RECOMMANDATION UIT-R BT.1120-7

Interfaces numériques pour les signaux de TVHD en studio

(Question UIT-R 42/6)

(1994-1998-2000-2003-2004-2005-2007)

Domaine d'application

Cette interface de TVHD fonctionne à deux fréquences d'horloge nominales, 1,485 GHz et 2,97 GHz. La charge utile sans compression de l'interface est définie dans les Parties 1 et 2 de la Recommandation UIT-R BT.709. L'interface peut aussi servir à acheminer des données en paquets.

L'Assemblée des radiocommunications de l'UIT,

considérant

- a) que, dans le cadre de la Recommandation UIT-R BT.709, des normes ont été mises au point pour les systèmes de production de programmes de TVHD en studio à 1125 et 1250 lignes, qui comprennent aussi bien des systèmes liés à la télévision classique que des systèmes avec format d'image commun (CIF, *common image format*) à pixels carrés et balayage progressif;
- b) que la Recommandation UIT-R BT.709 contient les normes suivantes de systèmes de production de programmes de TVHD en studio destinées à couvrir un vaste éventail d'applications: pour les systèmes liés à la télévision classique:
- norme à 1125 lignes au total, balayage à entrelacement 2:1, 60 trames/s et 1035 lignes actives;
- norme à 1250 lignes au total, balayage à entrelacement 2:1, 50 trames/s et 1152 lignes actives.

pour les systèmes avec CIF (1920×1080):

- 1125 lignes au total et 1080 lignes actives;
- fréquences d'image de 60, 50, 30, 25 et 24 Hz, avec transport à balayage progressif, à balayage entrelacé et à segmentation d'image;
- c) que la Recommandation UIT-R BT.709 indique qu'il est préférable d'utiliser le CIF-HD (1920 × 1080) pour les nouvelles installations, lorsque l'interopérabilité avec d'autres applications est importante et que, par ailleurs, les travaux visent à parvenir à une norme mondiale unique;
- d) que les systèmes CIF-HD offrent une possibilité d'appliquer la méthode de débit de données commun, qui permet l'utilisation d'une interface numérique unique;
- e) que toute une gamme d'appareils conformes aux systèmes ci-dessus a été mise au point ou est en cours de mise au point et est actuellement disponible sur le marché ou le sera bientôt, y compris ceux qui sont nécessaires aux chaînes de radiodiffusion et aux applications industrielles;
- f) que de nombreux programmes sont produits selon les systèmes susmentionnés au moyen des appareils ci-dessus et que le développement de la radiodiffusion et d'autres services exige de plus en plus d'installations de production de TVHD;

- g) qu'il est éminemment souhaitable de recourir à la technologie et aux interconnexions numériques pour arriver au niveau de qualité qu'exige la TVHD et s'y maintenir;
- h) qu'il est nettement avantageux d'établir des spécifications d'interface pour les installations de production de TVHD,

recommande

d'utiliser les spécifications exposées dans la présente Recommandation comme normes de base concernant le codage numérique ainsi que les interfaces parallèles et série pour les signaux TVHD en studio.

PARTIE 1

Interfaces pour signaux TVHD conformes à la Recommandation UIT-R BT.709, Partie 1

1 Représentation numérique

1.1 Caractéristiques de codage

Les signaux à numériser doivent satisfaire aux caractéristiques que décrit la Recommandation UIT-R BT.709, Partie 1.

1.2 Construction des signaux numériques

Voir le § 1.2 de la Partie 2.

TABLEAU 1
Caractéristiques de codage numérique

Point	Paramètre	Valeur					
Pollit	rarametre	1125/60/2:1	1250/50/2:1				
1	Signaux codés Y, C _B , C _R ou R, G, B	Ces signaux sont obtenus à partir de savoir: E'_Y , E'_{CB} , E'_{CR} ou E'_R , E'_G , E'_{CR}					
		Voir également la Recommandation	UIT-R BT.709, Partie 1				
2	Grille d'échantillonnage	Orthogonal, se répétant en ligne et e	n image				
	- R, G, B, Y						
3	Signal de grille d'échantillonnage - C _B , C _R	l'autre et avec un échantillon de lum	Orthogonal, se répétant en ligne et en image, en coïncidence l'un avec l'autre et avec un échantillon de luminance <i>Y</i> sur deux. Les premiers échantillons de différence de couleur actifs coïncident avec le premier échantillon <i>Y</i> actif.				
4	Nombre de lignes actives	1035	1152				
5	Fréquence d'échantillonnage (1)						
	- R, G, B, Y (MHz)	74,25	72				
6	Fréquence d'échantillonnage ⁽¹⁾	La moitié de la fréquence d'échantill	lonnage de la luminance				
	$-C_B, C_R$						

TABLEAU 1 (fin)

Point	Paramètre	Valeur				
Pollit	Parametre	1125/60/2:1	1250/50/2:1			
7	Nombre d'échantillons par ligne					
	-R,G,B,Y	2200	2304			
	$-C_B, C_R$	1100	1152			
8	Nombre d'échantillons actifs par ligne					
	-R,G,B,Y	192	20			
	$-C_B, C_R$	960				
9	Position des premiers instants d'échantil- lonnage actif Y , C_B , C_R par rapport à la référence de synchronisation temporelle analogique $O_H^{(2)}$ (voir la Fig. 6)	192 T	256 T			
10	Format de codage	MIC à quantification uniforme pour chacune des composantes vidéo 8 ou 10 bits par échantillon 10 bits de préférence				
11	Attribution des niveaux de quantification ⁽³⁾					
	 Données vidéo 	1,00 à 2	254,75			
	Références temporelles	0,00 et 2	55,75 ⁽⁴⁾			
12	Niveaux de quantification ⁽⁵⁾					
	- Niveau du noir R, G, B, Y	16,	00			
	- Niveau achromatique C_B , C_R	128	,00			
	Crête nominale					
	- R, G, B, Y	235	,00			
	$ C_B$, C_R	16,00 et	240,00			
13	Caractéristiques du filtre	Voir la Recommanda	ation UIT-R BT.709			

⁽¹⁾ L'horloge d'échantillonnage doit être verrouillée sur la fréquence de ligne. La tolérance sur la fréquence est de ±0,001% pour le système 1125/60/2:1 et de ±0,0001% pour le système 1250/50/2:1.

2 Interface numérique

L'interface assure une interconnexion unidirectionnelle entre un seul dispositif source et une seule destination. Les signaux de données se présentent sous forme d'informations binaires et sont codés en conséquence:

- données vidéo (mots de 8 ou de 10 bits);
- référence temporelle et codes d'identification (mots de 8 ou de 10 bits et uniquement de 10 bits en 1250/50/2:1);
- données auxiliaires (voir la Recommandation UIT-R BT.1364).

⁽²⁾ T désigne la période d'horloge d'échantillonnage de la luminance ou l'inverse de sa fréquence d'échantillonnage.

⁽³⁾ Pour éviter toute confusion lorsqu'on utilise à la fois les systèmes à 8 et à 10 bits, les deux bits de plus faible poids (LSB) du système à 10 bits sont lus sous forme de deux bits fractionnaires. Dans le système à 8 bits, l'échelle de quantification va de 0 à 255 par échelons d'une unité et dans un système à 10 bits, elle va de 0,00 à 255,75 par échelon de 0,25. En cas de présentation de mots de 8 bits dans un système à 10 bits, il faut leur ajouter deux LSB constitués de zéros.

⁽⁴⁾ Dans le cas du système à 8 bits, on utilise 8 bits MSB.

⁽⁵⁾ Ces niveaux de quantification se réfèrent à des niveaux vidéo précis. Le traitement du signal peut incidemment provoquer une excursion de son niveau au-delà de ces valeurs.

2.1 Données vidéo

Les signaux Y, C_B et C_R sont traités sous forme de mots de 20 bits grâce à un multiplexage temporel des composantes C_B et C_R . Chaque mot de 20 bits correspond à un échantillon de différence de couleur et à un échantillon de luminance. Le multiplex est constitué comme suit:

$$(C_{B1} Y_1)(C_{R1} Y_2)(C_{B3} Y_3)(C_{R3} Y_4) \dots$$

où Y_i représente le i° échantillon actif d'une ligne et C_{Bi} et C_{Ri} représentent les échantillons de différence de couleur des composantes C_B et C_R coïncidant avec l'échantillon Y_i . A noter que l'indice «i» des échantillons de différence de couleur ne prend que des valeurs impaires en raison de l'échantillonnage à fréquence moitié des signaux de différence de couleur.

Les mots de données qui correspondent aux niveaux numériques 0,00 à 0,75 et 255,00 à 255,75 sont réservés à l'identification des données et ne doivent pas apparaître sous forme de données vidéo.

En 1125/60/2:1, les signaux R, G et B sont traités sous forme de mots de 30 bits en plus des mots de 20 bits ci-dessus des signaux Y, C_B et C_R .

2.2 Correspondance temporelle de la vidéo avec le signal analogique

La ligne numérique occupe m périodes d'horloge. Elle débute à f périodes d'horloge avant la transition de référence (O_H) du signal de synchronisation analogique de la ligne correspondante. La ligne numérique active commence à g périodes d'horloge après la transition de référence (O_H). Les valeurs de m, f, et g figurent au Tableau 2. Pour les correspondances temporelles détaillées dans l'intervalle de ligne, consulter la Fig. 6 et le Tableau 2.

Le début de la trame numérique est défini par la position spécifiée pour le début de la ligne numérique. Pour les correspondances détaillées dans l'intervalle de trame, consulter la Fig. 1 et le Tableau 3.

TABLEAU 2 Spécifications temporelles de l'intervalle de ligne

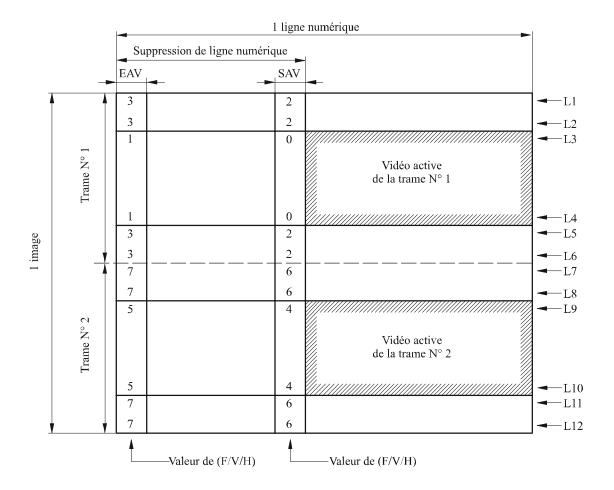
		Va	leur
a b c d e f s	Paramètre	1125/60/2:1	1250/50/2:1
	Rapport d'entrelacement	2	:1
	Nombre d'échantillons <i>Y</i> actifs par ligne	19	220
	Fréquence d'échantillonnage de la luminance (MHz)	74,25	72
а	Suppression de ligne analogique (µs)	3,771	6,00
b	Ligne analogique active (µs)	25,859	26,00
с	Ligne analogique complète (µs)	29,630	32,00
d	Durée séparant la fin de la vidéo analogique active du début de EAV (<i>T</i>)	0-6	24
e	Durée séparant la fin de SAV du début de la vidéo analogique active (T)	0-6	24
f	Durée séparant le début de EAV de la référence temporelle analogique $O_H(T)$	88	128
g	Durée séparant la référence temporelle analogique O_H de la fin de SAV (T)	192	256
h	Bloc de données vidéo (T)	19	228
i	Durée de EAV (T)	4	4
j	Durée de SAV (T)	4	4

TABLEAU 2 (fin)

Symbole	Paramètre	Valeur				
		1125/60/2:1	1250/50/2:1			
k	Suppression de ligne numérique (<i>T</i>)	280 384				
l	Ligne numérique active (T)	1920				
m	Ligne numérique (T)	2200 2304				

NOTE 1 – Les spécifications analogiques définissent les valeurs paramétriques nominales correspondant aux symboles a, b, et c.

NOTE 2-T désigne la période d'horloge d'échantillonnage de la luminance, soit l'inverse de sa fréquence d'échantillonnage de la luminance.


2.3 Séquences de référence temporelle vidéo (SAV et EAV)

Il existe deux séquences de référence temporelle, l'une au début de chaque bloc de données vidéo début de la ligne vidéo active (SAV, *start of active video*), l'autre à la fin de chaque bloc de données vidéo fin de la ligne vidéo active (EAV, *end of active video*). Ces séquences sont contiguës aux données vidéo et continuent pendant l'intervalle de suppression de trame, comme le montre la Fig. 1.

Chaque séquence se compose d'une suite de quatre mots. Le Tableau 14 explique l'affectation des bits de ces mots. Les trois premiers constituent un préambule fixe et le quatrième contient l'information qui définit l'identification de trame (F), la période de suppression de trame (V) et la période de suppression de ligne (H). Dans un système à 8 bits, les bits 9 à 2 sont utilisés; à noter qu'en 1250/50/2:1, les 10 bits sont tous nécessaires.

Le changement d'état des bits F et V se fait en synchronisme avec EAV, au début de la ligne numérique.

FIGURE 1 Correspondance temporelle dans l'intervalle de trame

Note 1 – Les valeurs de (F/V/H) pour EAV et SAV représentent l'état des bits pour F, V, et H; le mot de trois bits, composé de F, V, H représente un nombre binaire exprimé en notation décimale (F correspondant au MSB et H au LSB). Par exemple, la valeur 3 représente les bits de F = 0, V = 1 et H = 1.

1120-01

Le Tableau 15 montre comment la valeur des bits de protection P_0 à P_3 dépend de F, V et H. Cette disposition permet de corriger les erreurs simples et de détecter les erreurs doubles dans le récepteur, mais seulement pour les 8 MSB, tel qu'indiqué au Tableau 16.

TABLEAU 3 Spécifications temporelles de l'intervalle de trame

C	Définition	Numéro de la l	ligne numérique
Symbole	Definition	1125/60/2:1	1250/50/2:1
	Nombre de lignes actives	1035	1152
L1	Première ligne de la trame N° 1		1
L2	Dernière ligne de la suppression de trame numérique N° 1	40	44
L3	Première ligne de la vidéo active de la trame N° 1	41	45
L4	Dernière ligne de la vidéo active de la trame N° 1	557	620
L5	Première ligne de la suppression de trame numérique N° 2	558	621
L6	Dernière ligne de la trame N° 1	563	625
L7	Première ligne de la trame N° 2	564	626
L8	Dernière ligne de la suppression de trame numérique N° 2	602	669
L9	Première ligne de la vidéo active de la trame N° 2	603	670
L10	Dernière ligne de la vidéo active de la trame N° 2	1120	1245
L11	Première ligne de la suppression de trame numérique N° 1	1121	1246
L12	Dernière ligne de la trame N° 2	1125	1250

NOTE 1 – On désigne par suppression de trame numérique N° 1 la période de suppression de trame qui précède la vidéo active de la trame N° 1 et par suppression de trame numérique N° 2 celle qui précède la vidéo active de la trame N° 2.

2.4 Données auxiliaires

Voir le § 2.4 de la Partie 2.

2.5 Mots de données pendant les intervalles de suppression

Voir le § 2.5 de la Partie 2.

3 Interface parallèle

Pour le système 1125/60/2:1, les bits des mots de code numériques qui décrivent le signal vidéo sont transmis en parallèle sur 20 ou 30 paires de conducteurs blindés. Les 20 paires de conducteurs servent à transmettre un jeu de signaux qui comprend la luminance Y et les composantes de différence de couleur C_B/C_R multiplexées dans le temps. Les 30 paires de conducteurs servent à transmettre les signaux R, G, B ou les composantes Y, C_B/C_R , plus un train de données supplémentaire (canal auxiliaire). Une paire de conducteurs blindés supplémentaire achemine l'horloge synchrone à 74,25 MHz.

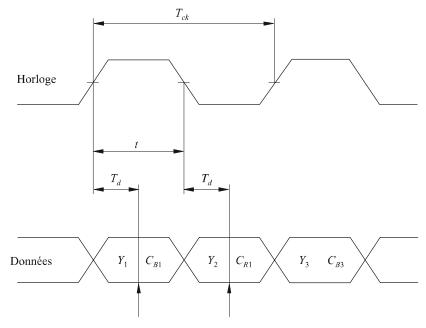
Pour le système 1250/50/2:1, les bits des mots de code numériques qui décrivent le signal vidéo sont transmis en parallèle sur 20 paires de signaux, où chaque paire achemine un train de bits, 10 paires pour la luminance et 10 paires pour les données de différence de couleur, multiplexées dans le temps. Les 20 paires peuvent aussi acheminer des données auxiliaires. Une 21^è paire fournit une horloge synchrone à 36 MHz.

