RECOMMENDATION ITU-R BT.1120-5
 Digital interfaces for HDTV studio signals

(Question ITU-R 42/6)
(1994-1998-2000-2003-2004)
The ITU Radiocommunication Assembly,
considering
a) that in the scope of Recommendation ITU-R BT.709, studio standards for HDTV have been developed for 1125- and 1250- line systems, which comprise systems related to conventional television as well as systems with the square pixel common image format (CIF) including progressive scanning;
b) that Recommendation ITU-R BT. 709 contains the following HDTV studio standards to cover a wide range of applications:
for systems related to conventional television:

- $\quad 1125$ total line, 2:1 interlace scanning, 60 fields/s, 1035 active line standard;
- $\quad 1250$ total line, 2:1 interlace scanning, 50 fields/s, 1152 active line standard.
for systems with CIF (1920×1080):
- $\quad 1125$ total lines and 1080 active lines;
- picture rates of $60,50,30,25$ and 24 Hz , including progressive, interlace and segmented frame transport;
c) that in Recommendation ITU-R BT.709, the 1920×1080 HD-CIF is given as a preferred format for new installations, where interoperability with other applications is important, and work is being directed with the aim of reaching a unique worldwide standard;
d) that the HD-CIF systems provide a common data rate feature, which allows for the use of a unique digital interface;
e) that a whole range of equipment based on the above systems has been developed or is being developed and is commercially available now or soon, including all that necessary for broadcasting chains and for industrial applications;
f) that many programmes are being produced in the above systems using the above equipments and that in the development of broadcasting and other services there is an increasing need for HDTV production installations;
g) that the use of digital technology and digital interconnection is highly desirable to reach and maintain the level of performance required for HDTV;
h) that there are clear advantages for establishing interface specifications for HDTV production installations,

recommends

1 that the specifications described in this Recommendation should be used for the basic digital coding as well for the bit-parallel and bit-serial interfaces for HDTV studio signals.

PART 1

Interfaces for HDTV signals conforming to Recommendation ITU-R BT.709, Part 1

1 Digital representation

1.1 Coding characteristics

The signals to be digitized should comply with the characteristics described in Recommendation ITU-R BT.709, Part 1.

1.2 Construction of digital signals

See Part 2, § 1.2.

TABLE 1
Digital coding parameters

Item	Parameter	Value	
		1125/60/2:1	1250/50/2:1
1	Coded signals Y, C_{B}, C_{R} ou R, G, B	These signals are obtained from gamma pre-corrected signals, namely $E_{Y}^{\prime}, E_{C B}^{\prime}, E_{C R}^{\prime}$ or $E_{R}^{\prime}, E_{G}^{\prime}, E_{B}^{\prime}$ Also see Recommendation ITU-R BT.709, Part 1	
2	Sampling lattice $-\quad R, G, B, Y$	Orthogonal, line and picture repetitive	
3	Sampling lattice $-\quad C_{B}, C_{R}$	Orthogonal, line and picture repetitive, co-sited with each other and with alternate Y samples. The first active colour-difference samples are cosited with the first active Y sample	
4	Number of active lines	1035	1152
5	$\begin{aligned} & \text { Sampling frequency }^{(1)} \\ & -\quad R, G, B, Y(\mathrm{MHz}) \end{aligned}$	74.25	72
6	Sampling frequency ${ }^{(1)}$ $-\quad C_{B}, C_{R}$	Half of luminance sampling frequency	
7	Number of samples/line $\begin{aligned} & -\quad R, G, B, Y \\ & -\quad C_{B}, C_{R} \end{aligned}$	$\begin{aligned} & 2200 \\ & 1100 \end{aligned}$	$\begin{aligned} & 2304 \\ & 1152 \end{aligned}$
8	Number of active samples/line - R, G, B, Y - C_{B}, C_{R}		
9	Position of the first active Y, C_{B}, C_{R} sampling instants with respect to the analogue sync timing reference $\mathrm{O}_{\mathrm{H}}{ }^{(2)}$ (see Fig. 6)	$192 T$	256 T
10	Coding format	Uniformly quantized PCM for each of the video component signals 8 or $10 \mathrm{bit} /$ sample 10 bit preferable	

TABLE 1 (end)

Item	Parameter	Value	
		1125/60/2:1	1250/50/2:1
11	Quantization level assignment ${ }^{(3)}$ - Video data - Timing reference	$\begin{gathered} 1.00 \text { through } 254.75 \\ 0.00 \text { and } 255.75^{(4)} \end{gathered}$	
12	Quantization levels ${ }^{(5)}$ - Black level R, G, B, Y - Achromatic level C_{B}, C_{R} - Nominal peak $\begin{gathered} -\quad R, G, B, Y \\ C_{B}, C_{R} \end{gathered}$	$\begin{gathered} 16.00 \\ 128.00 \end{gathered}$	
13	Filter characteristics	See Recommendation ITU-R BT. 709	

(1) The sampling clock must be locked to the line frequency. The tolerance on frequency is $\pm 0.001 \%$ for $1125 / 60 / 2: 1$ and $\pm 0.0001 \%$ for $1250 / 50 / 2: 1$, respectively.
(2) T denotes the duration of the luminance sampling clock or the reciprocal of the luminance sampling frequency.
(3) To reduce confusion when using 8-bit and 10-bit systems together, the two LSBs of the 10-bit system are read as two fractional bits. The quantization scale in an 8-bit system ranges from 0 to 255 in steps of 1 , and in a 10-bit system from 0.00 to 255.75 in steps of 0.25 . When 8 -bit words are presented in a 10 -bit system, two LSBs of zeros are to be appended to the 8 -bit words.
(4) In the case of a 8-bit system, eight MSBs are used.
(5) These levels refer to precise nominal video levels. Signal processing may occasionally cause the signal level to deviate outside these ranges.

2 Digital interface

The interface provides a unidirectional interconnection between a single source and a single destination. The data signals are in the form of binary information and are coded accordingly:

- \quad video data (8-bit or 10 -bit words);
- timing reference and identification codes (8-bit or 10-bit words except for 1250/50/2:1, which use 10-bit words only);
- ancillary data (see Recommendation ITU-R BT.1364).

2.1 Video data

Y, C_{B}, C_{R} signals are handled as 20-bit words by time-multiplexing C_{B} and C_{R} components. Each 20 -bit word corresponds to a colour-difference sample and a luminance sample. The multiplex is organized as:

$$
\left(C_{B 1} Y_{1}\right)\left(C_{R 1} Y_{2}\right)\left(C_{B 3} Y_{3}\right)\left(C_{R 3} Y_{4}\right) \ldots
$$

where Y_{i} indicates the i-th active sample of a line, while $C_{B i}$ and $C_{R i}$ indicate the colour-difference samples of C_{B} and C_{R} components co-sited with the Y_{i} sample. Note that the index " i " on colour-difference samples takes only odd values due to the half-rate sampling of the colour-difference signals.
The data words corresponding to digital levels 0.00 through 0.75 and 255.00 through 255.75 are reserved for data identification purposes and must not appear as video data.
For $1125 / 60 / 2: 1, R, G, B$ signals are handled as 30 -bit words in addition to the above 20 -bit words for Y, C_{B}, C_{R} signals.

2.2 Video timing relationship with analogue waveform

The digital line occupies m clock periods. It begins at f clock periods prior to the reference transition $\left(\mathrm{O}_{\mathrm{H}}\right)$ of the analogue synchronizing signal in the corresponding line. The digital active line begins at g clock periods after the reference transition $\left(\mathrm{O}_{\mathrm{H}}\right)$. The values for m, f and g are listed in Table 2. See Fig. 6 and Table 2 for detailed timing relationships in the line interval.

The start of digital field is fixed by the position specified for the start of the digital line. See Fig. 1 and Table 3 for detailed relationships in the field interval.

TABLE 2
Line interval timing specifications

Symbol	Parameter	Value	
		1125/60/2:1	1250/50/2:1
	Interlace ratio	2:1	
	Number of active Y samples per line	1920	
	Luminance sampling frequency (MHz)	74,25	72
a	Analogue line blanking ($\mu \mathrm{s}$)	3.771	6.00
b	Analogue active line ($\mu \mathrm{s}$)	25.859	26.00
c	Analogue full line ($\mu \mathrm{s}$)	29.630	32.00
d	Duration between end of analogue active video and start of EAV (T)	0-6	24
e	Duration between end of SAV and start of analogue active video (T)	0-6	24
f	Duration between start of EAV and analogue timing reference $\mathrm{O}_{\mathrm{H}}(T)$	88	128
g	Duration between analogue timing reference O_{H} and end of $\mathrm{SAV}(T)$	192	256
h	Video data block (T)	1928	
i	Duration of EAV (T)	4	
j	Duration of SAV (T)	4	
k	Digital line blanking (T)	280	384
l	Digital active line (T)	1920	
m	Digital line (T)	2200	2304

NOTE 1 - The parameter values for analogue specifications expressed by the symbols a, b and c indicate the nominal values.
NOTE $2-T$ denotes the duration of the luminance sampling clock or the reciprocal of the luminance sampling frequency.

