{balun} + T_{LNA} + T_{line}/(\alpha_{line} G_{LNA}) + T_{rx}/(\alpha_{line} G_{LNA}))$$

Шумовая температура приемника

$$T_{rx} = (10^{NF/10} - 1) \times 290^{\circ}$$

Шумовая температура LNA

$$T_{LNA} = (10^{NF/10} - 1) \times 290^{\circ}$$

Шумовая температура линии передачи

$$T_{line} = (1 - \alpha_{line}) \times 290^{\circ}$$

Шумовая температура симметрирующего устройства

$$T_{balun} = (1 - \alpha_{balun}) \times 290^{\circ}$$

Шумовая температура антенны

$$T_a = 10^{(6,3-2,77(\log f))} \times 290^{\circ}$$
 (для диполя)

при f, выраженном в М Γ ц.

Шумовая температура антенны (относительно входа LNA)

$$\alpha T_a = T_a(\alpha_{balun})$$

Шумовая температура системы

$$T_{e} = (\alpha_{balun} T_{a} + T_{balun} + T_{LNA} + T_{line}/(\alpha_{line} G_{LNA}) + T_{rx}/(\alpha_{line} G_{LNA}))$$

$$T_{e} (\text{дБ(K)}) = 10 \log(\alpha_{balun} T_{a} + T_{balun} + T_{LNA} + T_{line}/(\alpha_{line} G_{LNA}) + T_{rx}/(\alpha_{line} G_{LNA}))$$

$$= 10 \log(T_{balun} + T_{LNA} + T_{line}/(\alpha_{line} G_{LNA}) + T_{rx}/(\alpha_{line} G_{LNA})) + N_{ext},$$

когда T_a неизвестно.

Усиление на $1 \, \text{м}^2$

$$G_{1M}^2 = 10 \log(4 \pi/\lambda^2)$$

Параметр

или

 G_I : усиление антенны (изотропной) (дБ)

L: потери на линии передачи (дБ)

 α_{line} : потери на линии передачи (численное значение)

 T_a : шумовая температура антенны (K)

 T_{rx} : шумовая температура приемника (K)

nf: коэффициент шума (численное значение)

NF: значение шума (дБ)

 T_0 : эталонная температура = 290 K

λ: длина волны на рабочей частоте

 G_A : усиление системы (дБ)

 T_e : шумовая температура системы (K)

 N_{ext} : величина в дБ, отражающая вклад внешних шумов

k: постоянная Больцмана 1,38 \times 10⁻²³ (-228,6 дБ) (Дж/К)

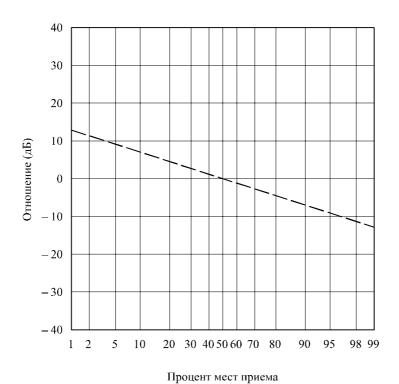
B: эквивалентная шумовая полоса антенны (дБ(Γ ц))

α_{balun}: потери на симметрирующем устройстве антенны 300/75 (численное значение)

LNA: малошумящий усилитель

 T_{LNA} : шумовая температура LNA (K)

Другие факторы планирования


1 Распределение напряженности поля в зависимости от мест приема

Можно предположить, что распределение значений напряженности поля цифровых телевизионных сигналов в зависимости от мест приема будет отличаться от распределения для аналоговых телевизионных сигналов. В таблицах 1, 2 и 3 Рекомендации МСЭ-R Р.1546 приводятся стандартные отклонения для случаев аналогового и цифрового сигналов в 100 МГц, 600 МГц и 2000 МГц, соответственно.

На рис. 2 приведены результаты исследований распространения сигналов цифровых систем в диапазонах ОВЧ и УВЧ. Рисунок приведен для стандартного отклонения в 5,5 дБ. Эти результаты можно также использовать для получения кривых распространения для процента мест приема, отличного от 50%. В Рекомендации МСЭ-R P.1546 приводятся данные для аналоговой и цифровой систем при проценте мест приема, отличном от 50%, когда ширина полосы цифровой системы более 1.5 МГп.