Les signaux de données sont transmis sous forme NRZ en temps réel (sans mémoire tampon).

3.1 Signal d'horloge et relation temporelle entre les signaux d'horloge et les signaux de données

En 1125/60/2:1, le signal d'horloge transmis est un signal carré dont les transitions positives se produisent au milieu de l'intervalle qui sépare deux transitions de données, comme le montrent la Fig. 8 et le Tableau 4.

En 1250/50/2:1 le signal d'horloge transmis est un signal carré à 36 MHz de facteur de forme égal à 1, dont les transitions coïncident avec les transitions des données (voir la Fig. 2). L'état logique haut de l'horloge correspond aux échantillons de données Y et C_B et l'état logique bas à ceux de Y et C_R (voir la Fig. 2 et le Tableau 4).


TABLEAU 4
Spécifications du signal d'horloge

D. N	Val	eur		
Paramètre	1125/60/2:1	1250/50/2:1		
Fréquence d'échantillonnage (MHz) pour les signaux <i>Y</i> , <i>R</i> , <i>G</i> et <i>B</i>	74,25	72		
Période d'horloge, T_{ck}	1/(2200 f _H)	1/(1152 f _H)		
Valeur nominale (ns)	13,468	27,778		
Durée de l'impulsion d'horloge, t	0,5 T _{ck}			
Tolérance	$\pm 0,11~T_{ck}$	(nominale)		
Gigue d'horloge	A ±0,04 <i>T_{ck}</i>	A ±0,5 ns		
	de la durée moyenne de transition sur une trame dans les systèmes à entrelacement et sur une image dans les systèmes avec balayage progressif			
Phase des données, T_d	$0.5 T_{ck}$ $0.25 T_{ck}$			
tolérance	$\pm 0,075 \ T_{ck}$ (nominale)			

NOTE $1 - f_H$ désigne la fréquence de ligne.

NOTE 2 – Les valeurs sont spécifiées côté émission (source).

FIGURE 2
Relation temporelle entre les signaux d'horloge et les signaux de données, en 1250/50/2:1

Points nominaux de détection des données

1120-02

3.2 Caractéristiques électriques de l'interface

L'interface comprend 21 émetteurs et récepteurs de ligne pour la transmission des composantes Y et C_B/C_R . Chaque émetteur de ligne a une sortie symétrique et le récepteur de ligne correspondant une entrée symétrique. En 1125/60/2:1, l'interface comprend 31 émetteurs et récepteurs de ligne dans le cas des composantes R, G, B, ou dans le cas des composantes Y, C_B/C_R plus un train de données supplémentaire (canal auxiliaire).

Bien qu'il ne soit pas indispensable de recourir à la technologie ECL, l'émetteur et le récepteur de ligne doivent être compatibles avec l'ECL 10 k en 1125/60/2:1 et l'ECL 100 k en 1250/50/2:1, c'est-à-dire qu'ils doivent permettre l'utilisation de composants ECL aussi bien pour les émetteurs que pour les récepteurs.

Le récepteur doit détecter correctement les données lorsqu'un signal aléatoire produit les conditions qu'illustre le diagramme en œil de la Fig. 3.

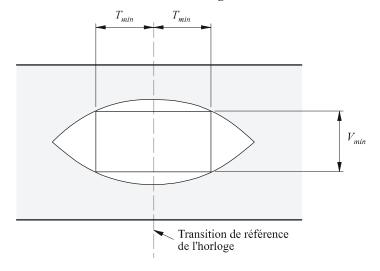
TABLEAU 5
Caractéristiques de l'émetteur de ligne

Point	Paramètre	Valeur					
Foliit	rarameue	1125/60/2:1	1250/50/2:1				
1	Impédance de sortie (Ω)	110 maximum	100 maximum				
2	Tension de mode commun ⁽¹⁾ (V)	$-1,29 \pm 15\%$	$-1,3 \pm 15\%$				
3	Amplitude du signal ⁽²⁾ (V)	0,6 à 2,0 crête-à-crête	0,8 à 2,0 crête-à-crête				
4	Temps de montée et de descente ⁽³⁾	≤ 0,15 <i>T_{ck}</i>	< 3 ns				
5	Différence entre les temps de montée et de descente	≤ 0,075 <i>T_{ck}</i>	≤ 1,0 ns				

NOTE $1-T_{ck}$ désigne la période d'horloge (voir le Tableau 4).

- (1) Mesuré par rapport à la terre.
- (2) Mesuré aux bornes d'une charge résistive ayant l'impédance nominale des câbles envisagés, soit $110~\Omega$ en 1125/60/2:1 et $100~\Omega$ en 1250/50/2:1.
- (3) Mesurés entre les points à 20% et 80% aux bornes d'une charge résistive ayant l'impédance nominale des câbles envisagés.

TABLEAU 6 Caractéristiques du récepteur de ligne


Point	Paramètre	Valeur							
Foliit	rarameue	1125/60/2:1	1250/50/2:1						
1	Impédance d'entrée (Ω)	$110 \pm 10\%$ $100 \pm 10\%$				$110 \pm 10\%$ $100 \pm 10\%$			
2	Tension maximale du signal d'entrée (V)	2,0 crête-à-crête							
3	Tension minimale du signal d'entrée (mV)	185 crête-à-crête							
4	Tension maximale du signal du mode commun ⁽¹⁾ (V)	±0,3 ±0,5							
5	Temps de propagation différentiel $T_{min}^{(2)}$	$0.3 T_{ck}$ 4.5 ns							

NOTE $1 - T_{ck}$ désigne la période d'horloge (voir le Tableau 4).

- $^{(1)}$ Y compris les brouillages dans la gamme courant continu/fréquence de ligne (f_H) .
- (2) Il faut que les données soient correctement interprétées lorsque le temps de propagation différentiel entre l'horloge et les données reçues se situe dans cet intervalle (voir la Fig. 3).

FIGURE 3

Diagramme théorique en œil correspondant au niveau minimal du signal d'entrée

Note I - En 1125/60/2:1, dans le diagramme en œil, la largeur de la fenêtre à l'intérieur de laquelle les données doivent être détectées correctement comprend $\pm 0,04$ T pour la gigue d'horloge, $\pm 0,075$ T pour le phasage des données et $\pm 0,18$ T pour les différences de temps de propagation entre les paires de câbles. En 1250/50/2:1, la somme de la gigue d'horloge, du phasage des données et de la différence de temps de propagation entre les paires de câbles ne doit pas dépasser 4,5 ns.

1120-03

3.3 Caractéristiques mécaniques

3.3.1 Connecteur

L'interface utilise un connecteur à contacts multiples. Les connecteurs sont verrouillés par deux vis aux connecteurs du câble et par deux boulons aux appareils. Le câble porte un connecteur à contacts mâles et l'équipement un connecteur à contacts femelles. Les connecteurs et les câbles sont obligatoirement blindés.

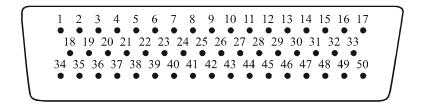
En 1125/60/2:1, on utilise un connecteur à 93 contacts. L'affectation des contacts est indiquée dans les Tableaux 20 et 21. Les Fig. 11, 12 et 13 présentent les spécifications mécaniques des connecteurs.

En 1250/50/2:1, on utilise un connecteur subminiature de type D à 50 contacts. Le Tableau 7 et la Fig. 4 indiquent l'affectation des contacts (à titre d'information, la Fig. 5 suggère une affectation de contacts pour un connecteur de carte à circuits imprimés).

3.3.2 Câble d'interconnexion

En 1125/60/2:1, on peut utiliser, selon les signaux à transmettre (voir le Tableau 21), deux sortes de câble multiconducteurs, à 21 ou 31 canaux. Le câble comprend des paires torsadées, blindées indépendamment les unes des autres, ainsi qu'un blindage général. Chaque paire torsadée a une impédance caractéristique de $110~\Omega$. Les caractéristiques du câble doivent satisfaire aux conditions définies par le diagramme en œil de la Fig. 3 jusqu'à une longueur maximale du câble de 20 m.

En 1250/50/2:1, on utilise un câble à 21 paires de conducteurs symétriques. Chaque paire a une impédance caractéristique nominale de 100Ω . Avec un câble de qualité supérieure, on peut aller jusqu'à une longueur de 30 m.

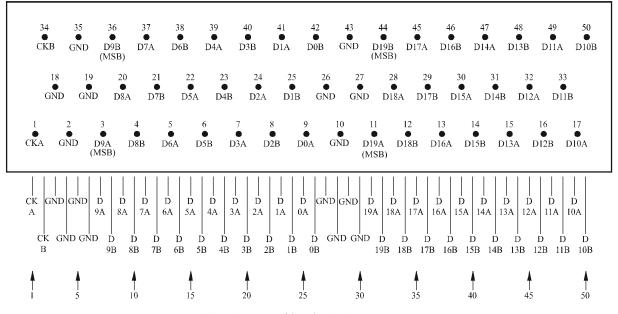

TABLEAU 7

Affectation des contacts de connecteur en 1250/50/2:1

Contact	Ligne de signaux	Contact	Ligne de signaux	Contact	Ligne de signaux	
1	Horloge A (CKA)			34	Horloge B (CKB)	
2	Masse (GND)	18	Masse	35	Masse	
3	Données 9A (D9A)	19	Masse	36	Données 9B	
4	Données 8B	20	Données 8A	37	Données 7A	
5	Données 6A	21	Données 7B	38	Données 6B	
6	Données 5B	22	Données 5A	39	Données 4A	
7	Données 3A	23	Données 4B	40	Données 3B	
8	Données 2B	24	Données 2A	41	Données 1A	
9	Données 0A	25	Données 1B	42	Données 0B	
10	Masse	26	Masse	43	Masse	
11	Données 19A	27	Masse	44	Données 19B	
12	Données 18B	28	Données 18A	45	Données 17A	
13	Données 16A	29	Données 17B	46	Données 16B	
14	Données 15B	30	Données 15A	47	Données 14A	
15	Données 13A	31	Données 14B	48	Données 13B	
16	Données 12B	32	Données 12A	49	Données 11A	
17	Données 10A	33	Données 11B	50	Données 10B	

NOTE 1 – Données 9-Données 0 représentent chaque bit du signal de luminance Y et Données 19-Données 10, ceux du signal de différence de couleur multiplexé dans le temps (C_R/C_B). Les suffixes 19 à 0 indiquent le numéro du bit (le bit 19 est le MSB pour C_R/C_B , et le bit 9 est le MSB pour Y). A et B correspondent respectivement aux bornes A et B de la Fig. 9.

FIGURE 4 Vue du côté enfichage du connecteur à broches mâles pour le système 1250/50/2:1



 $Note\ I-II$ est préférable que le contact 1 soit en position haute, quelle que soit la disposition des connecteurs (horizontale ou verticale).

1120-04

FIGURE 5 Suggestion d'une affectation de contacts dans le cas d'un connecteur de carte à circuits imprimés (système 1250/50/2:1)

Connecteur à déplacement d'isolant à 50 contacts (vue face aux broches à déplacement d'isolant. Le numéro des broches correspond au numéro du type D à 50 contacts)

Numéro pour câble ruban à 50 contacts

1120-05

4 Interface série

4.1 Format des données

Les données série comprennent les données vidéo, les séquences de référence temporelle vidéo, les données de numéro de ligne, les codes de détection d'erreur, les données auxiliaires et les données de suppression. Chaque donnée, composée d'un mot de 10 bits, est représentée comme donnée parallèle avant d'être mise en série. Deux trains parallèles (c'est-à-dire les données de luminance Y et les données de différence de couleur C_B/C_R) sont multiplexés et mis en série conformément au § 4.2.

4.1.1 Données vidéo

Les données vidéo doivent être des mots de 10 bits représentant les composantes Y, C_B/C_R des systèmes vidéo définis au § 1.

4.1.2 Séquences de référence temporelle vidéo

Les séquences de référence temporelle vidéo, SAV et EAV, ont le même format que celui qui est défini au § 2.

4.1.3 Données de numéro de ligne

Les données de numéro de ligne se composent de deux mots indiquant le numéro de ligne. L'affectation des données de numéro de ligne est indiquée au Tableau 22. Ces données doivent être situées immédiatement après la séquence EAV.

4.1.4 Codes de détection d'erreur

Voir le § 4.1.4 de la Partie 2.

4.1.5 Données auxiliaires

Voir le § 4.1.5 de la Partie 2.

4.1.6 Données de suppression

Voir le § 4.1.6 de la Partie 2.

4.2 Format de transmission

Voir le § 4.2 de la Partie 2.

4.2.1 Multiplexage des mots

Les deux trains parallèles doivent être multiplexés mot par mot en un seul train parallèle de mots de 10 bits dans l'ordre suivant: C_B , Y, C_R , Y, C_R , Y, C_R , Y, C_R , Y ... (voir la Fig. 14 et le Tableau 8).

TABLEAU 8 Spécifications temporelles du train de données (voir la Fig. 14)

T_S From	Paramètre	Valeur					
Symbole	Parametre	1125/60/2:1	1250/50/2:1				
T	Période d'horloge parallèle (ns)	1000/74,25	1000/72				
$T_{\mathcal{S}}$	Période d'horloge de données parallèles multiplexées		T/2				
m	Ligne numérique dans train de données parallèles	2200	2304				
k	Suppression de ligne numérique dans train de données parallèles	280	384				
n	Données auxiliaires ou données de suppression dans train de données parallèles	268	372				
m_S	Ligne numérique dans train de données parallèles multiplexées	4400	4608				
k_S	Suppression de ligne numérique dans train de données parallèles multiplexées	560	768				
n_S	Données auxiliaires ou données de suppression dans train de données parallèles multiplexées	536	744				

4.2.2 Mise en série

Voir le § 4.2.2 de la Partie 2.

4.2.3 Codage de voie

Voir le § 4.2.3 de la Partie 2.

4.2.4 Horloge série

Le Tableau 9 spécifie les fréquences d'horloge série, égales à 20 fois la fréquence d'horloge parallèle (voir le Tableau 4).

TABLEAU 9

Fréquence d'horloge série

Paramètre	Valeur				
	1125/60/2:1	1250/50/2:1			
Fréquence d'horloge série (GHz)	1,485	1,400			

4.2.5 Trame de contrôle d'interface numérique série

Voir le § 4.2.5 de la Partie 2.

4.3 Interfaces de câble coaxial

Voir le § 4.3 de la Partie 2.

4.3.1 Caractéristiques de l'émetteur de ligne (source)

Voir le § 4.3.1 de la Partie 2.

4.3.2 Caractéristiques du récepteur de ligne (destination)

Voir le § 4.3.2 de la Partie 2.

4.3.3 Caractéristiques de la ligne de transmission

Voir le § 4.3.3 de la Partie 2.

4.3.4 Connecteur

Voir le § 4.3.4 de la Partie 2.

4.4 Interfaces à fibre optique

Voir le § 4.4 de la Partie 2.

PARTIE 2

Interfaces pour signaux TVHD conformes à la Recommandation UIT-R BT.709, Partie 2

Cette partie décrit les interfaces numériques spécifiées pour les systèmes dont le Tableau 10 donne la liste. Pour les systèmes fonctionnant à 60, 30 et 24 Hz, les fréquences d'image correspondantes divisées par 1,001 sont également indiquées. Les valeurs des paramètres relatifs à ces systèmes figurent entre parenthèses.

Prise de vues Système Transport (Hz) 60/P 60, balayage progressif Balayage progressif 30/P 30, balayage progressif Balayage progressif 30/PsF 30, balayage progressif Segmentation d'image 60/I 30, balayage entrelacé Balayage entrelacé 50/P 50, balayage progressif Balayage progressif 25/P 25, balayage progressif Balayage progressif

25, balayage progressif

25, balayage entrelacé

24, balayage progressif

24, balayage progressif

TABLEAU 10 Systèmes TVHD à format CIF (Voir la Recommandation UIT-R BT.709, Partie 2)

Segmentation d'image

Balayage entrelacé

Balayage progressif

Segmentation d'image

1 Représentation numérique

1.1 Caractéristiques de codage

Les signaux à numériser doivent satisfaire aux caractéristiques que décrit la Recommandation UIT-R BT.709, Partie 2.