2.3 Video timing reference codes (SAV and EAV)

There are two timing reference codes, one at the beginning of each video data block (start of active video, SAV) and the other at the end of each video data block (end of active video, EAV). These codes are contiguous with the video data, and continue during the field/frame blanking interval, as shown in Fig. 1.

Each code consists of a four-word sequence. The bit assignment of the word is given in Table 14. The first three words are the fixed preamble and the fourth word carries the information that defines field identification (F), field/frame blanking period (V), and line blanking period (H). In an 8-bit implementation bits Nos. 9 to 2 inclusive are used; note in 1250/50/2:1 all 10 bits are required.

The bits F and V change state synchronously with EAV at the beginning of the digital line.
The value of protection bits, P_{0} to P_{3}, depends on the F, V and H as shown in Table 15. The arrangement permits one-bit errors to be corrected and two-bit errors to be detected at the receiver, but only in the 8 MSBs, as shown in Table 16.

FIGURE 1
Field timing relationship

Note 1 - The values of $(\mathrm{F} / \mathrm{V} / \mathrm{H})$ for EAV and SAV represent the status of bits for F, V, and H ; in a way that the three-bit word composed of $\mathrm{F}, \mathrm{V}, \mathrm{H}$ represents a binary number expressed in decimal notation (F corresponding to MSB and H to LSB). For example, the value 3 represents the bits of $\mathrm{F}=0, \mathrm{~V}=1$ and $\mathrm{H}=1$.

TABLE 3
Field interval timing specifications

Symbol	Definition	Digital line number	
		1125/60/2:1	1250/50/2:1
	Number of active lines	1035	1152
L1	First line of field No. 1	1	
L2	Last line of digital field blanking No. 1	40	44
L3	First line of field No. 1 active video	41	45
L4	Last line of field No. 1 active video	557	620
L5	First line of digital field blanking No. 2	558	621
L6	Last line of field No. 1	563	625
L7	First line of field No. 2	564	626
L8	Last line of digital field blanking No. 2	602	669
L9	First line of field No. 2 active video	603	670
L10	Last line of field No. 2 active video	1120	1245
L11	First line of digital field blanking No. 1	1121	1246
L12	Last line of field No. 2	1125	1250

NOTE 1 - Digital field blanking No. 1 denotes the field blanking period that is prior to the active video of field No. 1, and digital field blanking No. 2 denotes that prior to the active video of field No. 2.

2.4 Ancillary data

See Part 2, § 2.4.

2.5 Data words during blanking

See Part 2, § 2.5.

3 Bit-parallel interface

For the system of $1125 / 60 / 2: 1$, the bits of the digital code words which describe the video signal are transmitted in parallel by means of 20 or 30 shielded conductor pairs. The 20 conductor pairs are used for the transmission of the signal set consisting of luminance Y and time-multiplexed colour-difference C_{B} / C_{R} components. The 30 conductor pairs are used for the transmission of R, G, B signals or $Y, C_{B} / C_{R}$ components with an additional data stream (auxiliary channel). An additional shielded conductor pair carries the synchronous clock at 74.25 MHz .

For the $1250 / 50 / 2: 1$ system, the bits of digital code words that describe the video signal are transmitted in parallel by means of 20 signal pairs, where each pair carries a stream of bits, 10 pairs for luminance data and 10 pairs for time-multiplexed colour-difference data. The 20 pairs can also carry ancillary data. A 21 st pair provides a synchronous clock at 36 MHz .

Data signals are transmitted in non-return-to-zero (NRZ) form in real time (unbuffered).

3.1 Clock signal and clock-to-data timing relationship

For the system of $1125 / 60 / 2: 1$, the transmitted clock signal is a square wave, of which positive transitions occur midway between the data transitions as shown in Fig. 8 and Table 4.

For $1250 / 50 / 2: 1$, the transmitted clock signal is a 36 MHz square wave of unity mark/space ratio, the transitions of which are coincident with the transition of the data (see Fig. 2). A logical high state of the clock is concurrent with Y and C_{B} data samples and a logical low state with Y and C_{R} data samples, as shown in Fig. 2 and Table 4.

TABLE 4
Clock signal specifications

NOTE $1-f_{H}$ denotes the line frequency.
NOTE 2 - Values are specified at the sending end (source).

FIGURE 2
Clock to data timing relationship for 1250/50/2:1

Nominal data detection points
1120-02

3.2 Electrical characteristics of the interface

The interface employs 21 line drivers and line receivers, in the case of the transmission of Y and C_{B} / C_{R} components. Each line driver has a balanced output and the corresponding line receiver has a balanced input. For 1125/60/2:1, the interface employs 31 line drivers and line receivers, in the case of R, G and B components or $Y, C_{B} / C_{R}$ with an additional data stream (auxiliary channel).

Although the use of ECL technology is not mandatory, the line driver and receiver must be ECL 10 k compatible for $1125 / 60 / 2: 1$, and ECL 100 k compatible for $1250 / 50 / 2: 1$, i.e. they must permit the use of ECL for either drivers or receivers.

The receiver must sense correctly the data when a random signal produces conditions represented by the eye diagram of Fig. 3.

TABLE 5

Line driver characteristics

Item	Parameter	Value	
		$1125 / 60 / 2: 1$	$1250 / 50 / 2: 1$
1	Output impedance (Ω)	110 maximum	100 maximum
2	Common mode voltage $^{(1)}(\mathrm{V})$	$-1.29 \pm 15 \%$	$-1.3 \pm 15 \%$
3	Signal amplitude $^{(2)}(\mathrm{V})$	0.6 to $2.0 \mathrm{p}-\mathrm{p}$	0.8 to $2.0 \mathrm{p}-\mathrm{p}$
4	Rise and fall times $^{(3)}$	$\leq 0.15 T_{c k}$	$<3 \mathrm{~ns}$
5	Difference between rise and fall times	$\leq 0.075 T_{c k}$	$\leq 1.0 \mathrm{~ns}$

NOTE $1-T_{c k}$ denotes the clock period (see Table 4).
(1) Measured relative to ground.
(2) Measured across a resistive load having the nominal impedance of the assumed cables, that is 110Ω for $1125 / 60 / 2: 1$, and 100Ω for $1250 / 50 / 2: 1$.
(3) Measured between the 20% and 80% points across a resistive load having the nominal impedance of the assumed cable.

TABLE 6
Line driver characteristics

Item	Parameter		Value	
		$1125 / 60 / 2: 1$	$1250 / 50 / 2: 1$	
1	Input impedance (Ω)	$110 \pm 10 \%$	$100 \pm 10 \%$	
2	Maximum input signal voltage (V)		$2.0 \mathrm{p}-\mathrm{p}$	
3	Minimum input signal voltage (mV)	$185 \mathrm{p}-\mathrm{p}$		
4	Maximum common mode voltage ${ }^{(1)}(\mathrm{V})$	± 0.3	± 0.5	
5	Differential delay $T_{\text {min }}{ }^{(2)}$	$0.3 T_{c k}$	4.5 ns	

NOTE $1-T_{c k}$ denotes the clock period (see Table 4).
(1) Comprising interference in the range DC to line frequency $\left(f_{H}\right)$.
(2) Data must be correctly sensed when the differential delay between the received clock and data is within this range (see Fig. 3).

FIGURE 3
Idealized eye diagram corresponding to the minimum input signal level

Note 1 - For $1125 / 60 / 2$: 1 , the width of the window in the eye diagram, within which data must be correctly detected, comprises $\pm 0.04 T$ clock jitter, $\pm 0.075 T$ data timing, and $\pm 0.18 T$ propagation skew of conductor pairs.

For 1250/50/2:1, the aggregate of clock jitter, data timing and propagation skew of conductor pairs must not exceed 4.5 ns .