РИСУНОК 2

Отношение (дБ) напряженности поля для заданного процента мест приема к напряженности поля для 50% мест приема

Частота: 30–250 МГц (диапазоны I, II и III) и 470–890 МГц (диапазоны IV и V)

1368-02

2 Прием с помощью переносного оборудования в зданиях и транспортных средствах

2.1 Потери по высоте: *Lh*

Для сухопутных трактов приведенные в Рекомендации МСЭ-R Р.1546 кривые дают значения напряженности поля для приемной антенны, высота которой над уровнем земли равна *типичной высоте* над поверхностью земли в районе месторасположения приемной антенны. При условии минимальный высоты в 10 м примерами эталонной высоты являются 20 м для городских районов, 30 м для городских районов с плотной застройкой и 10 м для пригородных районов. (Для морских трактов условная величина равна 10 м.)

Если высота приемной антенны отличается от типичной высоты, к значению напряженности поля применяется поправочный коэффициент, взятый из приведенных в Рекомендации МСЭ-R P.1546 кривых, в соответствии с процедурой, изложенной в этой Рекомендации.

2.2 Потери на входе в здание: *Lb*

Потери, связанные с проникновением в здание, в существенной степени зависят от строительных материалов, угла падения и частоты. Следует также обратить внимание на то, осуществляется ли прием во внутреннем помещении или в помещении, расположенном поблизости от внешней стены. Потери на входе в здание определяются как разница (дБ) между средней напряженностью поля внутри здания на определенной высоте над уровнем земли и средней напряженностью поля вне этого здания на той же высоте над уровнем земли. Хотя не имеется единой полной формулы для расчета потерь на входе в здание, в Рекомендации МСЭ-R Р.679 приводится полезная статистическая информация, основанная на измеренных потерях в различных типах зданий для частот от около 500 МГц до 5 ГГц. Потери при распространении внутри зданий, связанные со стенами и междуэтажными перекрытиями, рассматриваются в Рекомендации МСЭ-R Р.1238.

Было измерено множество разнообразных потерь на входе в здание. В таблице 57 приводятся три класса относительных возможностей обеспечения приема внутри помещений, а также соответствующие средние и стандартные отклонения потерь на входе в здание для такой же напряженности поля на улице, которые рассчитаны на основе измерений УВЧ.

ТАБЛИЦА 57 Различные потери на входе в здание в диапазонах IV/V УВЧ

Классификация относительных возможностей обеспечения приема внутри помещений	Средние потери на входе в здание (дБ)	Стандартное отклонение (дБ)
Высокие	7	5
Средние	11	6
Низкие	15	7

Примеры зданий с различными сравнительными возможностями обеспечения приема внутри помещений:

Высокие:

- пригородное жилое здание с окнами не из металлизированного стекла;
- помещение с окном, расположенным на внешней стене многоэтажного жилого здания, в условиях города.

Средние:

- внешние помещения с окнами из металлизированного стекла в условиях города;
- внутренние помещения в многоэтажном жилом здании в условиях города.

Низкие:

внутренние помещения в административных зданиях.

При наличии более точных данных, основанных на местных измерениях, они могут использоваться в качестве основы для планирования конкретной услуги.

2.3 Потери на входе в транспортное средство: Lv

При приеме на портативное устройство внутри транспортного средства следует принимать во внимание потери на кузове автомобиля. Типичная потеря на входе в транспортное средство для диапазонов IV/V УВЧ, рассчитанная на основе опыта сотовой радиопередачи, составляет 6 дБ.

3 Избирательность приемной антенны

Информация о направленности и поляризационной избирательности бытовых приемных антенн приведена в Рекомендации МСЭ-R ВТ.419.

4 Антенны для приема на переносное и подвижное оборудование

4.1 Антенны для приема на переносное оборудование

Были измерены различные величины усиления антенны для разных типов антенн. Ниже представлены типичные значения усиления антенны:

ТАБЛИЦА 58 Усиление антенны (дБд) при приеме на переносное оборудование

Диапазон	Усиление (дБд)
Диапазон III ОВЧ	-2
Диапазон IV УВЧ	0
Диапазон V УВЧ	0

Поляризационная избирательность не предполагается.