1.2 Construction des signaux numériques

25/PsF

50/I

24/P

24/PsF

On peut obtenir une représentation numérique de R, G, B, Y, C_R et C_B au moyen des formules indiquées ci-après. Il reste à étudier la conversion entre données obtenues avec quantification à 8 et à 10 bits.

$$R_{d} = [\text{Int} \{ (219 \times D) \times E'_{R} + (16 \times D) + 0,5 \}] / D$$

$$G_{d} = [\text{Int} \{ (219 \times D) \times E'_{G} + (16 \times D) + 0,5 \}] / D$$

$$B_{d} = [\text{Int} \{ (219 \times D) \times E'_{B} + (16 \times D) + 0,5 \}] / D$$

$$Y_{d} = [\text{Int} \{ (219 \times D) \times E'_{Y} + (16 \times D) + 0,5 \}] / D$$

$$C_{Bd} = [\text{Int} \{ (224 \times D) \times E'_{C_{B}} + (128 \times D) + 0,5 \}] / D$$

$$C_{Rd} = [\text{Int} \{ (224 \times D) \times E'_{C_{R}} + (128 \times D) + 0,5 \}] / D$$

où D vaut soit 1 soit 4 pour la quantification à 8 ou à 10 bits respectivement; E'_G , E'_B , E'_R et E'_Y désignent les signaux analogiques R, G, B de luminance qui ont été normalisés en vue de couvrir l'intervalle 0,0 à 1,0; quant à E'_{C_R} et E'_{C_R} , ils désignent les signaux analogiques de différence de couleur qui ont été normalisés en vue de couvrir l'intervalle -0.5 à +0.5.

2 Interface numérique

L'interface assure une interconnexion unidirectionnelle entre un seul dispositif source et une seule destination. Les signaux de données se présentent sous forme d'informations binaires et sont codés en conséquence:

données vidéo (mots de 8 ou de 10 bits);

- référence temporelle et codes d'identification (mots de 8 ou de 10 bits);
- données auxiliaires (voir la Recommandation UIT-R BT.1364).

2.1 Données vidéo

Les signaux Y, C_B et C_R sont traités sous forme de mots de 20 bits grâce à un multiplexage temporel des composantes C_B et C_R . Chaque mot de 20 bits correspond à un échantillon de différence de couleur et à un échantillon de luminance. Le multiplex est constitué comme suit:

$$(C_{B1} Y_1)(C_{R1} Y_2)(C_{B3} Y_3)(C_{R3} Y_4) \dots$$

où Y_i représente le i° échantillon actif d'une ligne et C_{Bi} et C_{Ri} représentent les échantillons de différence de couleur des composantes C_B et C_R coïncidant avec l'échantillon Y_i . A noter que l'indice «i» des échantillons de différence de couleur ne prend que des valeurs impaires en raison de l'échantillonnage à fréquence moitié des signaux de différence de couleur.

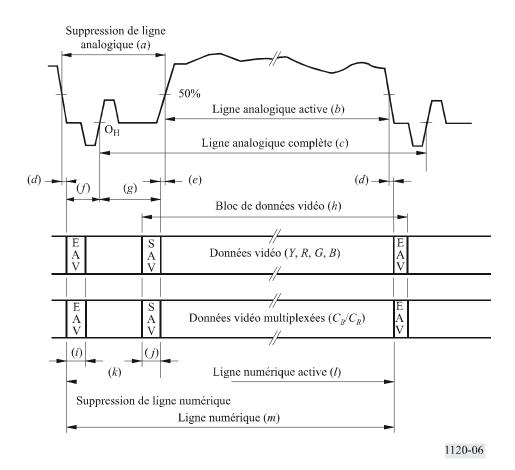
Les mots de données qui correspondent aux niveaux numériques 0,00 à 0,75 et 255,00 à 255,75 sont réservés à l'identification des données et ne doivent pas apparaître sous forme de données vidéo.

Les signaux R, G et B sont traités sous forme de mots de 30 bits en plus des mots de 20 bits ci-dessus des signaux Y, C_B et C_R .

TABLEAU 11 Caractéristiques de codage numérique

						Système					
Point	Paramètre	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
1	Signaux codés Y , C_B , C_R ou R , G , B		les signaux sont obtenus à partir des signaux précorrigés en gamma, à savoir: E'_Y , E'_{C_B} , E'_{C_R} ou E'_R , E'_G , E'_B . Voir également la ecommandation UIT-R BT.709, Partie 2								
2	Grille d'échantillonnage – R, G, B, Y	Orthogonal, se rép	Orthogonal, se répétant en ligne et en image								
3	Grille d'échantillonnage – C_B , C_R	Orthogonal, se rép	Orthogonal, se répétant en ligne et en image, en coïncidence l'un avec l'autre et avec un échantillon de luminance Y sur deux $^{(1)}$							sur deux ⁽¹⁾	
4	Nombre de lignes actives		1080								
5	Fréquence d'échantillonnage ⁽²⁾ (MHz) – R, G, B, Y	148,5 (148,5/1,001)		74,25 (74,25/1,001)	1	148,5	148,5 74,25		74,25 (74,25/1,001)		
	$-C_B, C_R^{(3)}$	74,25 (74,25/1,001)		37,125 (37,125/1,001)	74,25		37,125		,	125 5/1,001)
6	Nombre d'échantillons par ligne - R, G, B, Y - C _B , C _R		2 200 1100				2 6 13	540 20			750 775
7	Nombre d'échantillons actifs par ligne - R, G, B, Y - C _B , C _R		1920 960								
8	Position des premiers instants d'échantillonnage actif Y , C_B , C_R par rapport à la référence de synchronisation temporelle analogique ${\rm O_H}^{(4)}$ (voir la Fig. 6)		192 <i>T</i>								

TABLEAU 11 (fin)


						Systèm	ne				
Point	Paramètre	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
9	Format de codage	MIC à quantification uniforme pour chacune des composantes vidéo 8 ou 10 bits par échantillon									
10	Assignation des niveaux de quantification (5) - Données vidéo - Références temporelles	1,00 à 254,75 0,00 et 255,75 ⁽⁶⁾									
11	Niveaux de quantification ⁽⁷⁾ - Niveau du noir <i>R</i> , <i>G</i> , <i>B</i> , <i>Y</i> - Niveau achromatique <i>C_B</i> , <i>C_R</i> - Crête nominale - <i>R</i> , <i>G</i> , <i>B</i> , <i>Y</i> - <i>C_B</i> , <i>C_R</i>	16,00 128,00 235,00 16,00 et 240,00									
12	Caractéristiques du filtre	Voir la Recommandation UIT-R BT.709									

- (1) Les premiers échantillons actifs de différence de couleur étant en coïncidence avec le premier échantillon actif de luminance Y.
- (2) L'horloge d'échantillonnage doit être verrouillée sur la fréquence de ligne. La tolérance sur la fréquence est de ±0,001%.
- (3) Les fréquences d'échantillonnage C_B , C_R sont égales à la moitié de la fréquence d'échantillonnage de la luminance.
- $^{(4)}$ T désigne la période d'horloge ou l'inverse de la fréquence d'échantillonnage de la luminance.
- (5) Pour éviter toute confusion lorsqu'on utilise à la fois les systèmes à 8 et à 10 bits, les deux LSB du système à 10 bits sont lus sous forme de deux bits fractionnaires. Dans le système à 8 bits, l'échelle de quantification va de 0 à 255 par échelons d'une unité et dans un système à 10 bits, elle va de 0,00 à 255,75 par échelon de 0,25. En cas de traitement de mots de 8 bits dans un système à 10 bits, deux LSB constitués de zéros sont ajoutés au mot de 8 bits.
- (6) 8 MSB sont utilisés lorsqu'il s'agit d'un système à 8 bits.
- (7) Ces niveaux se rapportent à des niveaux vidéo nominaux précis. En raison du traitement du signal, il se peut que les niveaux du signal sortent des limites.

2.2 Correspondance temporelle de la vidéo avec le signal analogique

La ligne numérique occupe m périodes d'horloge. Elle débute à f périodes d'horloge avant la transition de référence (O_H) du signal de synchronisation analogique de la ligne correspondante. La ligne numérique active commence à g périodes d'horloge après la transition de référence (O_H). Les valeurs de m, f et g sont énumérées dans le Tableau 12. Pour les correspondances temporelles détaillées dans l'intervalle de ligne, consulter la Fig. 6 et le Tableau 12.

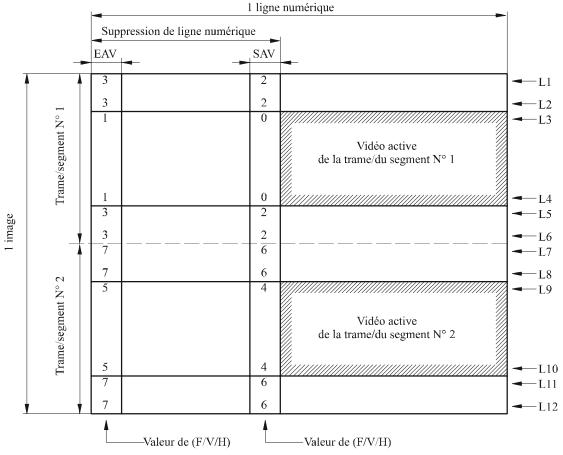
FIGURE 6
Format de données et correspondance temporelle avec le signal analogique

Pour les systèmes avec balayage à entrelacement et à image segmentée, le début de la trame/du segment numérique est défini par la position spécifiée pour le début de la ligne numérique. Pour les correspondances détaillées dans l'intervalle de trame/segment, consulter la Fig. 7a) et le Tableau 13a).

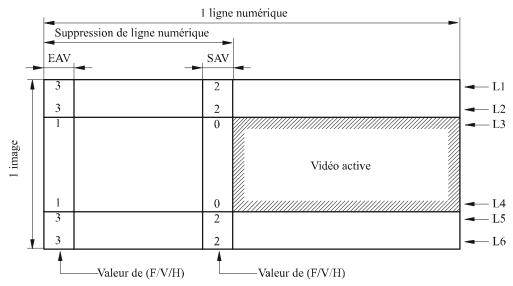
Pour les systèmes avec balayage progressif, le début de l'image numérique est défini par la position spécifiée pour le début de la ligne numérique. Pour les correspondances détaillées dans l'intervalle d'image, consulter la Fig. 7b) et le Tableau 13b).

2.3 Séquences de référence temporelle vidéo SAV et EAV

Il existe deux séquences de référence temporelle, l'une au début de chaque bloc de données vidéo SAV, l'autre à la fin de chaque bloc de données vidéo EAV. Ces séquences sont contiguës aux données vidéo et continuent pendant l'intervalle de suppression de trame/d'image/de segment, comme le montre la Fig. 7.


TABLEAU 12 Spécifications temporelles de l'intervalle de ligne

						Va	lleur				
Symbole	Paramètre	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
	Nombre d'échantillons <i>Y</i> actifs par ligne	1920									
	Fréquence d'échantillonnage de la luminance (MHz)	148,5 (148,5/ 1,001)		74,25 (74,25/1,001)	148,5	148,5 74,25			74,25 (74,25/1,001)	
a	Suppression de ligne analogique (T)		2	+12 280 -0		+12 280 -0				+12 280 -0	
b	Ligne analogique active (T)	+0 1920 -12									
С	Ligne analogique complète (T)	2200					20	640		2	750
d	Durée séparant la fin de la vidéo analogique active du début de EAV (T)					C)-6				
e	Durée séparant la fin de SAV du début de la vidéo analogique active (T)	0-6									
f	Durée séparant le début de EAV de la référence temporelle analogique OH (T)	88			528				6	38	
g	Durée séparant la référence temporelle analogique O_H de la fin de SAV (T)	192									
h	Bloc de données vidéo (T)					19	928				
i	Durée de EAV (T)						4				
j	Durée de SAV (T)	4									
k	Suppression de ligne numérique (<i>T</i>)	280			720				830		
l	Ligne numérique active (T)					19	920			•	
m	Ligne numérique (<i>T</i>)	2200			2640				2750		


NOTE 1 – Les valeurs de paramètre indiquées pour les spécifications analogiques correspondant aux symboles a, b et c sont les valeurs nominales.

NOTE 2 – *T* désigne la période d'horloge ou l'inverse de la fréquence d'échantillonnage de la luminance.

FIGURE 7 Séquences de référence temporelle vidéo SAV et EAV

a) Correspondance temporelle dans l'intervalle de trame/de segment pour les systèmes avec balayage à entrelacement

b) Correspondance temporelle dans l'intervalle d'image pour les systèmes avec balayage progressif

Note 1 – Les valeurs de (F/V/H) pour EAV et SAV représentent l'état des bits pour F, V, et H; le mot de trois bits, composé de F, V, H représente un nombre binaire exprimé en notation décimale (F correspondant au MSB et H au LSB). Par exemple, la valeur 3 représente les bits de F = 0, V = 1 et H = 1.

1120-07

Chaque séquence se compose d'une suite de quatre mots. Le Tableau 14 explique l'affectation des bits de ces mots. Les trois premiers constituent un préambule fixe et le quatrième contient l'information qui définit l'identification de trame (F), la période de suppression de trame/d'image (V) et la période de suppression de ligne (H). Dans les systèmes à 8 bits, on utilise les bits 9 à 2 inclus.

Le changement d'état des bits F et V se fait en synchronisme avec EAV, au début de la ligne numérique.

La valeur des bits de protection P₀ à P₃ dépend de F, V et H (voir le Tableau 15). Cette disposition permet de corriger les erreurs simples et de détecter les erreurs doubles dans le récepteur, mais seulement pour les 8 MSB (voir le Tableau 16).

TABLEAU 13

a) Spécifications temporelles de l'intervalle de trame/de segment pour les systèmes avec entrelacement et balayage de l'image segmentée

Symbole	Définition	Numéro de la ligne numérique
	Nombre de lignes actives	1080
L1	Première ligne de la trame/du segment N° 1	1
L2	Dernière ligne de la suppression de trame/de segment numérique N° 1	20
L3	Première ligne de la vidéo active de la trame/du segment N° 1	21
L4	Dernière ligne de la vidéo active de la trame/du segment N° 1	560
L5	Première ligne de la suppression de trame/de segment numérique N° 2	561
L6	Dernière ligne de la trame/du segment N° 1	563
L7	Première ligne de la trame/du segment N° 2	564
L8	Dernière ligne de la suppression de trame/de segment numérique N° 2	583
L9	Première ligne de la vidéo active de la trame/du segment N° 2	584
L10	Dernière ligne de la vidéo active de la trame/du segment N° 2	1123
L11	Première ligne de la suppression de trame/de segment numérique N° 1	1124
L12	Dernière ligne de la trame/du segment N° 2	1125

NOTE 1 – On désigne par suppression de trame/de segment numérique N° 1 la période de suppression de trame/de segment qui précède la vidéo active de la trame/du segment N° 1 et par suppression de trame/de segment numérique N° 2 celle qui précède la vidéo active de la trame/du segment N° 2.

b) Spécifications temporelles de l'intervalle d'image pour les systèmes avec balayage progressif

Symbole	Définition	Numéro de la ligne numérique
	Nombre de lignes actives	1080
L1	Première ligne de l'image	1
L2	Dernière ligne de la suppression de trame numérique	41
L3	Première ligne de la vidéo active	42
L4	Dernière ligne de la vidéo active	1121
L5	Première ligne de la suppression de trame numérique	1122
L6	Dernière ligne de l'image	1125

TABLEAU 14

Affectation des bits pour les séquences de référence temporelle vidéo

Mot					N	uméro du b	it			
	9 (MSB)	8	7	6	5	4	3	2	1	0 (LSB)
Premier	1	1	1	1	1 1 1 1 1				1	1
Deuxième	0	0	0	0	0 0 0 0 0				0	0
Troisième	0	0	0	0	0	0	0	0		
Quatrième	1	F	V	Н	P_3	P_2	\mathbf{P}_1	P_0	0	0
Système avec balayage à entrelacement et image segmentée		F =1 pendant la trame/le segment N° 2 = 0 pendant la trame/le segment N° 1			 V = 1 pendant la période de suppression de trame/segment = 0 en dehors de la suppression de trame/segment 					EAV
				supprise of suppri	ndant la pér ression d'in dehors de la ression d'in	nage a		H = 1 pour = 0 pour		

NOTE 1 – Dans le quatrième mot, P₀, P₁, P₂, P₃ sont les bits de protection (voir le Tableau 15).