3.3 Mechanical characteristics

3.3.1 Connector

The interface uses a multi-contact connector. Connectors are locked by two screws on the cable connectors and two threaded bolts on the equipment. Cable connectors employ pin contacts and equipment connectors employ socket contacts. Shielding of the connectors and cables is mandatory.

For 1125/60/2:1, a 93-contact connector is used. Contact assignments are indicated in Tables 20 and 21. The mechanical specifications for the connectors are shown in Figs. 11, 12 and 13.

For $1250 / 50 / 2: 1$, a 50 -contact type D subminiature connector is used. Contact assignments are indicated in Table 7 and Fig. 4 (for information, suggested contact assignment for a printed circuit board (PCB) header are shown in Fig. 5).

3.3.2 Interconnecting cable

For $1125 / 60 / 2: 1$, two types of multichannel cable, either 21 or 31 channels, can be used in accordance with the transmission signal set (see Table 21). The cable consists of twisted pairs with an individual shield for each pair. It also contains an overall shield. The nominal characteristic impedance of each twisted pair is 110Ω. The cable shall possess the characteristics that satisfy the conditions of the eye diagram shown in Fig. 3 up to a maximum cable length of 20 m .

For 1250/50/2:1, a cable with 21 -channel balanced conductor pairs is used. The nominal characteristic impedance of each conductor pair is 100Ω. Cable length up to 30 m may be employed when a high-quality cable is used.

TABLE 7

Connector contact assignment for 1250/50/2:1

Contact	Signal line	Contact	Signal line	Contact	Signal line
1	Clock A (CKA)			34	Clock B
2	GND	18	GND	35	GND
3	Data 9A (D9A)	19	GND	36	Data 9B
4	Data 8B	20	Data 8A	37	Data 7A
5	Data 6A	21	Data 7B	38	Data 6B
6	Data 5B	22	Data 5A	39	Data 4A
7	Data 3A	23	Data 4B	40	Data 3B
8	Data 2B	24	Data 2A	41	Data 1A
9	Data 0A	25	Data 1B	42	Data 0B
10	GND	26	GND	43	GND
11	Data 19A	27	GND	44	Data 19B
12	Data 18B	28	Data 18A	45	Data 17A
13	Data 16A	29	Data 17B	46	Data 16B
14	Data 15B	30	Data 15A	47	Data 14A
15	Data 13A	31	Data 14B	48	Data 13B
16	Data 12B	32	Data 12A	49	Data 11A
17	Data 10A	33	Data 11B	50	Data 10B

NOTE 1 - Data 9-Data 0 represent each bit of the luminance signal (Y), and Data 19-Data 10 that of time-multiplexed colour-difference signal $\left(C_{R} / C_{B}\right)$. The suffix 19 to 0 indicates the bit number (bit 19 denotes MSB for C_{R} / C_{B} and bit 9 MSB for Y). A and B correspond to the terminals A and B of Fig. 9, respectively.

FIGURE 4
Mating face of connector receptacle containing male pins (plug) for 1250/50/2:1

Note 1 - The preferred orientation for connectors, mounted vertically or horizontally, is with contact 1 uppermost.

FIGURE 5

4 Bit-serial interface

4.1 Data format

The bit-serial data consists of video data, video timing reference codes, line number data, error detection codes, ancillary data and blanking data. Each data has a word-length of 10 bits, and is represented as parallel data before serialization. Two parallel streams (i.e. luminance data Y and colour-difference data C_{B} / C_{R}) are multiplexed and serialized in accordance with \S 4.2.

4.1.1 Video data

The video data should be 10 -bit words representing $Y, C_{B} / C_{R}$ of the video systems defined in $\S 1$.

4.1.2 Video timing reference codes

The video timing reference codes, SAV and EAV have the same format as that defined in § 2.

4.1.3 Line number data

The line number data is composed of two words indicating the line number. The bit assignment of the line number data is shown in Table 22. The line number data should be located immediately after EAV.

4.1.4 Error detection codes

See Part 2, § 4.1.4.

4.1.5 Ancillary data

See Part 2, § 4.1.5.

4.1.6 Blanking data

See Part 2, § 4.1.6.

4.2 Transmission format

See Part 2, § 4.2.

4.2.1 Word-multiplexing

The two parallel streams should be multiplexed word by word into a single 10-bit parallel stream in the order of $C_{B}, Y, C_{R}, Y, C_{B}, Y, C_{R}, Y \ldots$ (see Fig. 14 and Table 8).

TABLE 8
Data stream timing specifications (see Fig. 14)

Symbol	Parameter	Value	
		$1125 / 60 / 2: 1$	$1250 / 50 / 2: 1$
T	Parallel clock period (ns)	$1000 / 74,25$	$1000 / 72$
T_{S}	Multiplexed parallel data clock period		
m	Digital line in parallel data stream	2200	2304
k	Digital line blanking in parallel data stream	260	384
n	Ancillary data or blanking data in parallel data stream	4400	372
m_{s}	Digital line in multiplexed parallel data stream	560	4608
k_{s}	Digital line blanking in multiplexed parallel data stream	536	768
n_{s}	Ancillary data or blanking data in multiplexed parallel data stream		

4.2.2 Serializing

See Part 2, § 4.2.2.

4.2.3 Channel coding

See Part 2, § 4.2.3.

4.2.4 Serial clock

Table 9 specifies the serial clock frequencies, which are twenty times the frequency of the parallel clock (see Table 4).

TABLE 9
Serial clock frequency

Parameter	Value	
	$1125 / 60 / 2: 1$	$1250 / 50 / 2: 1$
Serial clock frequency (GHz)	1.485	1.400

4.2.5 Bit-serial digital check field

See Part 2, § 4.2.5.

4.3 Coaxial cable interfaces

See Part 2, § 4.3.

4.3.1 Line driver characteristics (source)

See Part 2, § 4.3.1.

4.3.2 Line receiver characteristics (destination)

See Part 2, § 4.3.2.

4.3.3 Transmission line characteristics

See Part 2, § 4.3.3.

4.3.4 Connector

See Part 2, § 4.3.4.

4.4 Optical fibre interfaces

See Part 2, § 4.4.

PART 2

Interfaces for HDTV signals conforming to Recommendation ITU-R BT.709, Part 2

This part specifies digital interfaces for the systems listed in Table 10. For the 60, 30 and 24 Hz systems, picture rates having those values divided by 1.001 are also included. Parameter values for these systems are presented in parentheses.

TABLE 10
HDTV systems based on CIF (see Recommendation ITU-R BT.709, Part 2)

System	Capture (Hz)	Transport
$60 / \mathrm{P}$	60 progressive	Progressive
$30 / \mathrm{P}$	30 progressive	Progressive
$30 / \mathrm{PsF}$	30 progressive	Segmented frame
$60 / \mathrm{I}$	30 interlace	Interlace
$50 / \mathrm{P}$	50 progressive	Progressive
$25 / \mathrm{P}$	25 progressive	Progressive
$25 / \mathrm{PsF}$	25 progressive	Segmented frame
$50 / \mathrm{I}$	25 interlace	Interlace
$24 / \mathrm{P}$	24 progressive	Progressive
$24 / \mathrm{PsF}$	24 progressive	Segmented frame

1 Digital representation

1.1 Coding characteristics

The signals to be digitized should comply with the characteristics described in Recommendation ITU-R BT.709, Part 2.

1.2 Construction of digital signals

Digital representation of R, G, B, Y, C_{R} and C_{B} may be obtained using the following relationship. Further study is required in terms of conversion between the data obtained with 8 -bit and 10 -bit quantization.

$$
\begin{aligned}
& R_{d}=\left[\operatorname{Int}\left\{(219 \times D) \times E_{R}^{\prime}+(16 \times D)+0.5\right\}\right] / D \\
& G_{d}=\left[\operatorname{Int}\left\{(219 \times D) \times E_{G}^{\prime}+(16 \times D)+0.5\right\}\right] / D \\
& B_{d}=\left[\operatorname{Int}\left\{(219 \times D) \times E_{B}^{\prime}+(16 \times D)+0.5\right\}\right] / D \\
& Y_{d}=\left[\operatorname{Int}\left\{(219 \times D) \times E_{Y}^{\prime}+(16 \times D)+0.5\right\}\right] / D \\
& C_{B d}=\left[\operatorname{Int}\left\{(224 \times D) \times E_{C_{B}}^{\prime}+(128 \times D)+0.5\right\}\right] / D \\
& C_{R d}=\left[\operatorname{Int}\left\{(224 \times D) \times E_{C_{R}}^{\prime}+(128 \times D)+0.5\right\}\right] / D
\end{aligned}
$$

where D takes either the value 1 or 4 , corresponding to 8 -bit or 10 -bit quantization respectively; $E_{G}^{\prime}, E_{B}^{\prime}, E_{R}^{\prime}$ and E_{Y}^{\prime} denote analogue R, G, B and luminance signals that have been normalized to span the range 0.0 to 1.0 , while $E_{C_{R}}^{\prime}$ and $E_{C_{B}}^{\prime}$ denote analogue colour-difference signals that have been normalized to span the range -0.5 to +0.5 .