4.2 Антенны для приема на портативное оборудование

Антенна в небольшом по размеру портативном оконечном оборудовании должна быть составной частью конструкции этого оборудования и, следовательно, должна иметь небольшие размеры по сравнению с длиной волны. Согласно существующему в настоящее время пониманию вопросов, связанных с конструкцией, для усиления антенны наихудший случай относится к нижней части диапазона УВЧ. Усиление антенны для трех частот в диапазоне УВЧ приводится в таблице 59. Номинальное усиление антенны между этими частотами может быть получено путем линейной интерполяции.

ТАБЛИЦА 59 Усиление антенны (дБд) при приеме на портативное оборудование

Частота (МГц)	Усиление (дБд)
474	-12
698	_9
858	-7

В целом, поляризационная избирательность не предполагается для этого типа переносных приемных антенн, а диаграмма направленности в горизонтальной плоскости является ненаправленной.

4.3 Антенны для приема на подвижное оборудование

Реальная стандартная антенна для приема в транспортном средстве — это монополь в 1/4, в котором в качестве плоскости основания используется металлическая крыша. Усиление антенны для стандартных углов падения волны зависит от расположения антенны на крыше. Для пассивных систем антенн можно ожидать значений, приведенных в таблице 60.

ТАБЛИЦА 60 Усиление антенны (дБд) при приеме на подвижное оборудование

Диапазон	Усиление (дБд)
Диапазон III ОВЧ	-5
Диапазон IV УВЧ	-2
Диапазон V УВЧ	-1

Теоретически, поляризационная избирательность составляет порядка 4–10 дБ, в зависимости от расположения антенны на крыше.

Метод субъективного сравнения (SCM) с эталонным источником помех при оценке защитных отношений для аналоговых телевизионных систем

1 Введение

Субъективные методы оценки класса искажений предполагают проведение многочисленных испытаний и требуют больших затрат времени, большого числа наблюдателей и рассмотрения искажений всех возможных классов.

Для оценки защитных отношений необходимо учитывать только два типа искажений при фиксированной передаче: искажения примерно класса 3 для тропосферных помех и искажения класса 4 для непрерывных помех (см. таблицу 61).

В настоящем Приложении приводится метод оценки защитных отношений для полезных аналоговых ТВ систем, основанный на субъективном сравнении искажений от источника помех и от эталонного источника помех. Надежные и полезные результаты получены только для ситуации с небольшим числом наблюдателей и одним неподвижным изображением.

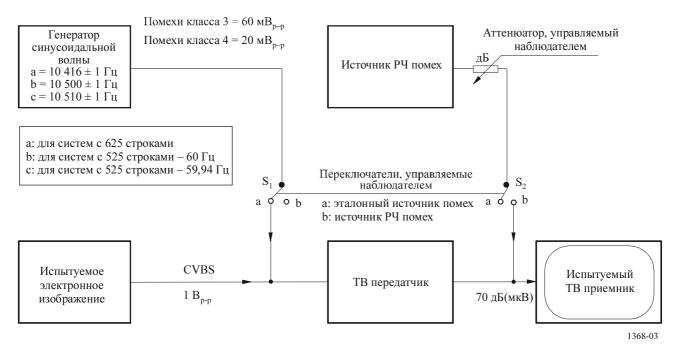
Метод субъективного сравнения подходит для оценки помех от любой цифровой или аналоговой системы передачи с мешающим сигналом для аналогового телевизионного канала с полезным сигналом. Применение фиксированных эталонных источников помех с установленными характеристиками позволяет получить воспроизводимый набор показателей с низким отклонением (стандартное отклонение примерно ± 1 дБ). Требуется только небольшое число наблюдателей, являющихся или не являющихся экспертами – от трех до пяти.

Можно использовать два эталонных источника помех:

- источник синусоидальных помех;
- источник гауссовского шума.

Испытания показали, что для цифровых телевизионных систем с мешающим сигналом эталонный источник помех в виде шума может улучшить результаты оценки наблюдателей. Использование эталонного источника помех в виде шума дает такие же результаты, что и установленные для источника синусоидальных помех. Недостаток состоит в том, что может потребоваться более сложная подготовка к испытаниям. Необходимы дальнейшие исследования, особенно при фиксированном уровне эквивалентного эталонного шума.