TABLEAU 15 **Bits de protection pour SAV et EAV**

	Etat de	es bits SAV	//EAV		Bits de p	rotection			
Bit 9 (fixe)	8 (F)	7 (V)	6 (H)	5 (P ₃)	4 (P ₂)	3 (P ₁)	2 (P ₀)	1 (fixe)	0 (fixe)
1	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	0	1	0	0
1	0	1	0	1	0	1	1	0	0
1	0	1	1	0	1	1	0	0	0
1	1	0	0	0	1	1	1	0	0
1	1	0	1	1	0	1	0	0	0
1	1	1	0	1	1	0	0	0	0
1	1	1	1	0	0	0	1	0	0

Correction des erreurs au moyen des bits de protection (P ₃ -P ₀)												
Bits 5 à 2 reçus		Bits 8 à 6 reçus pour F, V et H										
pour P_3 - P_0	000	001	010	011	100	101	110	111				
0000	000	000	000	_	000	_	_	111				
0001	000	-	-	111	_	111	111	111				
0010	000	-	_	011	_	101	_	_				
0011	_	_	010	_	100	-	_	111				
0100	000	-	-	011	_	_	110	_				
0101	_	001	-	_	100	_	_	111				
0110	_	011	011	011	100	-	_	011				
0111	100	-	-	011	100	100	100	_				
1000	000	_	_	_	_	101	110	-				
1001	_	001	010	_	_	_	_	111				
1010	_	101	010	_	101	101	_	101				
1011	010	_	010	010	_	101	010	_				
1100	_	001	110	-	110	-	110	110				
1101	001	001	-	001	_	001	110	-				
1110	_	_	_	011	_	101	110	_				

TABLEAU 16

Correction des erreurs au moven des bits de protection (P2-P0)

NOTE 1 – La protection contre les erreurs qui est employée assure une détection d'erreurs doubles et une correction d'erreurs isolées. Les bits reçus désignés par un «—» dans le tableau, s'ils sont détectés, indiquent qu'une erreur s'est produite, mais ne peut être corrigée.

010

100

2.4 Données auxiliaires

1111

Les données auxiliaires peuvent éventuellement être incluses dans les intervalles de suppression d'une interface numérique conformément à la présente Recommandation. Les signaux auxiliaires devraient être conformes aux règles générales énoncées dans la Recommandation UIT-R BT.1364.

L'intervalle de suppression horizontal entre la fin du code EAV et le début du code SAV peut être utilisé pour acheminer des paquets de données auxiliaires.

Les paquets de données auxiliaires peuvent être acheminés dans l'intervalle de suppression vertical entre la fin du code SAV et le début du code EAV, comme suit:

- dans un système avec balayage progressif, sur les lignes 7 à 41 incluses;

001

- dans un système à balayage entrelacé, sur les lignes 7 à 20 incluses et sur les lignes 569 à 583 incluses;
- sur n'importe quelle ligne qui se trouve à l'extérieur de la portée verticale de l'image, tel que noté ci-dessus, et qui n'est pas utilisée pour acheminer des signaux de l'intervalle de suppression vertical pouvant être représentés dans le domaine analogique au moyen d'une conversion directe numérique/analogique (comme le code temporel numérique d'intervalle vertical (D-VITC, digital vertical interval time code)).

2.5 Mots de données pendant les intervalles de suppression

Les mots de données transmis pendant les intervalles de suppression numérique qui ne sont pas utilisés pour les séquences de référence temporelles, SAV et EAV ou pour les données auxiliaires (ANC) sont remplis avec des mots correspondant aux niveaux de suppression suivants placés comme il convient dans les données multiplexées:

16,00 pour les signaux Y, R, G, B

128,00 pour C_B/C_R (signal de différence de couleur multiplexé dans le temps).

3 Interface parallèle

Les bits des mots de code numériques qui décrivent le signal vidéo sont transmis en parallèle sur 20 ou 30 paires de conducteurs blindés. Les 20 paires de conducteurs servent à transmettre un jeu de signaux qui comprend la luminance Y et les composantes de différence de couleur C_B/C_R multiplexées dans le temps. Les 30 paires de conducteurs servent à transmettre les signaux R, G, B ou les composantes Y, C_B/C_R , plus un train de données supplémentaire (canal auxiliaire). Une paire de conducteurs blindés supplémentaire achemine l'horloge synchrone à 148,5 MHz (148,5/1,001 MHz) pour les systèmes 60/P et 50/P et à 74,25 MHz (74,25/1,001 MHz) pour les autres systèmes.

Les signaux de données sont transmis sous forme NRZ en temps réel (sans mémoire tampon).

3.1 Signal d'horloge et relation temporelle entre les signaux d'horloge et les signaux de données

Le signal d'horloge transmis est un signal carré dont les transitions positives se produisent au milieu de l'intervalle qui sépare deux transitions de données, comme le montrent la Fig. 8 et le Tableau 17.

FIGURE 8

Relation temporelle entre les signaux d'horloge et les signaux de données

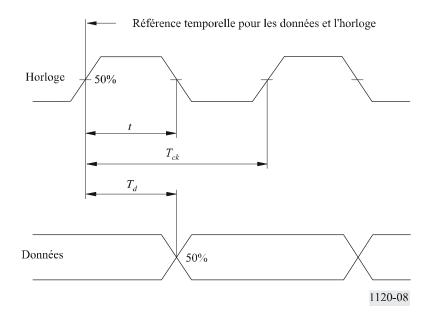


TABLEAU 17

Spécifications du signal d'horloge

Paramètre					Valeur					
	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
Fréquence d'échantillonnage pour les signaux Y , R , G et B (MHz)	R, 148,5 74,25 148,5 (148,5/1,001) (74,25/1,001)						74,25	74,25 74,25 (74,25/1,0		,
Période d'horloge, T_{ck}	$1/(2200f_H)$						640 f _H)		1/(27	750 f _H)
Valeur nominale (ns)	6,734 13,468 (6,741) (13,481)					13,468 (13,481)				
Durée de l'impulsion d'horloge, <i>t</i> Tolérance					0,5 T_{ck} ±0,11 T_c	·k				
Gigue d'horloge					A ±0,04 7	Γ_{ck}				
	de la durée moyer image segmentée									
Phase des données, T_d Tolérance	image segmentée et de la durée moyenne de transition sur une image dans les systèmes avec balayage programmes $0.5~T_{ck}\\\pm0.075~T_{ck}$									

NOTE $1 - f_H$ désigne la fréquence de ligne.

NOTE 2 – Les valeurs sont spécifiées côté émission (source).

3.2 Caractéristiques électriques de l'interface

L'interface comprend 21 émetteurs et récepteurs de ligne pour la transmission des composantes Y et C_B/C_R . Chaque émetteur de ligne a une sortie symétrique et le récepteur de ligne correspondant une entrée symétrique. L'interface comprend 31 émetteurs et récepteurs de ligne dans le cas des composantes R, G, B, ou dans le cas de composantes Y, C_B/C_R plus un train de données supplémentaire (canal auxiliaire).

Bien qu'il ne soit pas indispensable de recourir à la technologie ECL, l'émetteur et le récepteur de ligne doivent être compatibles avec l'ECL 10 k pour les systèmes utilisant l'horloge synchrone à 74,25 MHz (74,25/1,001 MHz), c'est-à-dire qu'ils doivent permettre l'utilisation de composants ECL aussi bien pour les émetteurs que pour les récepteurs.

Le récepteur doit détecter correctement les données lorsqu'un signal aléatoire produit les conditions qu'illustre le diagramme en œil de la Fig. 10.

TABLEAU 18 Caractéristiques de l'émetteur de ligne

Point	Paramètre	Valeur				
1	Impédance de sortie (Ω)	110 maximum				
2	Tension de mode commun ⁽¹⁾ (V)	$-1,29 \pm 15\%$				
3	Amplitude du signal ⁽²⁾ (V)	0,6 à 2,0 crête-à-crête				
4	Temps de montée et de descente ⁽³⁾	≤ 0,15 <i>T_{Ck}</i>				
5	Différence entre les temps de montée et de descente	$\leq 0.075 \ T_{Ck}$				

NOTE $1 - T_{Ck}$ désigne la période d'horloge (voir le Tableau 17).

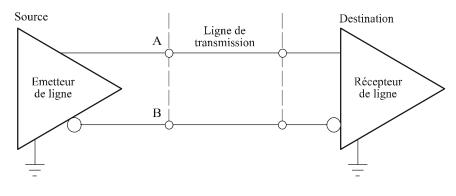
TABLEAU 19 Caractéristiques du récepteur de ligne

Point	Paramètre	Valeur
1	Impédance d'entrée (Ω)	110 ± 10
2	Tension maximale du signal d'entrée (V)	2,0 crête à crête
3	Tension minimale du signal d'entrée (mV)	185 crête à crête
4	Tension maximale du signal du mode commun ⁽¹⁾ (V)	±0,3
5	Temps de propagation différentiel $T_{min}^{(2)}$	0,3 T _{ck}

NOTE $1 - T_{ck}$ désigne la période d'horloge (voir le Tableau 17).

⁽¹⁾ Mesuré par rapport à la terre.

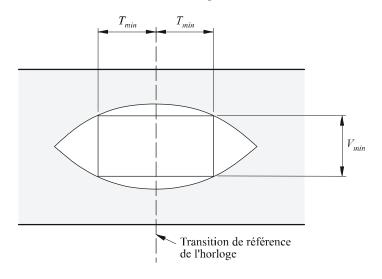
⁽²⁾ Mesuré aux bornes d'une charge résistive ayant l'impédance nominale des câbles envisagés, soit $110~\Omega$.


⁽³⁾ Mesurés entre les points à 20% et 80% aux bornes d'une charge résistive ayant l'impédance nominale des câbles envisagés.

⁽¹⁾ Y compris les brouillages dans la gamme courant entre le continu et la fréquence de ligne (f_H) .

⁽²⁾ Il faut que les données soient correctement interprétées lorsque le temps de propagation différentiel entre l'horloge et les données reçues se situe dans cet intervalle (voir la Fig. 10).

FIGURE 9


Interconnexion de l'émetteur de ligne et du récepteur de ligne

1120-09

FIGURE 10

Diagramme théorique en œil correspondant
au niveau minimal du signal d'entrée

Note 1 – Dans le diagramme en œil, la largeur de la fenêtre à l'intérieur de laquelle les données doivent être détectées correctement comprend $\pm 0.04~T$ pour la gigue d'horloge, $\pm 0.075~T$ pour le phasage des données et $\pm 0.18~T$ pour les différences de temps de propagation entre les paires de conducteurs.

3.3 Caractéristiques mécaniques (Voir la Note 1)

3.3.1 Connecteur

L'interface utilise un connecteur à contacts multiples. Les connecteurs sont verrouillés par deux vis aux connecteurs du câble et par deux boulons aux appareils. Le câble porte un connecteur à contacts mâles et l'équipement un connecteur à contacts femelles. Les connecteurs et les câbles sont obligatoirement blindés.

On utilise un connecteur à 93 contacts. L'affectation des contacts est indiquée dans les Tableaux 20 et 21. Les Fig. 11, 12 et 13 présentent les spécifications mécaniques des connecteurs.

NOTE 1 – L'interface série décrite au § 4 est utilisée de préférence sur les nouveaux systèmes.

TABLEAU 20
Affectation des contacts (C) de connecteur

Contact	Ligne de signaux	Contact	Ligne de signaux	Contact	Ligne de signaux	Contact	Ligne de signaux	Contact	Ligne de signaux	Contact	Ligne de signaux
1	Horloge A	17	Masse (GND)	33	Horloge B						
2	XD 9A	18	Masse	34	XD 9B	49	YD 4A	64	Masse	79	YD 4B
3	XD 8A	19	Masse	35	XD 8B	50	YD 3A	65	Masse	80	YD 3B
4	XD 7A	20	Masse	36	XD 7B	51	YD 2A	66	Masse	81	YD 2B
5	XD 6A	21	Masse	37	XD 6B	52	YD 1A	67	Masse	82	YD 1B
6	XD 5A	22	Masse	38	XD 5B	53	YD 0A	68	Masse	83	YD 0B
7	XD 4A	23	Masse	39	XD 4B	54	ZD 9A	69	Masse	84	ZD 9B
8	XD 3A	24	Masse	40	XD 3B	55	ZD 8A	70	Masse	85	ZD 8B
9	XD 2A	25	Masse	41	XD 2B	56	ZD 7A	71	Masse	86	ZD 7B
10	XD 1A	26	Masse	42	XD 1B	57	ZD 6A	72	Masse	87	ZD 6B
11	XD 0A	27	Masse	43	XD 0B	58	ZD 5A	73	Masse	88	ZD 5B
12	YD 9A	28	Masse	44	YD 9B	59	ZD 4A	74	Masse	89	ZD 4B
13	YD 8A	29	Masse	45	YD 8B	60	ZD 3A	75	Masse	90	ZD 3B
14	YD 7A	30	Masse	46	YD 7B	61	ZD 2A	76	Masse	91	ZD 2B
15	YD 6A	31	Masse	47	YD 6B	62	ZD 1A	77	Masse	92	ZD 1B
16	YD 5A	32	Masse	48	YD 5B	63	ZD 0A	78	Masse	93	ZD 0B

NOTE 1 – XD 9-XD 0, YD 9-YD 0, et ZD 9-ZD 0 représentent chaque bit des signaux en composantes. Les suffixes 9 à 0 indiquent le numéro du bit (le bit 9 est celui de MSB). A et B correspondent respectivement aux bornes A et B de la Fig. 9. Le Tableau 21 indique les correspondances entre XD, YD et ZD et les signaux en composantes.

NOTE 2-Le blindage de chaque paire utilise le contact de masse situé entre les bornes A et B du signal; par exemple, le contact N° 17 sert au blindage du signal d'horloge. Le blindage général du câble est relié électriquement au capot du connecteur qui est mis à la masse du châssis de l'équipement.

3.3.2 Câble d'interconnexion

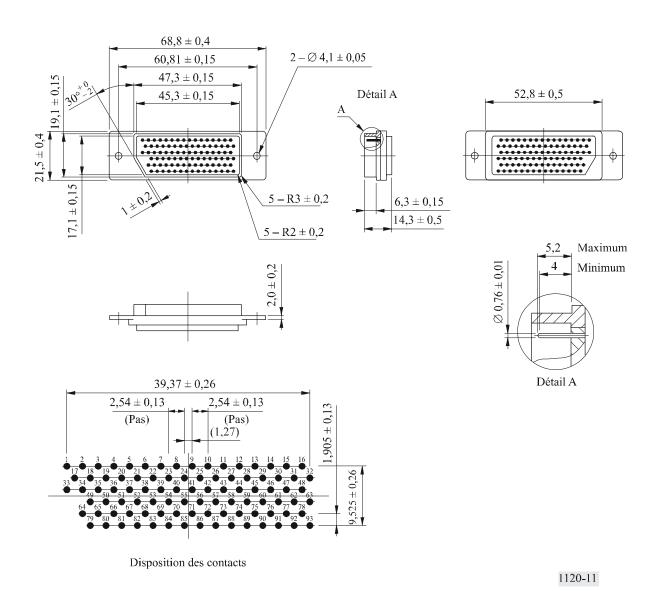
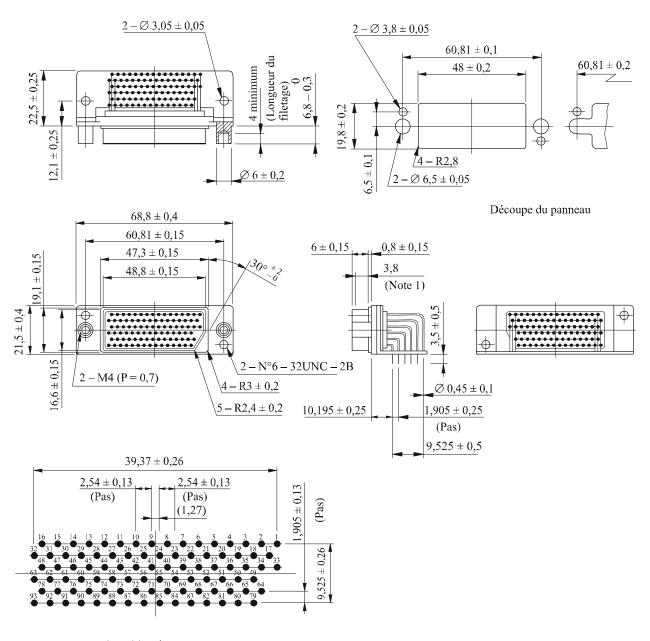
On peut utiliser, selon les signaux à transmettre (voir le Tableau 21), deux sortes de câble multiconducteurs, à 21 ou 31 canaux. Le câble comprend des paires torsadées, blindées indépendamment les unes des autres, ainsi qu'un blindage général. Chaque paire torsadée a une impédance caractéristique nominale de 110 Ω . Les caractéristiques du câble doivent satisfaire aux conditions définies par le diagramme en l'œil de la Fig. 10 jusqu'à une longueur maximale de 20 m pour les systèmes utilisant l'horloge synchrone à 74,25 MHz (74,25/1,001 MHz) et de 14 m pour les systèmes utilisant l'horloge synchrone à 148,5 MHz (148,5/1,001 MHz).