2 Digital interface

The interface provides a unidirectional interconnection between a single source and a single destination. The data signals are in the form of binary information and are coded accordingly:

- \quad video data (8 -bit or 10 -bit words);
- \quad timing reference and identification codes (8-bit or 10-bit words);
- ancillary data (see Recommendation ITU-R BT.1364).

2.1 Video data

Y, C_{B} and C_{R} signals are handled as 20 -bit words by time-multiplexing C_{B} and C_{R} components. Each 20-bit word corresponds to a colour-difference sample and a luminance sample. The multiplex is organized as:

$$
\left(C_{B 1} Y_{1}\right)\left(C_{R 1} Y_{2}\right)\left(C_{B 3} Y_{3}\right)\left(C_{R 3} Y_{4}\right) \ldots
$$

where Y_{i} indicates the i-th active sample of a line, while $C_{B i}$ and $C_{R i}$ indicate the colour-difference samples of C_{B} and C_{R} components co-sited with the Y_{i} sample. Note that the index i on colour-difference samples takes only odd values due to the half-rate sampling of the colourdifference signals.
The data words corresponding to digital levels 0.00 through 0.75 and 255.00 through 255.75 are reserved for data identification purposes and must not appear as video data.
R, G, B signals are handled as 30 -bit words in addition to the above 20 -bit words for Y, C_{B}, C_{R} signals.

TABLE 11
Digital coding parameters

TABLE 11 (end)

Point	Parameter	System									
		60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
9	Coding format	Uniformly quantized PCM for each of the video component signals 8 - or 10-bit/sample									
10	Quantization level assignment ${ }^{(5)}$ - Video data - Timing reference	$\begin{aligned} & 1.00 \text { through } 254.75 \\ & 0.00 \text { and } 255.75^{(6)} \end{aligned}$									
11	Quantization levels ${ }^{(7)}$ - Black level R, G, B, Y - Achromatic level C_{B}, C_{R} - Nominal peak - $\quad R, G, B, Y$ $-C_{B}, C_{R}$	$\begin{gathered} 16.00 \\ 128.00 \\ 235.00 \\ 16.00 \text { and } 240.00 \end{gathered}$									
12	Filter characteristics	See Recommendation ITU-R BT. 709									

(1) The first active colour-difference samples are co-sited with the first active Y sample.
(2) The sampling clock must be locked to the line frequency. The tolerance on frequency is $\pm 0.001 \%$.
(3) C_{B}, C_{R} sampling frequency is half of luminance sampling frequency.
(4) T denotes the duration of the luminance sampling clock or the reciprocal of the luminance sampling frequency.
(5) To reduce confusion when using 8-bit and 10-bit systems together, the two LSBs of the 10-bit system are read as two fractional bits. The quantization scale in an 8 -bit system ranges from 0 to 255 in steps of 1 , and in a 10-bit system from 0.00 to 255.75 in steps of 0.25 . When 8 -bit words are treated in 10-bit system, two LSBs of zeros are to be appended to the 8 -bit words.
(6) In the case of 8-bit system, eight MSBs are used.
(7) These levels refer to precise nominal video levels. Signal processing may occasionally cause the signal level to deviate outside these ranges.

2.2 Video timing relationship with analogue waveform

The digital line occupies m clock periods. It begins at f clock periods prior to the reference transition $\left(\mathrm{O}_{\mathrm{H}}\right)$ of the analogue synchronizing signal in the corresponding line. The digital active line begins at g clock periods after the reference transition $\left(\mathrm{O}_{\mathrm{H}}\right)$. The values for m, f and g are listed in Table 12. See Fig. 6 and Table 12 for detailed timing relationships in the line interval.

FIGURE 6
Data format and timing relationship to analogue waveform

1120-06

For interlace and segmented frame systems, the start of digital field/segment is fixed by the position specified for the start of the digital line. See Fig. 7a) and Table 13a) for detailed relationships in the field/segment interval.

For progressive systems, the start of the digital frame is fixed by the position specified for the start of the digital line. See Fig. 7b) and Table 13b) for detailed relationships in the frame interval.

2.3 Video timing reference codes SAV and EAV

There are two timing reference codes, one at the beginning of each video data block SAV and the other at the end of each video data block EAV. These codes are contiguous with the video data, and continue during the field/frame/segment blanking interval, as shown in Fig. 7.

TABLE 12
Line interval timing specifications

Symbol	Parameter	Value									
		60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
	Number of active Y samples per line	1920									
	Luminance sampling frequency (MHz)	$\begin{gathered} \hline 148.5 \\ (148.5 / \\ 1.001) \\ \hline \end{gathered}$	$\begin{gathered} \hline 74.25 \\ (74.25 / 1.001) \end{gathered}$			148.5	74.25			$\begin{gathered} \hline 74.25 \\ (74.25 / 1.001) \end{gathered}$	
a	Analogue line blanking (T)	$\begin{gathered} +12 \\ 280 \\ -0 \end{gathered}$					$\begin{gathered} +12 \\ -0 \end{gathered}$			$\begin{gathered} +12 \\ 280 \\ -0 \end{gathered}$	
b	Analogue active line (T)	$\begin{gathered} +0 \\ -12 \end{gathered}$									
c	Analogue active line (T)	2200				2640				2750	
d	Duration between end of analogue active video and start of EAV (T)	0-6									
e	Duration between end of SAV and start of analogue active video (T)	0-6									
f	Duration between start of EAV and analogue timing reference $\mathrm{O}_{\mathrm{H}}(T)$	88				528				638	
g	Duration between analogue timing reference O_{H} and end of SAV (T)	192									
h	Video data block (T)	1928									
i	Duration of EAV (T)	4									
j	Duration of SAV (T)	4									
k	Digital line blanking (T)	280				720				830	
l	Digital active line (T)	1920									
m	Digital line (T)	2200				2640				2750	

NOTE 1 - The parameter values for analogue specifications expressed by the symbols a, b and c indicate the nominal values.
NOTE $2-T$ denotes the duration of the luminance clock or the reciprocal of the luminance sampling frequency.

FIGURE 7
Video timing reference codes SAV and EAV

a) Field/segment timing relationship for interlace and segmented frame systems

b) Frame timing relationship for progressive systems

Note 1 - The values of $(\mathrm{F} / \mathrm{V} / \mathrm{H})$ for EAV and SAV represent the status of bits for F, V, and H ; in a way that the three-bit word composed of $\mathrm{F}, \mathrm{V}, \mathrm{H}$ represents a binary number expressed in decimal notation (F corresponding to MSB and H to LSB). For example, the value 3 represents the bits of $\mathrm{F}=0, \mathrm{~V}=1$ and $\mathrm{H}=1$.

Each code consists of a four-word sequence. The bit assignment of the word is given in Table 14. The first three words are fixed preamble and the fourth word carries the information that defines field identification (F), field/frame blanking period (V), and line blanking period (H). In a 8-bit implementation bits Nos. 9 to 2 inclusive are used.
The bits F and V change state synchronously with EAV at the beginning of the digital line.
The value of protection bits, P_{0} to P_{3}, depends on the F, V and H as shown in Table 15. The arrangement permits one-bit errors to be corrected and two-bit errors to be detected at the receiver, but only in the 8 MSBs, as shown in Table 16.