(В настоящее время следует использовать эталонный источник синусоидальных помех, пока не будет достигнута договоренность об общей процедуре испытаний и согласованном едином показателе эталонного шума.)


2 SCM при оценке защитных отношений с использованием эталонной синусоидальной помехи

2.1 Общее описание

На рис. 3 показана схема проведения испытаний для метода субъективного сравнения при использовании источника синусоидальной помехи. Расположенные в нижней части три блока — это основная трасса сигнала, полезный источник видеосигнала, телевизионный передатчик и испытуемый ТВ приемник. Эталонный источник видеопомех — это простой синусоидальный сигнал. Амплитуду синусоидального генератора можно менять для тропосферных помех и непрерывных помех. На трассе полезного сигнала добавляется источник мешающего сигнала РЧ. Амплитуда и частота источника помех рассчитываются на основе эталонного источника РЧ помех, описанного в пункте 2.3 Приложения 1 к Рекомендации МСЭ-R ВТ.655.

РИСУНОК 3

SCM для оценки защитных отношений

Интенсивность источника РЧ помех можно изменить с помощью аттенюатора, управляемого наблюдателем. Источник РЧ помех регулируется для получения помех такого же класса, что и у эталонного источника помех, путем сравнения изображений с помехами на экране телевизора.

Защитное РЧ отношение представляет собой разность между уровнями полезного и мешающего сигнала на входе приемника. Схему испытаний можно настроить таким образом, чтобы значение в дБ, отображаемое на аттенюаторе, точно соответствовало защитному отношению.

2.2 Получение эталонного источника помех

Для систем с 625 строками эталонные уровни искажения таковы, что они соответствуют защитным отношениям по совмещенному каналу 30 дБ и 40 дБ при сдвиге частот между полезной и мешающей видеонесущими, близком к двум третям частоты строк, но настроенном для максимального искажения. Точное значение разницы частот составляет 10 416 Гц. Такие условия приближаются к искажениям класса 3 (слегка раздражающие) и 4 (ощутимые, но не раздражающие) и применяются к тропосферным (1% времени) и непрерывным (50% времени) помехам, соответственно. Класс искажения конкретного эталонного источника видеопомех с основной полосой частот не зависит от типа аналоговой телевизионной системы и таких параметров РЧ модуляции, как поляризация модуляции, остаточная несущая и т. д.

Эталонный источник РЧ помех можно получить в виде простого синусоидального сигнала на основной полосе частот, как это показано на рис. 3. Эталонный источник синусоидальных помех работает на фиксированной частоте $10\,416\,\Gamma$ ц для систем с $625\,$ строками или $10\,500\,\Gamma$ ц для систем с $525\,$ строками $-60\,$ Γ ц и $10\,510\,$ Γ ц для систем с $525\,$ строками $-59,94\,$ Γ ц, при этом амплитуда равна либо $60\,$ мВ $_{\rm p-p}$, либо $20\,$ мВ $_{\rm p-p}$ относительно уровня черное/белое $700\,$ мВ $_{\rm p-p}$ или уровня CVBS $1\,$ В $_{\rm p-p}$. Такие амплитуды соответствуют защитным РЧ отношениям в $30\,$ дБ и $40\,$ дБ, соответственно ($2/3\,$ смещения строк). Стабильность частоты генератора синусоидальной волны должна быть в пределах $\pm 1\,$ Γ ц.

2.3 Условия испытаний

Полезный видеосигнал: необходимо только электронное испытуемое изображение (например,

FuBK, Philips или др.).

Условия просмотра: приведены в Рекомендации МСЭ-R BT.500.

Расстояние для просмотра: в пять раз больше высоты изображения.

Испытуемый приемник: до пяти типов различных бытовых приемников не старше пяти лет, для

измерений по совмещенному каналу можно использовать

профессиональный приемник.

Сигнал на входе приемника: -39 дБм (70 дБ(мкВ) при 75 Ом).

Наблюдатели: требуется пять наблюдателей, являющихся или не являющихся

экспертами. Для начальных испытаний может быть достаточно менее пяти наблюдателей. Каждое испытание должно проводиться только одним наблюдателем. Наблюдатели должны быть знакомы с методом

оценки.