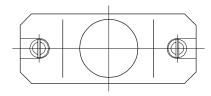
TABLEAU 21

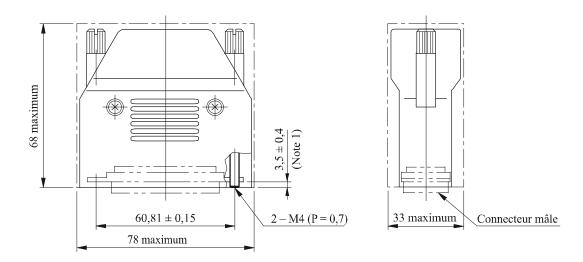
Groupes de signaux transmis et affectation des lignes de signaux

Groupes de signaux	Composante	Affectation des l	Câble	
transmis		Système à 10 bits	Système à 8 bits	
$Y, C_R/C_B$	Y	XD 9-XD 0	XD 9-XD 2	
	C_R/C_B	ZD 9-ZD 0	ZD 9-ZD 2	21 paires
$Y, C_R/C_B$	Y	XD 9-XD 0	XD 9-XD 2	
avec canal auxiliaire	C_R/C_B	ZD 9-ZD 0	ZD 9-ZD 2	
	Canal auxiliaire	YD 9-YD 0	YD 9-YD 2	31 paires
	G	XD 9-XD 0	XD 9-XD 2	
R, G, B	В	YD 9-YD 0	YD 9-YD 2	
	R	ZD 9-ZD 0	ZD 9-ZD 2	

FIGURE 11
Connecteur multibroche (93 broches) (prise mâle)


FIGURE 12
Connecteur multibroche (93 broches) (embase femelle)



Disposition des contacts

1120-12

FIGURE 13
Connecteur multibroche (93 broches) (capot)

Note 1 – Une vis sort du connecteur mâle.

Note 2 - Diamètre extérieur autorisé: minimum 17,5 à maximum 19,3 et minimum 21,1 à maximum 23,2.

1120-13

4 Interface série

4.1 Format des données

Les données série comprennent les données vidéo, les séquences de référence temporelle vidéo, les données de numéro de ligne, les codes de détection d'erreur, les données auxiliaires et les données de suppression. Chaque donnée, composée d'un mot de 10 bits, est représentée comme donnée parallèle avant d'être mise en série. Deux trains parallèles (c'est-à-dire les données de luminance Y et les données de différence de couleur C_B/C_R) sont multiplexés et mis en série conformément au § 4.2.

4.1.1 Données vidéo

Les données vidéo doivent être des mots de 10 bits représentant les composantes Y, C_B/C_R des systèmes vidéo définis au § 1.

4.1.2 Séquences de référence temporelle vidéo

Les séquences de référence temporelle vidéo, SAV et EAV, ont le même format que celui qui est défini au § 2.

4.1.3 Données de numéro de ligne

Les données de numéro de ligne se composent de deux mots indiquant le numéro de ligne. L'affectation des données de numéro de ligne est indiquée au Tableau 22. Ces données doivent être situées immédiatement après la séquence EAV.

TABLEAU 22 Affection de bits des données de numéro de ligne

Mot	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	(MSB)									(LSB)
LN0	Non b8	L6	L5	L4	L3	L2	L1	L0	R	R
LN1	Non b8	R	R	R	L10	L9	L8	L7	R	R

L0 (LSB)-L10 (MSB): numéro de ligne en code binaire.

R: réservé (mis à zéro).

4.1.4 Codes de détection d'erreur

Les codes de détection d'erreur tels les codes de contrôle de redondance cyclique (CRCC, *cyclic redundancy check code*), qui sont utilisés pour détecter les erreurs dans les lignes actives numériques, les codes EAV et les données de numéro de ligne, se composent de deux mots et sont déterminés par l'équation suivante du polynôme générateur:

$$EDC(x) = x^{18} + x^5 + x^4 + 1$$

La valeur initiale des codes est mise à zéro. Le calcul commence au premier mot de la ligne numérique active et se termine à la fin du mot des données de numéro de ligne. On établit deux codes de détection d'erreur, l'un pour les données de luminance, YCR et l'autre pour les données de différence de couleur, CCR. L'affectation des bits des codes de détection d'erreur est indiquée au Tableau 23. Les codes de détection d'erreur doivent être situés immédiatement après les données de numéro de ligne.

TABLEAU 23

Affectation de bits pour les codes de détection d'erreur

Mot	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	(MSB)									(LSB)
YCR0	Non b8	CRCC8	CRCC7	CRCC6	CRCC5	CRCC4	CRCC3	CRCC2	CRCC1	CRCC0
YCR1	Non b8	CRCC17	CRCC16	CRCC15	CRCC14	CRCC13	CRCC12	CRCC11	CRCC10	CRCC9
CCR0	Non b8	CRCC8	CRCC7	CRCC6	CRCC5	CRCC4	CRCC3	CRCC2	CRCC1	CRCC0
CCR1	Non b8	CRCC17	CRCC16	CRCC15	CRCC14	CRCC13	CRCC12	CRCC11	CRCC10	CRCC9

NOTE 1 - CRC0 est le MSB des codes de détection d'erreur.

4.1.5 Données auxiliaires

Les données auxiliaires doivent être conformes aux règles générales énoncées dans la Recommandation UIT-R BT.1364.

4.1.6 Données de suppression

Les mots de données de suppression pendant les intervalles de suppression numérique qui ne sont pas utilisés pour les codes SAV, EAV, les données de numéro de ligne, les codes de détection

d'erreur et les données auxiliaires, doivent être remplis par les mots de 10 bits qui correspondent aux niveaux de quantification suivants:

- 16,00 pour les données Y
- 128,00 pour les données C_B/C_R .

4.2 Format de transmission

Les deux trains de données parallèles sont transmis sur un seul canal en série après multiplexage des mots, conversion parallèle-série et embrouillage.

4.2.1 Multiplexage des mots

Les deux trains parallèles doivent être multiplexés mot par mot en un seul train parallèle de mots de 10 bits dans l'ordre suivant: C_B , Y, C_R , Y, C_R , Y, C_R , Y, ... (voir la Fig. 14 et le Tableau 25).

4.2.2 Mise en série

Le LSB de chaque mot à 10 bits du train parallèle de données multiplexées doit être envoyé en premier dans la transmission série.

4.2.3 Codage de voie

Le schéma de codage de voie doit être embrouillé sous forme NRZ inversé (NRZI). Le train de bits mis en série doit être embrouillé au moyen de l'équation de polynôme générateur:

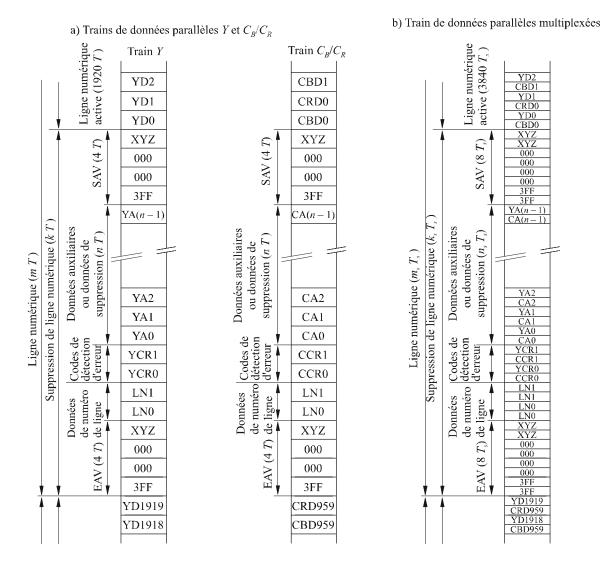
$$G(x) = (x^9 + x^4 + 1) (x + 1)$$

Le signal d'entrée dans l'embrouilleur doit être de logique positive. (La tension élevée représente la donnée 1 et la tension la plus faible la donnée 0).

4.2.4 Horloge série

Le Tableau 24 spécifie les fréquences d'horloge série, égales à 20 fois la fréquence de l'horloge parallèle (voir le Tableau 17).

TABLEAU 24
Fréquence d'horloge série


	Valeur										
Paramètre	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF	
Fréquence d'horloge série (GHz)	1,485 pour un mode de fonctionnement à liaison double 2,97 pour un mode de fonctionnement à liaison unique (2,97/1,001)	1,485 pour un mode de onctionnement à liaison double 2,97 pour un mode de onctionnement à liaison unique		1,485 pour un mode de fonctionnement à liaison double 2,97 pour un mode de fonctionnement à liaison unique	1,485				1,485 85/1,001)		

4.2.5 Trame de contrôle d'interface numérique série

Les signaux numériques de test adaptés pour tester l'égaliseur de câble et la boucle à verrouillage de phase (PLL, *phase locked loop*) sont décrits dans l'Annexe 1.

FIGURE 14

Train de données

YD0 - YD1919: données numériques de luminance *Y*

CBD0 - CBD959: données numériques de différence de couleur $C_{\scriptscriptstyle B}$ CRD0 - CRD959: données numériques de différence de couleur $C_{\scriptscriptstyle R}$

YA0 - YA267: données auxiliaires ou données de suppression dans le train Y CA0 - CA267: données auxiliaires ou données de suppression dans le train C_B/C_R

1120-14

TABLEAU 25 Spécifications temporelles du train de données (Voir la Fig. 14)

Symbole	Paramètre					Valeur					
		60/P ⁽¹⁾	30/P	30/PsF	60/I	50/P ⁽¹⁾	25/P	25/PsF	50/I	24/P	24/PsF
T	Période d'horloge parallèle (ns)	1000/148,5 (1001/148,5)		1000/74,25 (1001/74,25		1000/148,5 1000/74,25			0/74,25 1/74,25)		
T_s	Période d'horloge de données parallèles multiplexées					T/2					
m	Ligne numérique dans train parallèle de données		2200			2640				2750	
k	Suppression de ligne numérique dans train parallèle de données	280			720				830		
n	Données auxiliaires ou données de suppression dans train parallèle de données	268		708				728			
m_s	Ligne numérique dans train de données multiplexées parallèles	4400		5280					5500		
k_s	Suppression de ligne numérique dans train de données parallèles multiplexées	560		560 1440		ı			1660		
n_s	Données auxiliaires ou données de suppression dans train parallèle de données multiplexées	536		536 1416			1456				

⁽¹⁾ Les valeurs des paramètres relatives à ces systèmes sont à l'étude.

4.3 Interfaces de câble coaxial

Les interfaces de câble coaxial se composent d'une source et d'une destination dans une connexion point à point. Ces interfaces spécifient les caractéristiques de l'émetteur de ligne (source), du récepteur de ligne (destination), de la ligne de transmission et des connecteurs.

4.3.1 Caractéristiques de l'émetteur de ligne (source)

Le Tableau 26 spécifie les caractéristiques de l'émetteur de ligne. Il doit comporter un circuit de sortie asymétrique.

TABLEAU 26

Caractéristiques de l'émetteur de ligne

Point	Paramètre	Valeur
1	Impédance de sortie	75 Ω nominal
2	Décalage continu ⁽¹⁾	0,0 V ± 0,5 V
3	Amplitude du signal ⁽²⁾	800 mV crête-à-crête ± 10%
4	Affaiblissement d'adaptation	$\geq 15 \text{ dB}^{(3)}, \geq 10 \text{ dB}^{(4)}$
5	Temps de montée et de descente ⁽⁵⁾	< 270 ps (20% à 80%)
6	Différence entre le temps de montée et le temps de descente	≤ 100 ps
7	Gigue de sortie ⁽⁶⁾	$f_1 = 10 \text{ Hz}$ $f_3 = 100 \text{ kHz}$ $f_4 = 1/10 \text{ fréquence d'horloge}$ $A_1 = 1 \text{ IU (IU: intervalle unitaire)}$ $A_2 = 0,2 \text{ IU}$

- (1) Défini par le point à mi-amplitude du signal.
- (2) Mesuré aux bornes d'une charge résistive de 75 Ω reliée par un câble coaxial de 1 m.
- (3) Dans la gamme de fréquences 5 MHz à fc/2. (fc: fréquence d'horloge série)
- (4) Dans la gamme de fréquences fc/2 à fc.
- (5) Déterminés entre les points d'amplitude 20% et 80% et mesurés aux bornes d'une charge résistive de 75 Ω. La suroscillation des fronts de montée et de descente de l'onde ne doit pas dépasser 10% de l'amplitude.
- (6) 1 IU correspond à 1/fc. Les spécifications et les méthodes de mesure de la gigue devront être conformes à la Recommandation UIT-R BT.1363 Spécifications et méthodes de mesure de la gigue pour les signaux série conformes aux Recommandations UIT-R BT.656, UIT-R BT.799 et UIT-R BT.1120.

Les excursions d'amplitude de sortie dues aux signaux avec une composante en continu significative apparaissant sur une ligne horizontale (signaux pathologiques) ne doivent pas dépasser la valeur de 50 mV au-dessus ou au-dessous de la valeur moyenne de l'enveloppe du signal crête-à-crête (en effet, cette spécification définit une constante de temps de couplage de sortie minimale).

4.3.2 Caractéristiques du récepteur de ligne (destination)

Le Tableau 27 spécifie les caractéristiques du récepteur de ligne. Ce récepteur doit avoir un circuit d'entrée asymétrique. Il doit détecter correctement les données reçues lorsqu'il est connecté à un émetteur de ligne fonctionnant aux limites de tension extrêmes autorisées en vertu du § 4.3.1 et lorsqu'il est connecté par un câble fonctionnant dans les conditions les plus défavorables autorisées en vertu du § 4.3.3.

Т	ABLEAU	27	
Caractéristiq	ues du réc	epteur	de ligne

Point	Paramètre	Valeur		
1	Impédance d'entrée	75 Ω nominal		
2	Affaiblissement d'adaptation	$\geq 15 \text{ dB}^{(1)}, \geq 10 \text{ dB}^{(2)}$		
		±2,5 V _{max}	Courant continu	
3	Signal brouilleur	< 2,5 V _{crête-à-crête}	Au-dessous de 5 kHz	
		< 100 mV _{crête-à-crête}	5 kHz à 27 MHz	
		< 40 mV _{crête-à-crête}	Au-dessus de 27 MHz	

⁽¹⁾ Dans la gamme de fréquences 5 MHz à fc/2.

4.3.3 Caractéristiques de la ligne de transmission

Les spécifications pertinentes sont indiquées au Tableau 28.

TABLEAU 28 Caractéristiques de la ligne de transmission

Point	Paramètre	Valeur		
1	Affaiblissement de transmission ⁽¹⁾	≤ 20 dB à 1/2 de la fréquence d'horloge pour un mode de fonctionnement à 1,485 Gbit/s	< 30 dB à 1/2 de la fréquence d'horloge pour un mode de fonctionnement à 2,97 Gbit/s	
2	Affaiblissement d'adaptation	$\geq 15 \text{ dB}^{(2)}, \geq 10 \text{ dB}^{(3)}$		
3	Impédance	75 Ω nominal		

⁽¹⁾ Caractéristiques d'affaiblissement de $1/\sqrt{f}$.

4.3.4 Connecteur

Le connecteur devra avoir des caractéristiques mécaniques conformes à la norme type BNC (CEI 61169-8 (2007-2)* – Partie 8: Spécification intermédiaire - Connecteurs coaxiaux RF avec un conducteur extérieur ayant un diamètre intérieur de 6,5 mm (0,256 in) à verrouillage baïonnette – Impédance caractéristique de 50 ohms (type BNC), Annexe A (pour information): information sur les dimensions d'interface connecteur à impédance caractéristique de 75 ohms pour une gamme de fréquences utilisable jusqu'à 3,5 GHz.

4.4 Interfaces à fibre optique

Les interfaces optiques devraient être monomodes seulement et se conformer aux règles générales de la Recommandation UIT-R BT.1367 – Systèmes de transmission numérique sur fibre pour les signaux conformes aux Recommandations UIT-R BT.656, UIT-R BT.799 et UIT-R BT.1120.

Pour mettre en œuvre cette Recommandation, les spécifications suivantes sont nécessaires:

Temps de montée et de descente: < 270 ps (20% - 80%)

⁽²⁾ Dans la gamme de fréquences fc/2 à fc.