TABLE 13
a) Field/segment interval timing specifications for interlace and segmented frame scanning systems

Symbol	Definition	Digital line number
	Number of active lines	1080
L1	First line of field/segment No. 1	1
L2	Last line of digital field/segment blanking No. 1	20
L3	First line of field/segment No. 1 active video	21
L4	Last line of field/segment No. 1 active video	560
L5	First line of digital field/segment blanking No. 2	561
L6	Last line of field/segment No. 1	563
L7	First line of field/segment No. 2	564
L8	Last line of digital field/segment blanking No. 2	583
L9	First line of field/segment No. 2 active video	584
L10	Last line of field/segment No. 2 active video	1123
L11	First line of digital field/segment blanking No. 1	1124
L12	Last line of field/segment No. 2	1125

NOTE 1 - Digital field/segment blanking No. 1 denotes the field/segment blanking period that is prior to the active video of field/segment No. 1, and digital field/segment blanking No. 2 denotes that prior to the active video of field/segment No. 2.
b) Frame interval timing specifications for progressive systems

Symbol	Definition	Digital line number
	Number of active lines	1080
L1	First line of frame	1
L2	Last line of digital frame blanking	41
L3	First line of active video	42
L4	Last line of active video	1121
L5	First line of digital frame blanking	1122
L6	Last line of frame	1125

TABLE 14
Bit assignment for video timing reference codes

Word	Bit number									
	$\begin{gathered} 9 \\ (\mathrm{MSB}) \end{gathered}$	8	7	6	5	4	3	2	1	$\stackrel{0}{(\mathrm{LSB})}$
First	1	1	1	1	1	1	1	1	1	1
Second	0	0	0	0	0	0	0	0	0	0
Third	0	0	0	0	0	0	0	0	0	0
Fourth	1	F	V	H	P_{3}	P_{2}	P_{1}	P_{0}	0	0
Interlace and segmented frame system		$F=1 \text { during }$ field/segment No. 2 $=0$ during field/segment No. 1		$\begin{aligned} \mathrm{V} & =\underset{\text { blanking }}{1 \text { during field/segment }} \\ & =0 \text { elsewhere } \end{aligned}$					$\begin{aligned} \mathrm{H} & =1 \mathrm{in} \mathrm{EAV} \\ & =0 \text { in } \mathrm{SAV} \end{aligned}$	
Progressive system		$\mathrm{F}=0$		$\mathrm{V}=1$ during frame blanking				$\mathrm{H}=1$ in EAV		

NOTE $1-P_{0}, P_{1}, P_{2}, P_{3}$ in the fourth word are the protection bits (see Table 15).

TABLE 15
Protection bits for SAV and EAV

	SAV/EAV bit status								Protection bits					
Bit 9 (fixed)	8 $(\mathrm{~F})$	7 $(\mathrm{~V})$	6 (H)	5 $\left(\mathrm{P}_{3}\right)$	4 $\left(\mathrm{P}_{2}\right)$	3 $\left(\mathrm{P}_{1}\right)$	2 $\left(\mathrm{P}_{0}\right)$	1 (fixed)	0 (fixed)					
1	0	0	0	0	0	0	0	0	0					
1	0	0	1	1	1	0	1	0	0					
1	0	1	0	1	0	1	1	0	0					
1	0	1	1	0	1	1	0	0	0					
1	1	0	0	0	1	1	1	0	0					
1	1	0	1	1	0	1	0	0	0					
1	1	1	0	1	1	0	0	0	0					
1	1	1	1	0	0	0	1	0	0					

TABLE 16
Error corrections using protection bits ($\mathbf{P}_{\mathbf{3}}-\mathbf{P}_{\mathbf{0}}$)

Received bits 5-2 for $\mathrm{P}_{3}-\mathrm{P}_{0}$	Received bits 8-6 for F, V and H							
	000	001	010	011	100	101	110	111
0000	000	000	000	-	000	-	-	111
0001	000	-	-	111	-	111	111	111
0010	000	-	-	011	-	101	-	-
0011	-	-	010	-	100	-	-	111
0100	000	-	-	011	-	-	110	-
0101	-	001	-	-	100	-	-	111
0110	-	011	011	011	100	-	-	011
0111	100	-	-	011	100	100	100	-
1000	000	-	-	-	-	101	110	-
1001	-	001	010	-	-	-	-	111
1010	-	101	010	-	101	101	-	101
1011	010	-	010	010	-	101	010	-
1100	-	001	110	-	110	-	110	110
1101	001	001	-	001	-	001	110	-
1110	-	-	-	011	-	101	110	-
1111	-	001	010	-	100	-	-	-

NOTE 1 - The error correction applied provides a DEDSEC (double error detection - single error correction) function. The received bits denoted by "-" in the table, if detected, indicate that an error has occurred but cannot be corrected.

2.4 Ancillary data

Ancillary data may optionally be included in the blanking intervals of a digital interface according to this Recommendation. The ancillary signals should comply with the general rules of Recommendation ITU-R BT. 1364.

The horizontal blanking interval between the end of EAV and the start of SAV may be employed to convey ancillary data packets.

Ancillary data packets may be conveyed in the vertical blanking interval between the end of SAV and the start of EAV as follows:

- \quad in a progressive system during lines 7 through 41 inclusive;
- in an interlaced system during lines 7 through 20 inclusive and lines 569 through 583 inclusive;
- on any line that is outside the vertical extent of the picture as noted above and that is not employed to convey vertical blanking interval signals that can be represented in the
 code (D-VITC)).

2.5 Data words during blanking

The data words occurring during digital blanking intervals that are not used for the timing reference codes (SAV and EAV), or for ancillary data (ANC) are filled with words corresponding to the following blanking levels, appropriately placed in the multiplexed data:
16.00 for Y, R, G, B signals
128.00 for C_{B} / C_{R} (time-multiplexed colour-difference signal).

3 Bit-parallel interface

The bits of the digital code words which describe the video signal are transmitted in parallel by means of 20 or 30 shielded conductor pairs. The 20 conductor pairs are used for the transmission of the signal set consisting of luminance Y and time-multiplexed colour-difference C_{B} / C_{R} components. The 30 conductor pairs are used for the transmission of R, G, B signals or $Y, C_{B} / C_{R}$ components with an additional data stream (auxiliary channel). An additional shielded conductor pair carries the synchronous clock at $148.5 \mathrm{MHz}(148.5 / 1.001 \mathrm{MHz}$) for $60 / \mathrm{P}$ and $50 / \mathrm{P}$, and 74.25 MHz ($74.25 / 1.001 \mathrm{MHz}$) for the other systems.

Data signals are transmitted in NRZ form in real time (unbuffered).

3.1 Clock signal and clock-to-data timing relationship

The transmitted clock signal is a square wave, of which positive transitions occur midway between the data transitions as shown in Fig. 8 and Table 17.

FIGURE 8
Clock-to data timing relationship

1120-08

TABLE 17
Clock signal specifications

Parameter	Value									
	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
Sampling frequency for Y, R, G, B signals (MHz)	$\begin{gathered} 148.5 \\ (148.5 / 1.001) \end{gathered}$	$\begin{gathered} 74.25 \\ (74.25 / 1.001) \end{gathered}$			148.5	74.25			$\begin{gathered} 74.25 \\ (74.25 / 1.001) \end{gathered}$	
Clock period, $T_{c k}$	1/(2200 $\left.f_{H}\right)$				1/(2640 $\left.f_{H}\right)$					$0 f_{H}$)
Nominal value (ns)	$\begin{gathered} 6,734 \\ (6,741) \end{gathered}$	$\begin{gathered} 13.468 \\ (13.481) \end{gathered}$			6.734	13.468				
Clock pulse width, t Tolerance	$\begin{gathered} 0.5 T_{c k} \\ \pm 0.11 T_{c k} \end{gathered}$									
Clock jitter	$\text { Within } \pm 0.04 T_{c k}$ from the average time of transition over one field/segment in interlace and segmented frame systems, and over one frame in progressive systems									
Data timing, T_{d} Tolerance	$\begin{gathered} 0.5 T_{c k} \\ \pm 0.075 T_{c k} \end{gathered}$									

NOTE $1-f_{H}$ denotes the line frequency.
NOTE 2 - Values are specified at the sending end (source).

3.2 Electrical characteristics of the interface

The interface employs 21 line drivers and line receivers, in the case of the transmission of Y and C_{B} / C_{R} components. Each line driver has a balanced output and the corresponding line receive has a balanced input. The interface employs 31 line drivers and line receivers, in the case of R, G and B components or $Y, C_{B} / C_{R}$ with an additional data stream (auxiliary channel).

Although the use of ECL technology is not mandatory, the line driver and receiver must be ECL 10 k compatible for the systems using the synchronous clock at $74.25 \mathrm{MHz}(74.25 / 1.001 \mathrm{MHz}$), i.e., they must permit the use of ECL for either drivers or receivers.

The receiver must sense correctly the data when a random signal produces conditions represented by the eye diagram of Fig. 10.