2.4 Представление результатов

Результаты должны быть представлены вместе со следующей информацией:

- среднее и стандартное отклонение статистического распределения значений защитных отношений;
- схема испытаний, испытуемое изображение, тип источника изображения;
- число наблюдателей;
- тип эталонного источника помех;
- спектр мешающего сигнала (источник РЧ помех), включая внеканальный диапазон;
- используемый уровень РЧ для полезного сигнала на входе приемника (для бытовых приемников следует использовать напряжение на входе –39 дБм (70 дБ(мкВ) при 75 Ом);
- если используются бытовые приемники, указываются тип, размер экрана и год производства.

3 Таблица наиболее важных параметров

ТАБЛИЦА 61 Базовые термины и соотношения для SCM

Ухудшение качества	Класс 3	Класс 4
Тип помех	Тропосферные	Непрерывные
Временной допуск	От 1% до 5% времени	50% времени
Субъективное искажение	Слегка раздражающее	Ощутимое, но не раздражающее
Эталонный источник помех (мВ _{р-р})	60	20
Защитное РЧ отношение (дБ)	30	40

Методы проверки измерения защитных отношений для полезных цифровых наземных сигналов

1 Базовая информация

Первоначальные исследования защитных отношений для системы DVB-T были основаны на целевом значении КОБ 2×10^{-4} при измерении между внутренним и внешним кодами перед декодированием Рида-Соломона. Если используется источник помех в виде шумов, то значения считаются соответствующими качеству изображении при почти безошибочном приеме (QEF) при КОБ $< 1\times10^{-11}$ на входе демультиплексора MPEG-2.

2 Метод субъективного определения местонахождения неисправности (SFP) для измерения защитных отношений

В бытовых приемниках может оказаться невозможным измерить КОБ, в связи с этим для единообразного измерения защитных отношений был предложен новый метод, называемый методом SFP. Критерием качества при измерении защитных отношений является предел, до которого изображение на ТВ экране является безошибочным. Защитное РЧ отношение для полезного сигнала DVB-T представляет собой отношение полезного сигнала к мешающему сигналу на входе приемника, определенное методом SFP и округленное до ближайшего целого числа.

Метод SFP подходит для качества изображения, при котором в течение среднего времени наблюдения $20\,\mathrm{c}$ заметно не более одной ошибки. Настройка уровней полезного и мешающего сигналов для метода SFP осуществляется небольшими шагами, при этом величина шага составляет обычно $0,1\,\mathrm{д}Б$. Для источника помех "в виде шумов" разница между значениями отношения полезного сигнала к мешающему сигналу, полученными методом QEF при KOБ 2×10^{-4} и методом SFP, составляет менее $1\,\mathrm{д}Б$. Все значения защитных отношений для полезных цифровых ТВ сигналов измерялись при входной мощности приемника $-60\,\mathrm{д}Бм$.

Предлагается применять метод SFP для оценки всех систем DTTB. (Вопрос о применении этого метода для цифровой системы ISDB-T будет изучаться в Японии.)

Приложение 7

Тропосферные и непрерывные помехи

При использовании защитных отношений в процессе планирования необходимо определить, можно ли в данных конкретных условиях считать помеху тропосферной или непрерывной. Это можно сделать путем сравнения полей раздражения для двух указанных условий. Поле раздражения определяется как напряженность поля передатчика мешающего сигнала (при соответствующей э.и.м.), увеличенная на соответствующее защитное отношение.

Таким образом, для непрерывной помехи поле раздражения определяется как:

$$E_C = E(50, 50) + P + A_C,$$

а для тропосферной помехи поле раздражения определяется как:

$$E_T = E(50, t) + P + A_T$$

где:

E(50, t): напряженность поля (дБ(мкВ/м)) передатчика мешающего сигнала, нормализованная к 1 кВт и превышаемая в течение t% времени

Р: э.и.м. (дБ(1 кВт)) мешающего передатчика

А: защитное отношение (дБ)

C и T: непрерывная и тропосферная помехи, соответственно.

Защитное отношение для непрерывной помехи применимо в том случае, когда получаемое поле раздражения сильнее, чем поле, получаемое для тропосферной помехи, то есть когда $E_C > E_T$.

Это означает, что A_{C} следует использовать во всех случаях, когда:

$$E(50, 50) + A_C > E(50, t) + A_T$$