⁽²⁾ Dans la gamme de fréquences 5 MHz à fc/2.

⁽³⁾ Dans la gamme de fréquences fc/2 à fc.

^{*} NOTE – La Norme CEI 61169-8 (2007-2) est disponible en version électronique à l'adresse suivante: http://www.itu.int/md/R03-WP6A-C-0145/en.

Gigue de sortie (voir la Note 1): $f_1 = 10 \text{ Hz}$

 $f_3 = 100 \text{ kHz}$

 $f_4 = 1/10$ fréquence d'horloge

A1 = 0.135 IUA2 = 0.135 IU

La gigue d'entrée est à définir. La gigue d'entrée est mesurée avec un câble court (2 m).

NOTE 1 – Les spécifications et les méthodes de mesure de la gigue doivent être conformes à la Recommandation UIT-R BT.1363.

4.5 Interface série pour un mode de fonctionnement à liaison double pour les systèmes 60/P et 50/P

Elle comprend deux interconnexions unidirectionnelles entre un dispositif et un autre. Ces interconnexions acheminent les données correspondant au signal de télévision haute définition ainsi que les données associées. On les appelle les liaisons A et B. Le terme «liaison» est utilisé pour définir un train binaire série dont le format est conforme aux spécifications du § 4. Le débit de données total de l'interface à deux liaisons est de 2,970 Gbit/s ou de 2,970/1,001 Gbit/s.

4.5.1 Numérotation des échantillons source

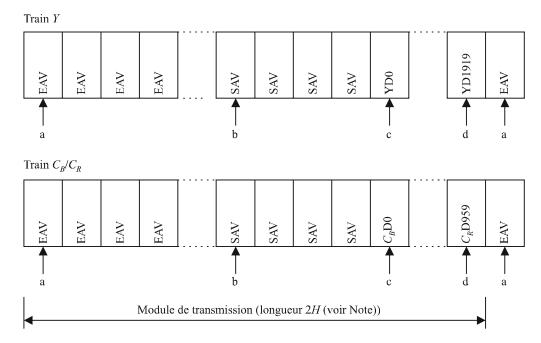
Chaque ligne de la composante Y est constituée d'un nombre total de 2640 (système 50/P) ou 2200 (système 60/P) échantillons, et chaque ligne des composantes C_B et C_R comprend un nombre total de 1320 (système 50/P) ou 1100 (système 60/P) échantillons, comme on l'indique dans le Tableau 11. Les échantillons sont numérotés de 0 à 2639 ou de 0 à 2199 pour la composante Y, et de 0 à 1319 ou de 0 à 1099 pour les composantes C_B et C_R . Cette numérotation se fait à l'aide d'un suffixe (échantillon Y135 ou C_B 429 par exemple).

4.5.2 Trains de données de l'interface et structure de multiplexage

Les données vidéo sont réparties entre deux trains de données acheminés sur les liaisons A et B. Le train de données série d'une liaison est formé de deux canaux, un premier canal Y et un second canal C_B/C_R . Les données sont réparties entre ces canaux. Le terme «canal» est employé pour définir la manière dont ces deux canaux sont utilisés.

La mise en correspondance des données créées par la structure d'échantillonnage d'image 4:2:2 est illustrée sur les Fig. 15 et 16. Chaque ligne de l'image source est successivement associée à la liaison A ou B de l'interface à deux liaisons.

4.5.3 Signaux de référence temporelle et numéros de ligne


Les bits F (trame/image), V (vertical), H (horizontal) et P3, P2, P1, P0 (parité), ainsi que les numéros de ligne d'interface des liaisons A et B doivent être conformes aux indications des Fig. 15 et 16.

NOTE 1 – Ce processus nécessite, à chaque interface, une mise en mémoire d'une durée minimale égale à la durée d'une ligne horizontale. On a ainsi un retard de transmission minimum égal à la durée de deux lignes horizontales.

NOTE 2 – La Fig. 15 indique la façon dont les signaux de luminance et de différence de couleur sont multiplexés dans un module de transmission.

FIGURE 15

Train binaire horizontal multiplexé

Note – H est la période d'une ligne des signaux à balayage progressif 60, 60/1.001 et 50 Hz d'origine. conformément aux spécifications de la Recommandation UIT-R BT.709, Partie 2.

1120-15

La Fig. 15 se rapporte à une structure de données à balayage progressif 4:2:2.

E	Nombre total de	Nombre total de mots	Numéro de mot				
Fréquence d'image	mots par module de transmission	dule de données d'image		b	c	d	
60 (60/1,001)	2200	1920	1920	2196	0	1919	
50	2640	1920	1920	2636	0	1919	

FIGURE 16 Numérotation et groupement des lignes pour l'interface à deux liaisons

Numéro de ligne de l'image source initiale (voir la Note 1)

			<u> </u>	Numéro de ligne de l'interface numérique (voir la Note 2)
		Liaison A	Liaison B	↓
		2	3	1
	Suppression de trame numérique $(V = 1)$			
Trame numérique		40	41	20
(F = 0)	Trame numérique	42	43	21
(Nombre total de lignes:	active $(V = 0)$			
563 × 2)	(v – 0)	1120	1121	560
		1122	1123	561
		1124	1125	562
	Suppression de	1	2	563
	trame numérique $(V = 1)$	3	4	564
Trame numérique (F = 1)	e N° 2	41	42	583
(Nombre total	Trame numérique	43	44	584
de lignes: 562 × 2)	active $(V = 0)$			
		1121	1122	1123
	Suppression de	1123	1124	1124
	trame numérique (V = 1)	1125	1	1125

Note 1 – Il s'agit des numéros de ligne d'une image de 1 125 lignes prise en mode de balayage progressif et définie dans la Recommandation UIT-R BT.709, Partie 2.

Note 2 – Les numéros de ligne d'une image numérique de 1 125 lignes prise en mode de balayage entrelacé sont définis dans la Recommandation UIT-R BT.709, Partie 2. Le numéro de la ligne acheminée sur l'interface doit être celui de l'interface et non celui de l'image source.

1120-1

4.5.4 Considérations liées au rythme du signal

La différence de rythme binaire entre les liaisons A et B ne devrait pas être supérieure à 40 ns au niveau de la source.

4.5.5 Identification des liaisons A et B

Les liaisons A et B doivent être identifiées par l'identificateur de charge utile conformément aux prescriptions de la Recommandation UIT-R BT.1614 et aux définitions du Tableau 29. Les liaisons A et B doivent respectivement correspondre aux canaux 1 et 2 de la spécification.

TABLEAU 29

Définitions associées à l'identificateur de charge vidéo d'une image 1920 × 1080 acheminée sur une interface numérique haute définition à deux liaisons

Bits	Octet 1	Octet 2	Octet 3	Octet 4
Bit 7	1	Transport en mode de balayage entrelacé (0) ou progressif (1)	Réservé	Réservé
Bit 6	0	Image prise en mode de balayage entrelacé (0) ou progressif (1)	Réservé	Assignation de canal pour chacune des deux liaisons Ch1 (0) ou Ch2 (1)
Bit 5	0	Réservé	Réservé	Réservé
Bit 4	0	Réservé	Réservé	Gamme dynamique
Bit 3	0			100% (0h), 200% (1h), 400% (2h), Réservé (3h)
Bit 2	1	T / 11'	Structure	Réservé
Bit 1	1	Fréquence d'image	d'échantillonnage	Résolution:
Bit 0	Bit 0 1			8 bits (0h), 10 bits (1h), 12 bits (2h), Réservé (3h)

4.5.6 Données auxiliaires

Les données auxiliaires doivent être placées dans la zone de suppression des liaisons A et B et doivent être conformes aux prescriptions de la Recommandation UIT-R BT.1364. Cette insertion doit se faire d'abord pour la liaison A, puis pour la liaison B.

4.5.7 Données audio

Les données audio doivent être placées dans l'espace des données auxiliaires des liaisons A et B et doivent être conformes aux prescriptions de la Recommandation UIT-R BT.1365. Cette insertion doit se faire d'abord pour la liaison A, puis pour la liaison B.

- Exemple 1: Lorsque 12 canaux de données audio sont associés à une interface à deux liaisons, ceux-ci doivent tous être insérés sur la liaison A – il est interdit d'associer 8 canaux à la liaison A et 4 canaux à la liaison B.
- Exemple 2: Lorsque 20 canaux de données audio sont associés à une interface à deux liaisons, 16 doivent être insérés sur la liaison A et 4 doivent être insérés sur la liaison B.

4.5.8 Code temporel

Le code temporel doit être placé dans l'espace des données auxiliaires des liaisons A et B et doit être conforme aux prescriptions de la Recommandation UIT-R BT.1366. Cette insertion doit se faire d'abord pour la liaison A, puis pour la liaison B.

4.5.9 Applications associées à l'interface numérique série à deux liaisons

On trouvera dans l'Appendice 1 la description de certaines applications TVHD de l'interface numérique série haute définition à deux liaisons pour d'autres formats de signal.

Appendice 1 à la Partie 2

Applications associées à l'interface numérique série haute définition à deux liaisons

L'interface numérique série haute définition à deux liaisons peut également être utilisée pour acheminer les formats de signal source TVHD énumérés dans le Tableau 30.

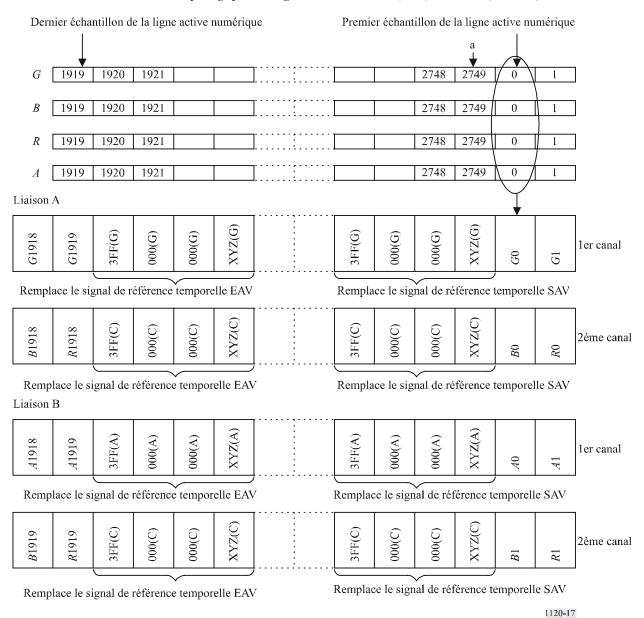
TABLEAU 30

Format de signal source TVHD

Structure d'échantillonnage du format de signal	Résolution	Fréquence d'image/de trame
4:4:4 (<i>RGB</i>)	10 bits	
4:4:4:4 (RGB + A)	TO DIES	Image segmentée à balayage
4:4:4 (<i>RGB</i>)	12 bits	progressif 30, 30/1,001, 25, 24 et
$4:2:2 (YC_BC_R)$	12 bits	24/1,001 Hz
$4:4:4 (YC_BC_R)$	10 bits	Trames à balayage entrelacé 60,
$4:4:4:4 (YC_BC_R + A)$	TO DIES	60/1,001 et 50 Hz
$4:4:4 (YC_BC_R)$	12 bits	

NOTE – La composante «A» est un signal auxiliaire défini par l'utilisateur suivant l'application considérée. Lorsque cette composante n'est pas utilisée pour des données d'image, le nombre de bits du signal auxiliaire est limité à un maximum de 8.

1 Signaux à 10 bits 4:4:4 (*RGB*) ou 4:4:4:4 (*RGB* + *A*) d'un système 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P ou 24/PsF


1.1 Numérotation des échantillons source

Chaque ligne des composantes G, B, R et A comprend un nombre total de 2750, 2640 ou 2200 échantillons (voir le Tableau 11), numérotés respectivement de 0 à 2749, de 0 à 2639 ou de 0 à 2199, à l'aide d'un suffixe (échantillon G135 ou B429 par exemple).

1.2 Trains de données de l'interface

Le train de données de la liaison A contient tous les échantillons de la composante *G* ainsi que les échantillons de numéro pair (0, 2, 4, etc.) des composantes *B* et *R*. Le train de données de la liaison B contient les échantillons de numéro impair (1, 3, 5, etc.) des composantes *B* et *R* ainsi que tous les échantillons de la composante A (voir la Fig. 17).

FIGURE 17 Structure de multiplexage pour les signaux à 10 bits: 4:4:4 (RGB) ou 4:4:4:4 (RGB+A)

Fréquence d'image/ de trame	Résolution	Nombre total de mots par module de transmission	Nombre total de mots de données d'image active par module de transmission	Numéro du mot a
60 ou 60/1,001 (trames), 30 ou 30/1,001 (images)	10 bits	2200	1920	2199
50 (trames), 25 (images)	10 bits	2640	1920	2639
24 ou 24/1,001 (images)	10 bits	2750	1920	2749

1.3 Structure de multiplexage

Les mots de données vidéo doivent être acheminés dans l'ordre décrit ci-après (voir la Fig. 18). Train de données de la liaison A: *B*0, *G*0, *R*0, *G*1, *B*2, *G*2, *R*2, *G*3 ...

Train de données de la liaison B: B1, A0, R1, A1, B3, A2, R3, A3 ...

 ${\bf FIGURE~18}$ Contenu des liaisons pour les signaux à 10 bits: 4:4:4 (RGB) ou 4:4:4:4 (RGB+A)

	Numéro de l'échantillon					
	0	1	2	3	4	5
	G	G	G	G	G	G
Liaison A	B	В	В	В	B	В
	R	R	R	R	R	R
Liaison B	A	A	A	A	A	A
						1120-18

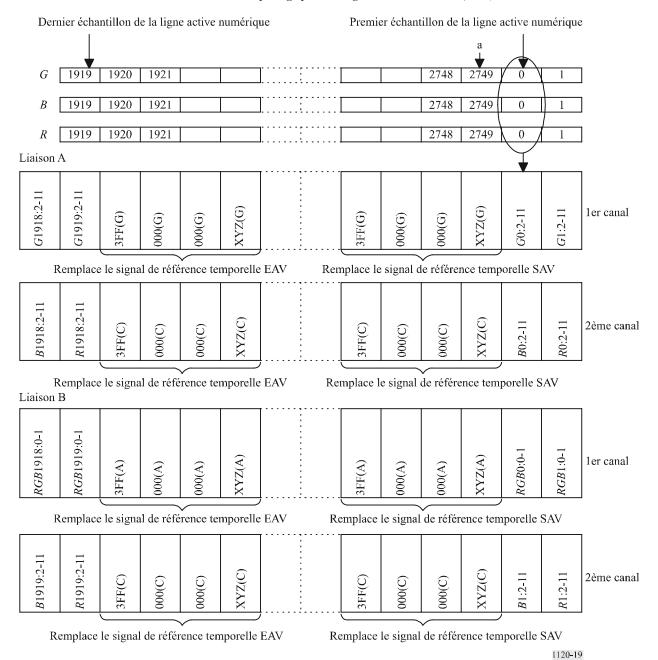
1.4 Signal auxiliaire

L'utilisation du signal auxiliaire (A) dépend de l'application considérée.

Si le signal auxiliaire est absent, la composante auxiliaire doit être fixée à la valeur par défaut 64_h. S'il est utilisé pour acheminer des informations ayant trait à l'image, le signal auxiliaire doit avoir le même format de grille et les mêmes fréquences d'image/de trame que celles des composantes *RGB* acheminées sur l'interface. S'il est utilisé pour acheminer des informations n'ayant pas trait à l'image, le signal auxiliaire doit être formé de mots de données d'au maximum 8 bits.

Les valeurs de données 000_h à 003_h et $3FC_h$ à $3FF_h$ sont interdites.

2 Signaux à 12 bits 4:4:4 (*RGB*) d'un système 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P ou 24/PsF


2.1 Numérotation des échantillons source

Chaque ligne des composantes *G*, *B* et *R* comprend un nombre total de 2750, 2640 ou 2200 échantillons (voir le Tableau 11), numérotés respectivement de 0 à 2749, de 0 à 2639 ou de 0 à 2199, à l'aide d'un suffixe (échantillon *G*135 ou *B*429 par exemple). Il s'agit d'échantillons quantifiés sur 12 bits, au moyen par exemple des équations de codage numérique figurant dans la Recommandation UIT-R BT.1361. Les dix bits les plus significatifs sont désignés par un suffixe (échantillon *G*135:2-11 ou *B*429:2-11 par exemple), les 2 bits les moins significatifs étant également indiqués par un suffixe (échantillon *G*135:0-1 ou *B*429:0-1 par exemple). Les deux bits les moins significatifs des composantes *R*, *G* et *B* sont placés dans le 1er canal de la liaison B et sont indiqués par un suffixe (*RGB*135:0-1 par exemple). Le *n*ième bit d'une composante *R*, *G* ou *B* est désigné par un suffixe (*G:n* par exemple). La structure de données *RGB*:0-1 est définie au § 2.3.