TABLE 18
Line driver characteristics

Item	Parameter	Value
1	Output impedance (Ω)	110 maximum
2	Common mode voltage $^{(1)}(\mathrm{V})$	$-1.29 \pm 15 \%$
3	Signal amplitude $^{(2)}(\mathrm{V})$	0.6 to $2.0 \mathrm{p}-\mathrm{p}$
4	Rise and fall times ${ }^{(3)}$	$\leq 0.15 T_{c k}$
5	Difference between rise and fall times	$\leq 0.075 T_{c k}$

NOTE $1-T_{c k}$ denotes the clock period (see Table 17).
(1) Measured relative to ground.
(2) Measured across a resistive load having the nominal impedance of the assumed cables, that is 110Ω.
(3) Measured between the 20% and 80% points across a resistive load having the nominal impedance of the assumed cable.

TABLE 19
Line receiver characteristics

Item	Parameter	Value
1	Input impedance (Ω)	110 ± 10
2	Maximum input signal voltage (V)	$2.0 \mathrm{p}-\mathrm{p}$
3	Minimum input signal voltage (mV)	$185 \mathrm{p}-\mathrm{p}$
4	Maximum common mode voltage ${ }^{(1)}(\mathrm{V})$	± 0.3
5	Differential delay $T_{\text {min }}{ }^{(2)}$	$0.3 T_{c k}$

NOTE $1-T_{c k}$ denotes the clock period (see Table 17).
(1) Comprising interference in the range DC to line frequency $\left(f_{H}\right)$.
(2) Data must be correctly sensed when the differential delay between the received clock and data is within this range (see Fig. 10).

FIGURE 9
Line driver and line receiver interconnection

1120-09

FIGURE 10
Idealized eye diagram corresponding to the minimum input signal level

Note 1 - The width of the window in the eye diagram, within which data must be correctly detected, comprises $\pm 0.4 T$ clock jitter, $\pm 0.075 T$ data timing, and $\pm 0.18 T$ propagation skew of conductor pairs.

3.3 Mechanical characteristics (see Note 1)

3.3.1 Connector

The interface uses a multi-contact connector. Connectors are locked by two screws on the cable connectors and two threaded bolts on the equipment. Cable connectors employ pin contacts and equipment connectors employ socket contacts. Shielding of the connectors and cables is mandatory.
A 93-contact connector is used. Contact assignments are indicated in Tables 20 and 21. The mechanical specifications for the connectors are shown in Figs. 11, 12 and 13.
NOTE 1 - For new designs, bit-serial interface described in $\S 4$ is preferred.

TABLE 20
Connector contact assignment

Con- tact	Signal line										
1	Clock A	17	GND	33	Clock B						
2	XD 9A	18	GND	34	XD 9B	49	YD 4A	64	GND	79	YD 4B
3	XD 8A	19	GND	35	XD 8B	50	YD 3A	65	GND	80	YD 3B
4	XD 7A	20	GND	36	XD 7B	51	YD 2A	66	GND	81	YD 2B
5	XD 6A	21	GND	37	XD 6B	52	YD 1A	67	GND	82	YD 1B
6	XD 5A	22	GND	38	XD 5B	53	YD 0A	68	GND	83	YD 0B
7	XD 4A	23	GND	39	XD 4B	54	ZD 9A	69	GND	84	ZD 9B
8	XD 3A	24	GND	40	XD 3B	55	ZD 8A	70	GND	85	ZD 8B
9	XD 2A	25	GND	41	XD 2B	56	ZD 7A	71	GND	86	ZD 7B
10	XD 1A	26	GND	42	XD 1B	57	ZD 6A	72	GND	87	ZD 6B
11	XD 0A	27	GND	43	XD 0B	58	ZD 5A	73	GND	88	ZD 5B
12	YD 9A	28	GND	44	YD 9B	59	ZD 4A	74	GND	89	ZD 4B
13	YD 8A	29	GND	45	YD 8B	60	ZD 3A	75	GND	90	ZD 3B
14	YD 7A	30	GND	46	YD 7B	61	ZD 2A	76	GND	91	ZD 2B
15	YD 6A	31	GND	47	YD 6B	62	ZD 1A	77	GND	92	ZD 1B
16	YD 5A	32	GND	48	YD 5B	63	ZD 0A	78	GND	93	ZD 0B

NOTE $1-$ XD 9-XD 0, YD 9-YD 0, and ZD 9-ZD 0 represent each bit of the component signals. The suffix 9 to 0 indicates the bit number (bit 9 denotes MSB). A and B correspond to the terminals A and B of Fig. 9, respectively. The relationship between XD, YD, ZD and component signals are specified in Table 21.
NOTE 2 - The shield of each pair uses the ground contact (GND) located between A and B contacts for the signal, e.g., contact No. 17 is used for the shield of the clock signal. The overall shield of the cable is electrically connected to connector hood, which is grounded to the frame of the equipment.

3.3.2 Interconnecting cable

Two types of multi-channel cable, either 21 or 31 channels, can be used in accordance with the transmission signal set (see Table 21). The cable consists of twisted pairs with an individual shield for each pair. It also contains an overall shield. The nominal characteristic impedance of each twisted pair is 110Ω. The cable shall possess the characteristics that satisfy the conditions of the eye diagram shown in Fig. 10 up to a maximum cable length of 20 m for the system using the synchronous clock at $74.25 \mathrm{MHz}(74.25 / 1.001 \mathrm{MHz}$), and 14 m for the systems using the synchronous clock at 148.5 MHz ($148.5 / 1.001 \mathrm{MHz}$).

TABLE 21
Transmission signal set and signal line assignment

Transmission signal set	Component	Signal line assignment		Cable
		10-bit system	8-bit system	
$Y, C_{R} / C_{B}$	Y	XD 9-XD 0	XD 9-XD 2	21 pairs
	C_{R} / C_{B}	ZD 9-ZD 0	ZD 9-ZD 2	
$Y, C_{R} / C_{B}$ with auxiliary channel	Y	XD 9-XD 0	XD 9-XD 2	31 pairs
	C_{R} / C_{B}	ZD 9-ZD 0	ZD 9-ZD 2	
	Auxiliary channel	YD 9-YD 0	YD 9-YD 2	
R, G, B	G	XD 9-XD 0	XD 9-XD 2	
	B	YD 9-YD 0	YD 9-YD 2	
	R	ZD 9-ZD 0	ZD 9-ZD 2	

FIGURE 11
93-pin multi-pin connector (plug)

Contact arrangement

FIGURE 12
93-pin multi-pin connector (receptacle)

Contact arrangement

FIGURE 13
93-pin multi-pin connector (hood)

Note 1 - A screw projecting out from the plug connector.
Note 2 - Applicable outer diameter: 17.5 minimum to 19.3 maximum and 21.1 minimum to 23.2 maximum.

4.1 Data format

The bit-serial data consists of video data, video timing reference codes, line number data, error detection codes, ancillary data and blanking data. Each data has a word-length of 10 bits, and is represented as parallel data before serialization. Two parallel streams (i.e. luminance data Y and colour-difference data C_{B} / C_{R}) are multiplexed and serialized in accordance with \S 4.2.

4.1.1 Video data

The video data should be 10 -bit words representing $Y, C_{B} / C_{R}$ of the video systems defined in $\S 1$.

4.1.2 Video timing reference codes

The video timing reference codes, SAV and EAV have the same format as that defined in § 2.

4.1.3 Line number data

The line number data is composed of two words indicating the line number. The bit assignment of the line number data is shown in Table 22. The line number data should be located immediately after EAV.

TABLE 22

Bit assignment of the line number data

Word	b9 (MSB)	b8	b7	b6	b5	b4	b3	b2	b1	b0 (LSB)
LN0	Not b8	L6	L5	L4	L3	L2	L1	L0	R	R
LN1	Not b8	R	R	R	L10	L9	L8	L7	R	R

L0 (LSB)-L10 (MSB): line number in binary code.
R: reserved (set to zero).

4.1.4 Error detection codes

The error detection codes, cyclic redundancy check codes (CRCC), which are used to detect errors in active digital line, EAV and line number data, consist of two words and are determined by the following polynomial generator equation:

$$
E D C(x)=x^{18}+x^{5}+x^{4}+1
$$

Initial value of the codes is set to zero. The calculation starts at the first word of the digital active line and ends at the final word of the line number data. Two error detection codes are calculated, one for luminance data (YCR) and one for colour-difference data (CCR). The bit assignment of the error detection codes is shown in Table 23. The error detection codes should be located immediately after the line number data.