2.2 Trains de données de l'interface

Le train de données de la liaison A contient les 10 bits les plus significatifs de tous les échantillons de la composante G ainsi que les 10 bits les plus significatifs des échantillons de numéro pair (0, 2, 4, etc.) des composantes B et R. Le train de données de la liaison B contient les 10 bits les plus significatifs des échantillons de numéro impair (1, 3, 5, etc.) des composantes B et R ainsi que les 2 bits les moins significatifs de tous les échantillons des composantes R, G et B (voir la Figure 19).

FIGURE 19 Structure de multiplexage pour les signaux à 12 bits 4:4:4 (*RGB*)

Fréquence d'image/ de trame	Résolution	Nombre total de mots par module de transmission	Nombre total de mots de données d'image active par module de transmission	Numéro du mot a
60 ou 60/1,001 (trames), 30 ou 30/1,001 (images)	12 bits	2200	1920	2199
50 (trames), 25 (images)	12 bits	2640	1920	2639
24 ou 24/1,001 (images)	12 bits	2750	1920	2749

2.3 Insertion des données RGB:0-1 sur le premier canal de la liaison B

La structure d'insertion des deux bits les moins significatifs des composantes R, G ou B sur le premier canal de la liaison B est indiquée dans le Tableau 31.

TABLEAU 31 Structure d'insertion des données *RGB*:0-1 sur le premier canal de la liaison B

				Nu	méro de	bit				
Mad	9	8	7	6	5	4	3	2	1	0
Mot	(MSB)									(LSB)
	B8	EP	G:1	G:0	B:1	B:0	R:1	R:0	Res	Res

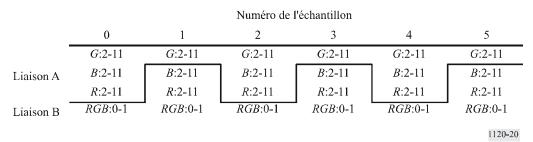
MSB: bit le plus significatif.

LSB: bit le moins significatif.

Bit 8: bit de parité pour les Bit 7 à 0.

Bit 9: complément du Bit 8.

Bit 0 et Bit 1: bits réservés (les bits réservés doivent être mis à zéro en attendant d'être définis).


2.4 Structure de multiplexage

Les mots de données vidéo doivent être acheminés dans l'ordre décrit ci-après (voir la Fig. 20).

Train de données de la liaison A: *B*0:2-11, *G*0:2-11, *R*0:2-11, *G*1:2-11, *B*2:2-11, *G*2:2-11, *R*2:2-11, *G*3:2-11 ...

Train de données de la liaison B: *B*1:2-11, *RGB*0:0-1, *R*1:2-11, *RGB*1:0-1, *B*3:2-11, *RGB*2:0-1, *R*3:2-11, *RGB*3:0-1 ...

FIGURE 20
Contenu des liaisons pour les signaux à 12 bits 4:4:4 (RGB)

3 Signaux à 12 bits 4:2:2 (YC_BC_R) d'un système 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P ou 24/PsF

3.1 Numérotation des échantillons source

Chaque ligne de la composante Y comprend un nombre total de 2750, 2640 ou 2200 échantillons et chaque ligne des composantes C_B et C_R comprend un nombre total de 1375, 1320 ou 1100 échantillons, comme indiqué dans le Tableau 11. Ces échantillons sont numérotés de 0 à 2749, de 0 à 2639 ou de 0 à 2199 pour la composante Y et de 0 à 1374, de 0 à 1319 ou 0 à 1099 pour les composantes C_B et C_R . Cette numérotation se fait à l'aide d'un suffixe (échantillon Y135 ou C_B 429

par exemple). Il s'agit d'échantillons quantifiés sur 12 bits, au moyen par exemple des équations de codage numérique figurant dans la Recommandation UIT-R BT.1361. Les dix bits les plus significatifs sont désignés par un suffixe (échantillon Y135:2-11 ou $C_B429:2-11$ par exemple), les 2 bits les moins significatifs étant également indiqués par un suffixe (échantillon Y135:0-1 ou $C_B429:0-1$ par exemple). Les deux bits les moins significatifs des composantes Y, C_B et C_R sont placés dans le premier canal de la liaison B et sont indiqués par un suffixe ($YC_BC_R135:0-1$ ou Y136:0-1 par exemple). Le $n^{\text{ième}}$ bit d'une composante Y, C_B ou C_R est désigné par un suffixe (Y:n par exemple). Les structures de données $YC_BC_R:0-1$ et Y:0-1 sont définies au § 3.3.

3.2 Trains de données de l'interface

Le train de données de la liaison A contient les 10 bits les plus significatifs de tous les échantillons de la composante Y ainsi que les 10 bits les plus significatifs des échantillons de numéro pair des composantes C_R et C_R . Le train de données de la liaison B contient les 2 bits les moins significatifs des composantes Y, C_R et C_R aux points de numéro pair, les 2 bits les moins significatifs de la (seule) composante Y aux points de numéro impair ainsi que les échantillons de la composante X (voir la Fig. 21).

3.3 Insertion des données YC_BC_R :0-1 et Y:0-1 sur le premier canal de la liaison B

Les structures d'insertion des deux bits les moins significatifs des échantillons de numéro pair des composantes Y, C_B et C_R et des 2 bits les moins significatifs des échantillons de numéro impair de la (seule) composante Y sur le premier canal de la liaison B sont illustrées par les Tableaux 32 et 33 et par la Fig. 22.

TABLEAU 32 Structure d'insertion des données YC_BC_R :0-1 sur le premier canal de la liaison B

	Numéro de bit									
Mot	9	8	7	6	5	4	3	2	1	0
Mot	(MSB)									(LSB)
	Bit8	EP	Y:1	Y:0	CB:1	CB:0	CR:1	CR:0	Res	Res

MSB: bit le plus significatif.

LSB: bit le moins significatif.

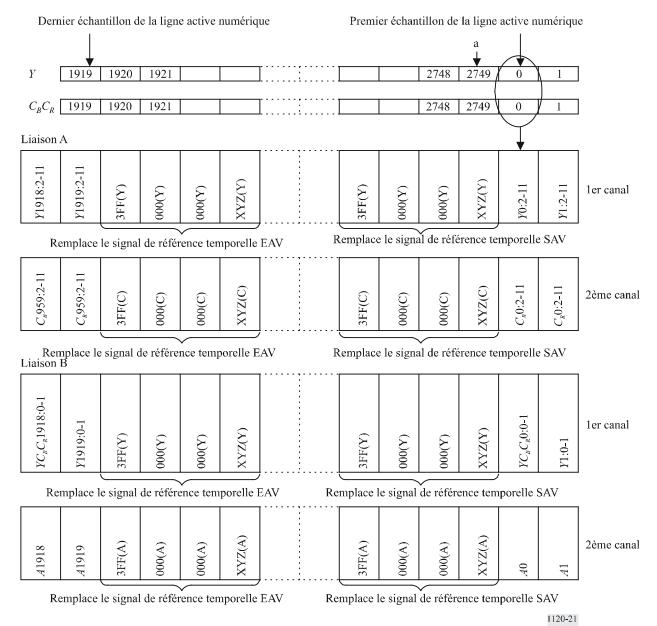
Bit 8: bit de parité pour les Bits 7 à 0.

Bit 9: complément du Bit 8.

Bit 0 et Bit 1: bits réservés (les bits réservés doivent être mis à zéro en attendant d'être définis).

TABLEAU 33
Structure d'insertion des données Y:0-1 sur le premier canal de la liaison B

					Numéro d	e bit				
Mot	9 (MSB)	8	7	6	5	4	3	2	1	0 (LSB)
	Bit8	EP	<i>Y</i> :1	Y:0	Res	Res	Res	Res	Res	Res


MSB: bit le plus significatif.

LSB: bit le moins significatif.

Bit 8: bit de parité pour les Bits 7 à 0.

Bit 9: complément du Bit 8.

Bit 0 et Bit 1: bits réservés (les bits réservés doivent être mis à zéro en attendant d'être définis).

Fréquence d'image/ de trame	Résolution	Nombre total de mots par module de transmission	Nombre total de mots de données d'image active par module de transmission	Numéro du mot a
60 ou 60/1,001 (trames), 30 ou 30/1,001(images)	12 bits	2200	1920	2199
50 (trames), 25 (images)	12 bits	2640	1920	2639
24 ou 24/1,001 (images)	12 bits	2750	1920	2749

3.4 Structure de multiplexage

Les mots de données vidéo doivent être acheminés dans l'ordre décrit ci-après (voir la Fig. 22).

Train de données de la liaison A: $C_B0:2-11$, Y0:2-11, $C_R0:2-11$, Y1:2-11, $C_B2:2-11$, Y2:2-11, $C_R2:2-11$, Y3:2-11 ...

Train de données de la liaison B: A0, $YC_BC_R0:0-1$, A1, Y1:0-1, A2, $YC_BC_R2:0-1$, A3, Y3:0-1 ...

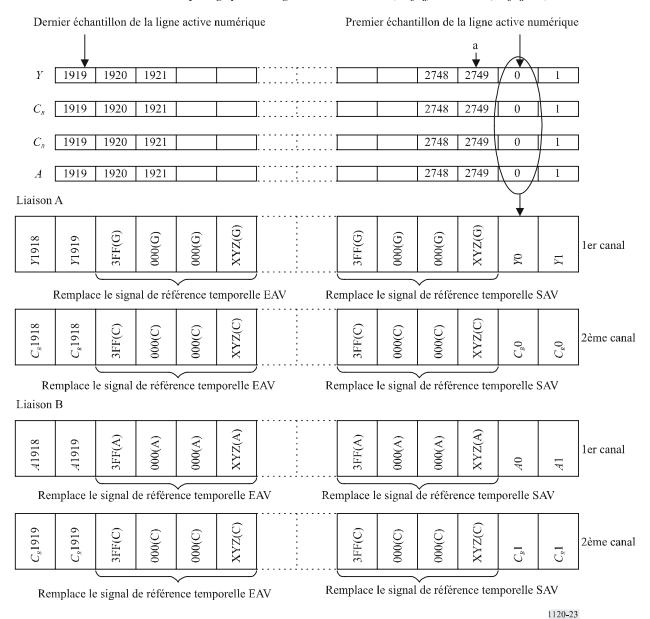
FIGURE 22 Contenu des liaisons pour les signaux à 12 bits: 4:2:2 (YC_BC_B)

		Numéro de	l'échantillon		
	0	1	2	3	
	Y:2-11	Y:2-11	Y:2-11	Y:2-11	
Liaison A	C_{s} :2-11		C_{B} :2-11		
	C_R :2-11		C_R :2-11		
Liaison B	$YC_{\scriptscriptstyle B}C_{\scriptscriptstyle R}$:0-1	<i>Y</i> :0-1	$YC_{\scriptscriptstyle B}C_{\scriptscriptstyle R}$:0-1	Y:0-1	■ 1er canal
	A	A	A	A	→ 2ème canal
				1120-2	2

3.5 Signal auxiliaire

Voir le § 1.4.

4 Signaux à 10 bits 4:4:4 (YC_BC_R) ou 4:4:4:4 ($YC_BC_R + A$) d'un système 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P ou 24/PsF


4.1 Numérotation des échantillons source

Chaque ligne des composantes Y, C_B , C_R et A comprend un nombre total de 2 750, 2 640 ou 2 200 échantillons, numérotés de 0 à 2 749, de 0 à 2 639 ou de 0 à 2 199, à l'aide d'un suffixe (échantillon Y135 ou C_B 429 par exemple).

4.2 Trains de données de l'interface

Le train de données de la liaison A contient tous les échantillons de la composante Y ainsi que les échantillons de numéro pair (0, 2, 4, etc.) des composantes C_B et C_R . Le train de données de la liaison B contient les échantillons de numéro impair (1, 3, 5, etc.) des composantes C_B et C_R ainsi que tous les échantillons de la composante A (voir la Fig. 23).

FIGURE 23 Structure de multiplexage pour les signaux à 10 bits 4:4:4 (YC_BC_R) ou 4:4:4:4 ($YC_BC_R + A$)

Fréquence d'image/ de trame	Résolution	Nombre total de mots par module de transmission	Nombre total de mots de données d'image active par module de transmission	Numéro du mot a
60 ou 60/1,001 (trames), 30 ou 30/1,001 (images)	10 bits	2200	1920	2199
50 (trames), 25 (images)	10 bits	2640	1920	2639
24 ou 24/1,001 (images)	10 bits	2750	1920	2749

4.3 Structure de multiplexage

Les mots de données vidéo doivent être acheminés dans l'ordre décrit ci-après (voir la Fig. 24).

Train de données de la liaison A: C_B0 , Y0, C_R0 , Y1, C_B2 , Y2, C_R2 , Y3 ...

Train de données de la liaison B: C_R1 , A0, C_R1 , A1, C_R3 , A2, C_R3 , A3 ...

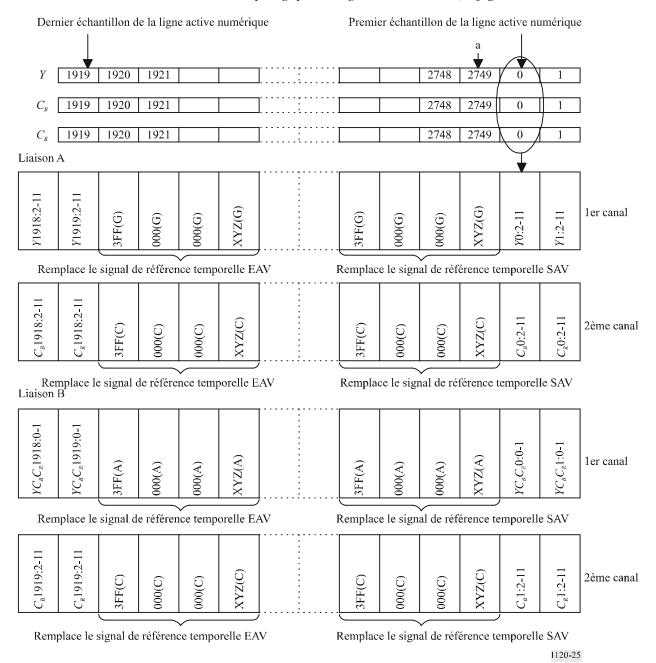
FIGURE 24 Contenu des liaisons pour les signaux à 10 bits 4:4:4 (YC_BC_R) ou 4:4:4:4 ($YC_BC_R + A$)

	Numéro de l'échantillon					
	0	1	2	3	4	5
	Y	Y	Y	Y	Y	Y
Liaison A	$C_{\scriptscriptstyle \mathcal{B}}$	$C_{\scriptscriptstyle B}$				
	$C_{\scriptscriptstyle R}$	$C_{\scriptscriptstyle R}$	$C_{\scriptscriptstyle R}$	$C_{\scriptscriptstyle R}$	$C_{\scriptscriptstyle R}$	$C_{\scriptscriptstyle R}$
Liaison B	A	A	A	A	A	A
						1120-24

4.4 Signal auxiliaire

Voir le § 1.4.

Signaux à 12 bits 4:4:4 (YC_BC_R) d'un système 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P ou 24/PsF


5.1 Numérotation des échantillons source

Chaque ligne des composantes Y, C_B et C_R comprend un nombre total de 2750, 2640 ou 2200 échantillons, numérotés respectivement de 0 à 2749, de 0 à 2639 ou de 0 à 2199, à l'aide d'un suffixe (échantillon Y135 ou C_B 42 par exemple). Il s'agit d'échantillons quantifiés sur 12 bits, au moyen par exemple des équations de codage numérique figurant dans la Recommandation UIT-R BT.1361. Les dix bits les plus significatifs sont désignés par un suffixe (échantillon Y135:2-11 ou C_B 429:2-11 par exemple), les 2 bits les moins significatifs étant également indiqués par un suffixe (échantillon Y135:0-1 ou C_B 429:0-1 par exemple). Les deux bits les moins significatifs des composantes Y, C_B et C_R sont placés dans le 1er canal de la liaison B et sont indiqués par un suffixe (YC $_B$ C $_R$ 135:0-1 par exemple). Le n1 bit d'une composante Y0 c $_B$ 2 est désigné par un suffixe (YC $_B$ 135:0-1 par exemple). La structure de données YC $_B$ 2.0-1 est définie conformément aux prescriptions du § 3.3.