TABLE 23
Bit assignment for error detection codes

Word	b9 (MSB)	b8	b7	b6	b5	b4	b3	b2	b1	b0
(LSB)										
YCR0	Not b8	CRCC8	CRCC7	CRCC6	CRCC5	CRCC4	CRCC3	CRCC2	CRCC1	CRCC0
YCR1	Not b8	CRCC17	CRCC16	CRCC15	CRCC14	CRCC13	CRCC12	CRCC11	CRCC10	CRCC9
CCR0	Not b8	CRCC8	CRCC7	CRCC6	CRCC5	CRCC4	CRCC3	CRCC2	CRCC1	CRCC0
CCR1	Not b8	CRCC17	CRCC16	CRCC15	CRCC14	CRCC13	CRCC12	CRCC11	CRCC10	CRCC9

NOTE $1-\mathrm{CRC} 0$ is the MSB of error detection codes.

4.1.5 Ancillary data

The ancillary data should comply with general rules of Recommendation ITU-R BT.1364.

4.1.6 Blanking data

The blanking data words during digital blanking intervals that are not used for SAV, EAV, the line number data, the error detection codes and the ancillary data, should be filled with the 10 -bit words corresponding to the following quantization levels:

- $\quad 16.00$ for Y data
- $\quad 128.00$ for C_{B} / C_{R} data.

4.2 Transmission format

The two parallel data streams are transmitted over a single channel in bit-serial form after word-multiplexing, parallel-to-serial conversion and scrambling.

4.2.1 Word-multiplexing

The two parallel streams should be multiplexed word by word into a single 10-bit parallel stream in the order of $C_{B}, Y, C_{R}, Y, C_{B}, Y, C_{R}, Y \ldots$ (See Fig. 14 and Table 25).

4.2.2 Serializing

The LSB of each 10-bit word in the word-multiplexed parallel stream should be transmitted first in the bit-serial format.

4.2.3 Channel coding

The channel coding scheme should be scrambled NRZ inverted (NRZI). The serialized bit stream should be scrambled using the following generator polynomial equation:

$$
G(x)=\left(x^{9}+x^{4}+1\right)(x+1)
$$

The input signal to the scrambler shall be positive logic. (The high voltage represents data 1 and the lowest voltage represents data 0 .)

4.2.4 Serial clock

Table 24 specifies the serial clock frequencies, which are twenty times the frequency of the parallel clock (see Table 17).

TABLE 24
Serial clock frequency

Parameter	Value									
	60/P	30/P	30/PsF	60/I	50/P	25/P	25/PsF	50/I	24/P	24/PsF
Serial clock frequency (GHz)	Under study	$\begin{gathered} 1.485 \\ (1.485 / 1.001) \end{gathered}$			Under study	1.485			$\begin{gathered} 1.485 \\ (1.485 / 1.001) \end{gathered}$	

4.2.5 Bit-serial digital check field

Digital test signals suitable for testing cable equalization and phase locked loop (PLL) lock-in are described in Annex 1.

FIGURE 14

Data stream

TABLE 25
Data stream timing specifications (see Fig. 14)

Symbol	Parameter	Value									
		60/P ${ }^{(1)}$	30/P	30/PsF	60/I	50/P ${ }^{(1)}$	25/P	25/PsF	50/I	24/P	24/PsF
T	Parallel clock period (ns)	$\begin{gathered} 1000 / 148.5 \\ (1001 / 148.5) \end{gathered}$	$\begin{gathered} 1000 / 74.25 \\ (1001 / 74.25) \end{gathered}$			1000/148.5	1000/74.25			$\begin{gathered} 1000 / 74.25 \\ (1001 / 74.25) \end{gathered}$	
T_{s}	Multiplexed parallel data clock period	T/2									
m	Digital line in parallel data stream	2200				2640					2750
k	Digital line blanking in parallel data stream	280				720					830
n	Ancillary data or blanking data in parallel data stream	268				708					728
m_{s}	Digital line in multiplexed parallel data stream	4400				5280					5500
k_{s}	Digital line blanking in multiplexed parallel data stream	560				1440					1660
n_{s}	Ancillary data or blanking data in multiplexed parallel data stream	536				1416					1456

(1) Parameter values for these systems are under study.

4.3 Coaxial cable interfaces

The coaxial cable interfaces consist of one source and one destination in a point-to-point connection. The coaxial cable interfaces specify the characteristics of line driver (source), line receiver (destination), transmission line and connectors.

4.3.1 Line driver characteristics (source)

Table 26 specifies the line driver characteristics. The line driver should have an unbalanced output circuit.

TABLE 26
Line driver characteristics

Item	Parameter	
1	Output impedance	75Ω nominal
2	DC offset ${ }^{(1)}$	$0.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
3	Signal amplitude $^{(2)}$	$800 \mathrm{mV}_{\mathrm{p}-\mathrm{p}} \pm 10 \%$
4	Return loss	$\geq 15 \mathrm{~dB}{ }^{(3)}, \geq 10 \mathrm{~dB}{ }^{(4)}$
5	Rise and fall times ${ }^{(5)}$	$<270 \mathrm{ps} \mathrm{(20} \mathrm{\%} \mathrm{to} 80 \%)$
6	Difference between rise and fall time	$\leq 100 \mathrm{ps}$
7	Output jitter ${ }^{(6)}$	$f_{1}=10 \mathrm{~Hz}$ $f_{3}=100 \mathrm{kHz}$ $f_{4}=1 / 10$ of the clock rate $A 1=1 \mathrm{UI}$ (UI: unit interval) $A 2=0.2 \mathrm{UI}$
		(

(1) Defined by mid-amplitude point of the signal.
(2) Measured across a 75Ω resistive load connected through a 1 m coaxial cable.
(3) In the frequency range of 5 MHz to $f c / 2$. ($f c$: serial clock frequency)
(4) In the frequency range of $f c / 2$ to $f c$.
(5) Determined between the 20% and 80% amplitude points and measured across a 75Ω resistive load. Overshoot of the rising and falling edges of the waveform shall not exceed 10% of the amplitude.
(6) 1 UI corresponds to $1 / f c$. Specification of jitter and jitter measurements methods shall comply with Recommendation ITU-R BT. 1363 - Jitter specifications and methods for jitter measurement of bit-serial signals conforming to Recommendations ITU-R BT.656, ITU-R BT. 799 and ITU-R BT. 1120 .
Output amplitude excursions due to signals with a significant dc component occurring for a horizontal line (pathological signals) shall not exceed 50 mV above or below the average peak-peak signal envelope. (In effect, this specification defines a minimum output coupling time constant.)

4.3.2 Line receiver characteristics (destination)

Table 27 specifies the line receiver characteristics. The line receiver should have an unbalanced input circuit. It must sense correctly the received data when connected to a line driver operating at the extreme voltage limits permitted by §4.3.1, and when connected through a cable having the worst condition permitted by \S 4.3.3.

TABLE 27
Line receiver characteristics

Item	Parameter	Value	
1	Input impedance	75Ω nominal	
2	Return loss	$\geq 15 \mathrm{~dB}^{(1)}, \geq 10 \mathrm{~dB}^{(2)}$	DC
3	Interfering signal	$\pm 2.5 \mathrm{~V}_{\max }$	Below 5 kHz
		$<2.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	5 kHz to 27 MHz
		$<100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$	Above 27 MHz
		$<40 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$	
4	Input jitter ${ }^{(3)}$	To be defined	

(1) In the frequency range of 5 MHz to $f c / 2$.
(2) In the frequency range of $f c / 2$ to $f c$.
(3) Specification of jitter and jitter measurements methods shall comply with Recommendation ITU-R BT.1363. Values for input jitter need to be defined. Input jitter is measured with a short cable (2 m).

4.3.3 Transmission line characteristics

Relevant specifications are given in Table 28.

TABLE 28
Transmission line characteristics

Item	Parameter	Value
1	Transmission loss ${ }^{(1)}$	$\leq 20 \mathrm{~dB}$ at $1 / 2$ clock frequency
2	Return loss	$\geq 15 \mathrm{~dB}^{(2)}, \geq 10 \mathrm{~dB}^{(3)}$
3	Impedance	75Ω nominal

(1) Loss characteristics of \sqrt{f}.
(2) In the frequency range of 5 MHz to $f c / 2$.
(3) In the frequency range of $f c / 2$ to $f c$.

4.3.4 Connector

The connector should have the mechanical characteristics conforming to the standard BNC type defined in IEC 169-8 (International Electrotechnical Committee) and its electrical characteristics should provide for a characteristic impedance of 75Ω and for a usable frequency range of up to 2.4 GHz .