5.2 Trains de données de l'interface

Le train de données de la liaison A contient les 10 bits les plus significatifs de tous les échantillons de la composante Y ainsi que les 10 bits les plus significatifs des échantillons de numéro pair (0, 2, 4, etc.) des composantes C_B et C_R . Le train de données de la liaison B contient les 10 bits les plus significatifs des échantillons de numéro impair (1, 3, 5, etc.) des composantes C_B et C_R ainsi que les 2 bits les moins significatifs de tous les échantillons des composantes Y, C_B et C_R (voir la Fig. 25).

Fréquence d'image/ de trame	Résolution	Nombre total de mots par module de transmission	Nombre total de mots de données d'image active par module de transmission	Numéro du mot a
60 ou 60/1,001 (trames), 30 ou 30/1,001 (images)	12 bits	2200	1920	2199
50 (trames), 25 (images)	12 bits	2640	1920	2639
24 ou 24/1,001 (images)	12 bits	2750	1920	2749

5.3 Structure de multiplexage

Les mots de données vidéo doivent être acheminés dans l'ordre décrit ci-après (voir la Fig. 26).

Train de données de la liaison A: $C_B0:2-11$, Y0:2-11, $C_R0:2-11$, Y1:2-11, $C_B2:2-11$, Y2:2-11, $C_R2:2-11$, Y3:2-11 ...

Train de données de la liaison B: $C_B1:2-11$, $YC_BC_R0:0-1$, $C_R1:2-11$, $YC_BC_R1:0-1$, $C_B3:2-11$, $YC_BC_R2:0-1$, $C_R3:2-11$, $YC_BC_R3:0-1$...

FIGURE 26 Contenu des liaisons pour des signaux à 12 bits 4:4:4 ($YC_{B}C_{R}$)

	Numéro de l'échantillon					
	0	1	2	3	4	5
•	Y:2-11	<i>Y</i> :2-11	Y:2-11	Y:2-11	Y:2-11	Y:2-11
Liaison A	$C_{\scriptscriptstyle B}$:2-11	$C_{\scriptscriptstyle B}$:2-11	$C_{\scriptscriptstyle B}$:2-11	$C_{\scriptscriptstyle B}$:2-11	C_{B} :2-11	$C_{\scriptscriptstyle B}$:2-11
	C_{R} :2-11	C_R :2-11	C_R :2-11	C_R :2-11	C_R :2-11	C_R :2-11
Liaison B	YC_BC_R :0-1	YC_BC_R :0-1	YC_BC_R :0-1	$YC_{\scriptscriptstyle B}C_{\scriptscriptstyle R}$:0-1	YC_BC_R :0-1	YC_BC_R :0-1

1120-26

Appendice 2 à la Partie 2

Autres applications de TVHD à liaison unique à 2,97 Gbit/s

L'interface numérique série (nominale) à 2,97 Gbit/s peut aussi être utilisée pour acheminer les formats de signal source TVHD énumérés dans le Tableau 30.

Les mappages des signaux définis dans le Tableau 30 figurent dans l'Appendice 1 à la Partie 2. Pour utiliser les mêmes mappages pour l'application à liaison unique, il convient de procéder comme suit:

1 Conversion liaison double en liaison unique

Cette conversion est transparente et réversible.

1.1 Multiplexage liaison A, liaison B

Pour assurer la conversion transparente d'un mode de fonctionnement à liaison double en un mode de fonctionnement à liaison unique, il convient de multiplexer les données de la liaison A avec les données de la liaison B, comme le montre la Fig. 27.

FIGURE 27

Multiplexage liaison double - liaison unique Données Données CRC 0 CRC 1 000 000 ΥXZ 000 000 ΥXZ Données de la liaison A Ligne N°0 Ligne N°1 CRC 0 Données Données CRC 1 3FF 000 000 7XZ ΥXZ 000 Flux de données igne N°1 (B) Ligne N°0 (B) Ligne N°0 (A) Ligne N°1 (A) CRC 1 (B) CRC 1 (A) CRC 0 (A) Données (A) Données (B) Donnés (B) Donnés (A) CRC 0 (B) Data (B) XYZ (B) 000 (A) XYZ (B) 3FF (B) 3FF (A) 000 (B) 000 (A) 000 (B) 000 (A) XYZ (A) 000 (B) XYZ (A) (B) 000 (B) 000 (A) 3FF (3FF (EAV LN CRC SAV 1120-27

Annexe 1

Trame de contrôle à utiliser dans les interfaces numériques série de TVHD

1 Domaine d'application

La présente Annexe spécifie les signaux numériques de test adaptés pour évaluer la réponse basse fréquence d'appareils traitant des signaux vidéonumériques série de TVHD. Divers signaux produiront les effets basse fréquence souhaités, mais deux signaux spécifiques sont définis pour tester respectivement l'égaliseur de câble et la PLL. Par le passé, ces deux signaux ont été communément appelés «signaux pathologiques».

2 Généralités

Pour solliciter l'égaliseur automatique, on utilise un signal dont le nombre de 1 ou de 0 est maximal et dont les impulsions de période d'horloge au niveau opposé sont isolées et rares. Pour solliciter la PLL, on utilise un signal dont le contenu basse fréquence est maximal, c'est-à-dire pour lequel les durées entre les transitions de niveau sont maximales.

2.1 Le codage de voie appliqué au signal numérique série défini dans la présente Recommandation utilise un embrouillage et un codage sous forme NRZI réalisés par la concaténation des deux fonctions suivantes:

$$G1(x) = x^9 + x^4 + 1$$
 $G2(x) = x + 1$

Le codage de voie permet d'obtenir de longues séries de zéros dans les données de sortie du polynôme G2 (x) lorsque l'embrouilleur, G1 (x), se trouve dans un certain état au moment où des mots spécifiques arrivent. L'état en question sera présent de manière régulière; par conséquent, l'application continuelle des mots de données spécifiques permettra de produire de manière régulière les effets basse fréquence.

- 2.2 La plus longue série de zéros dans les données parallèles (40 zéros consécutifs) se produira avec les mots des séquences de référence temporelle EAV et SAV, mais la fréquence à laquelle l'embrouillage de ces mots coïncide avec l'état requis de l'embrouilleur pour engendrer l'une ou l'autre condition de sollicitation est faible. Lorsque cette coïncidence se produit, la génération de la condition de sollicitation est tellement limitée dans le temps que les égaliseurs et les boucles à verrouillage de phase ne sont pas sollicités au maximum.
- 2.3 Dans les parties de données des signaux vidéonumériques (les mots des séquences EAV et SAV ainsi que les mots de fanions de données ANC étant exclus), les valeurs d'échantillon sont restreintes à tous les niveaux de données sauf 0,00 à 0,75 et 255,00 à 255,75 (000_h à 003_h et $3FC_h$ à $3FF_h$ en représentation hexadécimale sur 10 bits et $00,0_h$ à $00,C_h$ et $FF,0_h$ à FF,C_h en notation hexadécimale 8.2) (voir la Note 1). Cette restriction a pour conséquence que la plus longue série de zéros, à l'entrée de l'embrouilleur, est de 16 (bits), série qui se produit lorsqu'une valeur d'échantillon 128,00 (200_h ou $80,0_h$) est suivie par une valeur comprise entre 1,00 (004_h ou $01,0_h$) et 1,75 (007_h ou $01,C_h$). Dans ce cas, 26 zéros consécutifs au maximum peuvent être produits à la sortie NRZI, ce qui ne correspond pas (non plus) à une sollicitation maximale.
- NOTE 1 Dans le cadre de la présente Annexe, le contenu du mot numérique est conjointement exprimé sous forme décimale et hexadécimale. Sous forme décimale, les 8 MSB sont considérés comme constituant la partie entière, les deux derniers bits formant la partie décimale. Sous forme hexadécimale, les deux notations hexadécimale sur 10 bits et hexadécimale 8.2 sont utilisées. Ainsi la séquence binaire 1001000101 serait notée 145,25, 245_h ou 91,4_h.
- **2.4** D'autres mots de données spécifiques combinés à des états d'embrouilleur spécifiques peuvent produire un signal de sortie série basse fréquence répétitif jusqu'à ce que la séquence EAV ou SAV suivante affecte l'état de l'embrouilleur. Ce sont ces combinaisons de mots de données qui constituent la base des signaux de test définis ici.
- 2.5 Compte tenu de l'entrelacement Y/C des signaux numériques en composantes, il est possible d'obtenir pratiquement toutes les permutations possibles de valeurs de données de couples de mots sur l'ensemble de la zone d'image active en définissant une trame de couleur uniforme donnée dans un environnement sans bruit. Certaines permutations de ces valeurs produiront les effets basse fréquence souhaités.

3 Données de la trame de contrôle

3.1 L'égaliseur du récepteur est testé grâce à la production d'un signal numérique série dont le contenu continu est maximal. En appliquant la séquence 192,00 (300_h ou $C0,0_h$), 102,00 (198_h ou $66,0_h$) de façon continue aux échantillons C et Y (respectivement) pendant la ligne active, on produit un signal comportant 19 états consécutifs de niveau élevé (de bas niveau) suivis par un état de bas niveau (de niveau élevé) et ce, de manière répétitive, une fois que l'embrouilleur a atteint l'état de départ requis. L'une ou l'autre polarité du signal peut être obtenue, elle est indiquée par le niveau des 19 états consécutifs. En produisant environ la moitié d'une trame de lignes continues contenant cette séquence, on obtient l'état de départ requis pour l'embrouilleur sur plusieurs lignes et la condition souhaitée pour le test de l'égaliseur est alors générée.

- 3.2 La PLL du récepteur est testée grâce à la production d'un signal numérique série dont le contenu basse fréquence est maximal et le contenu haute fréquence minimal (c'est-à-dire pour lequel la fréquence des transitions de niveau est la plus faible). En appliquant la séquence 128,00 (200_h ou 80,0_h), 68,00 (110_h ou 44,0_h) de manière continue aux échantillons *C* et *Y* (respectivement) pendant la ligne active, on produit un signal comportant 20 états consécutifs de niveau élevé (de bas niveau) suivis par 20 états de bas niveau (de niveau élevé) et ce, de manière répétitive, une fois que l'embrouilleur a atteint l'état de départ requis. En produisant environ la moitié d'une trame de lignes continues contenant cette séquence, on obtient l'état de départ requis pour l'embrouilleur sur plusieurs lignes et la condition souhaitée pour le test de la PLL de phase est alors générée.
- 3.3 Pour le test de l'égaliseur, il faut produire un signal numérique série avec une polarisation en continu, il faut donc s'assurer que les deux polarités de cette polarisation sont obtenues. Pour changer la polarité de cette polarisation d'une image à la suivante, la somme totale de tous les bits contenus dans tous les mots de données de toutes les lignes d'une trame vidéo doit être impaire.

Pour garantir que la polarité de la polarisation peut changer souvent, on remplace la valeur 120,00 (198_h ou $66,0_h$) d'un seul mot de données d'échantillon Y par la valeur 100,00 (190_h ou $64,0_h$) (modification nette d'un bit de données), pour une image sur deux. Ceci permet à la polarité de la polarisation d'alterner à la fréquence d'image, que la somme des bits de l'image d'origine soit paire ou impaire. Le mot de données dans lequel la valeur est remplacée est le premier échantillon Y de la première ligne active d'une image sur deux. Le mot et la ligne spécifiques correspondant à chaque format de signal sont énumérés dans le Tableau 34 (mot de commande de polarité).

3.4 Les séquences 192,00 (300_h ou $C0,0_h$), 102,00 (198_h ou $66,0_h$) et 128,00 (200_h ou $80,0_h$), 68,00 (110_h ou $44,0_h$) appliquées aux échantillons C et Y se traduisent respectivement par des nuances de violet et de gris. L'inversion de l'ordre des échantillons C et Y pour chacune de ces deux séquences conduit respectivement à des nuances plus claires et à des nuances plus foncées de vert. Le Tableau 34 illustre un seul ordre pour chacune des deux séquences, mais l'un ou l'autre ordre des valeurs de données est autorisé par cette Annexe pour chaque séquence.

Si l'ordre décrit au § 3.1 est inversé, le mot de commande de polarité décrit au § 3.3 devient 128,00 (200_h ou 80,0_h). Dans l'un et l'autre cas, le mot de commande de polarité est situé au niveau du premier échantillon *Y* de la première ligne d'image active de la ou des trames spécifiées au § 3.3.

4 Trame de contrôle de l'interface numérique série

La répartition des données dans la trame de contrôle de l'interface numérique série (SDI) est représentée sur la Fig. 28 pour les normes de signaux. Des répartitions spécifiques de valeurs d'échantillon sont indiquées dans le Tableau 34. Dans chaque trame, la ligne où le signal passe du diagramme de données du signal de test de l'égaliseur au diagramme de données du signal de test de la PLL est spécifiée sous forme d'un intervalle de lignes et non d'une seule ligne spécifique. La ligne spécifique choisie dans l'intervalle spécifié n'a pas de signification sur le plan technique, mais le point de transition doit être cohérent d'une image à l'autre et d'une trame à l'autre (dans le cas de formats de signaux avec entrelacement).

TABLEAU 34 Valeurs d'échantillon de la trame de contrôle de la SDI

	Part	tie 1	Partie 2		
Système	1125/60/2:1	1250/50/2:1	60/I, 30/PsF, 50/I, 25/PsF, 24/PsF	60/P, 30/P, 50/P, 25/P, 24/P	
Nombre d'échantillons <i>Y</i> actifs par ligne			1920		

Nombre	de lignes actives	1035	1152	1080					
	Première ligne	41 (trame 1)	45 (trame 1)	21 (trame/segment 1)	42				
		603 (trame 2)	670 (trame 2)	584 (trame/segment 2)	1				
	Dernière ligne	295-302	329-335	287-293	578-585				
	(intervalle)	(trame 1)	(trame 1)	(trame/segment 1)					
		858-865	954-960	850-856					
		(trame 2)	(trame 2)	(trame/segment 2)					
Signal de test de l'égaliseur	Valeurs de données ⁽¹⁾	Echantillons							
	192,00 C _B		0 3836						
	102,00 Y	1 3837							
	192,00 C _R	2 3838							
	102,00 Y	3 3839							
	Mot de commande de polarité	(une trame sur deux)							
	Valeur de	Ligne 41	Ligne 45	Ligne 21	Ligne 42				
	données ⁽¹⁾ ,(2) 100,00 <i>Y</i>	Echantillon 1	Echantillon 1	Echantillon 1	Echantillon 1				
	Première ligne (intervalle) (3)	296-303 (trame 1)	330-336 (trame 1)	288-294 (trame/segment 1)	579-586				
		859-866 (trame 2)	955-961 (trame 2)	851-857 (trame/segment 2)					
	Dernière ligne	557 (trame 1)	620 (trame 1)	560 (trame/segment 1)	1121				
Signal de test de la		1120 (trame 2)	1245 (trame 2)	1123 (trame/segment 2)					
PLL	Valeurs de données ⁽¹⁾		Ec	chantillons					
	128,00 <i>CB</i>		(0 3836					
	68,00 Y		1	1 3837					
	128,00 C _R		2	2 3838					
	68,00 Y		3	3 3839					

⁽¹⁾ L'ordre des valeurs de données pour chaque couple de valeurs d'échantillon peut être inversé. Si l'ordre des échantillons est inversé par rapport à l'ordre indiqué dans ce Tableau, le mot de commande de polarité vaut (128,00 Y). (Voir le § 3.4.)

⁽²⁾ Le mot de commande de polarité a pour objet de remplacer le premier échantillon *Y* de la zone d'image active, ce remplacement étant fait à la première ligne active d'une image sur deux (voir le § 3.3).

⁽³⁾ On donne des intervalles de numéros de lignes pour la transition entre les deux diagrammes de test. Le point de transition dans ces intervalles doit être cohérent sur l'ensemble des trames (voir le § 4).

FIGURE 28 Trame de contrôle de la SDI

		Intervalle de suppression vertical
EAV	SAV	Première ligne active
	alle de n horizontal	Première moitié de trame active 192,00, 102,00 pour le test de l'égaliseur (1)
suppression	n norizontai	Deuxième moitié de trame active 128,00, 68,00 pour le test de la PLL (1)
		Dernière ligne d'image active

L'ordre des valeurs de données pour chaque couple de valeurs d'échantillon peut-être inversé (voir le § 3.4).

1120-28