4.4 Optical fibre interfaces

Optical interfaces should use single mode optical interfaces only and should comply with general rules of Recommendation ITU-R BT. 1367 - Serial digital fibre transmission system for signals conforming to Recommendations ITU-R BT.656, ITU-R BT. 799 and ITU-R BT. 1120.

To make use of this Recommendation the following specifications are necessary:
Rise and fall times: $\quad<270 \mathrm{ps}(20 \%$ to $80 \%)$
Output jitter (see Note 1): $f_{1}=10 \mathrm{~Hz}$
$f_{3}=100 \mathrm{kHz}$
$f_{4}=1 / 10$ of the clock rate
$A 1=0,135 \mathrm{I} \mathrm{UI}$
$A 2=0,135 \mathrm{UI}$
Input jitter needs to be defined. Input jitter is measured with a short cable (2 m).
NOTE 1 -Specification of jitter and jitter measurements methods shall comply with Recommendation ITU-R BT. 1363.

4.5 Bit-serial interface for 60/P and 50/P

The interface consists of two unidirectional interconnections between one device and another. The interconnections carry the data corresponding to the high definition television signal and associated data. The two interconnections are referred to as link A and link B. The term "link" is intended to define a serial bit stream formatted according to the specification in § 4. The total data rate of the dual link interface is $2.970 \mathrm{Gbit} / \mathrm{s}$ or $2.970 / 1.001 \mathrm{Gbit} / \mathrm{s}$.

4.5.1 Source sample numbering

Each line of the Y component consists of $2640(50 / \mathrm{P})$ or $2200(60 / \mathrm{P})$ total samples, and each line of C_{B} and C_{R} components consists of $1320(50 / \mathrm{P})$ or $1100(60 / \mathrm{P})$ total samples, as shown in Table 11. The samples are designated 0-2 639 or 0-2 199 for Y component and 0-1 319 or 0-1 099 for C_{B} and C_{R} components, and the individual samples are designated by suffixes such as sample $Y 135$ or sample $C_{B} 429$.

4.5.2 Interface data streams and multiplex structure

The video data is divided into two data streams conveyed through link A and link B. The serial data stream of one link contains two channels, first channel (Y channel) and second channel $\left(C_{B} / C_{R}\right.$ channel). Data is mapped into these channels. The term "channel" is intended to define how the first and second channels of the link are utilized.

Mapping of the data created by the 4:2:2 picture sampling structure is shown in Figs. 15 and 16. Each line of the source picture is alternately mapped between link A and link B of the dual-link interface.

4.5.3 Timing reference signals and line numbers

The F (field/frame), V (vertical), H (horizontal), P3, P2, P1, P0 (parity) bits and the interface line numbers of link A and link B shall be as shown in Figs. 15 and 16.

NOTE 1 - Buffering having a minimum duration of one horizontal line is required by this process at each interface, making a minimum transmission delay of two horizontal lines.

NOTE 2 - Figure 15 shows how the luminance and colour-difference signals are multiplexed within a transmission package.

FIGURE 15
Multiplexed horizontal data stream

Note $-H$ denotes one-line period of the original $60,60 / 1.001$ and 50 Hz progressive signals as specified by Recommendation ITU-R BT.709, Part 2.

Fig. 15 shows the 4:2:2 progressive data structure.

Frame rate	Total words per transmission package	Total words of active image data per transmission package	Word number				
	a	b	c	d			
60	2200	1920	1920	2196	0	1919	
$(60 / 1.001)$		1920	1920	2636	0	1919	
50	2640						

FIGURE 16
Dual-link interface line numbering and packaging

Note 1-1 125 progressive line numbers as defined in Recommendation ITU-R BT.709, Part 2.
Note 2-1 125 interlace digital line numbers are defined in Recommendation ITU-R BT.709, Part 2. The line number carried on the interface shall be the interface line numbe, not the source picture line number.

1120-16

4.5.4 Signal timing considerations

The timing difference between link A and link B should not exceed 40 ns at the source.

4.5.5 Link A and link B identification

Link A and link B shall be identified by the payload identifier in conformance with Recommendation ITU-R BT. 1614 associated with the definition in Table 29. Link A shall be channel 1 and link B shall be channel 2 in the specification.

TABLE 29
Payload identifier definitions for 1920×1080 video payloads on
dual link high definition digital interfaces

Bits	Byte 1	Byte 2	Byte 3	Byte 4
Bit 7	1	Interlaced (0) or Progressive (1) transport	Reserved	Reserved
Bit 6	0	Interlaced (0) or Progressive (1) picture	Reserved	Channel assignment of dual link Ch1 (0) or Ch2 (1)
Bit 5	0	Reserved	Reserved	Reserved
Bit 4	0	Reserved	Reserved	Dynamic range
Bit 3	0	Picture rate	Sampling structure	$\begin{aligned} & 100 \%(0 h), 200 \% \\ & (1 \mathrm{~h}), \\ & 400 \%(2 \mathrm{~h}), \\ & \text { Reserved (3h) } \end{aligned}$
Bit 2	1			Reserved
Bit 1	1			Bit depth
Bit 0	1			$\begin{aligned} & \text { 8-bit (0h), 10-bit (1h), } \\ & \text { 12-bit (2h), } \\ & \text { Reserved (3h) } \end{aligned}$

4.5.6 Ancillary data

The ancillary data shall be mapped into the blanking area of link A and link B, and shall be in conformance with Recommendation ITU-R BT.1364. The ancillary data mapping onto link A shall be prior to the mapping onto link B.

4.5.7 Audio data

The audio data shall be mapped into the ancillary data space of link A and link B, and shall be in conformance with Recommendation ITU-R BT.1365. The audio data mapping onto link A shall be prior to the mapping onto link B.

- Example 1: When 12 channels of audio data are mapped onto the dual link interface, all of the 12 channels shall be mapped onto link A - it is prohibited to map 8 channels onto link A and 4 channels onto link B.
- Example 2: When 20 channels of audio data are mapped, 16 channels shall be mapped onto link A and 4 channels shall be mapped onto link B.

4.5.8 Time code

The time code shall be mapped into the ancillary data space of link A and link B, and shall be in conformance with Recommendation ITU-R BT.1366. The time code mapping onto link A shall be prior to the mapping onto link B.

4.5.9 Applications of the dual link bit-serial digital interface

Appendix 1 shows some HDTV applications of the dual link high definition bit-serial digital interface for other signal formats.

Appendix 1
 to Part 2

Applications of the dual-link high-definition serial digital interface

The dual-link high-definition serial digital interface can also be used to convey HDTV source signal formats listed in Table 30.

TABLE 30

HDTV source signal format

Signal format sampling structure	Pixel bit depth	Frame/field rates
$4: 4: 4(R G B)$ $4: 4: 4: 4(R G B+A)$	10 bit	
$4: 4: 4(R G B)$	12 bit	$30,30 / 1.001,25,24$, and $24 / 1.001 \mathrm{~Hz}$ progressive and segmented frame $60,60 / 1.001$, and 50 Hz fields interlaced
$4: 2: 2\left(Y C_{B} C_{R}\right)$	12 bit	10 bit

NOTE - The "A" component is an auxiliary component which is user defined dependent upon the application. In the case when the A component is used for non-picture data, the bit depth of the auxiliary signal is constrained to 8 bits maximum.

1 4:4:4 (RGB) and 4:4:4:4 (RGB+A) 10-bit signals of 30/P, 30/PsF, $60 / \mathrm{I}, 25 / \mathrm{P}, 25 / \mathrm{PsF}$, 50/I, 24/P and 24/PsF systems

1.1 Source sample numbering

Each line of the G, B, R and A components consists of 2750,2640 or 2200 total samples as shown in Table 11. The samples are designated 0-2 749, 0-2 639, or 0-2 199 and the individual samples are designated by suffixes such as sample $G 135$ or sample $B 429$.

1.2 Interface data streams

Link A data stream contains all the G component samples plus the even-numbered ($0,2,4$, etc.) samples from the B and R components. Link B data stream contains the odd-numbered ($1,3,5$, etc.) samples from the B and R components plus all the A component samples (see Fig. 17).

FIGURE 17
Multiplex structure for 4:4:4 ($R G B$) and 4:4:4:4 ($R G B+A$) 10-bit signals

Link B

Frame/field rates	Pixel bit depth	Total words per transmission package	Total words of active image data per transmission package	Word number a
60 or $60 / 1.001$ fields, 30 or $30 / 1.001$ frames	10 bit	2200	1920	2199
50 fields, 25 frames	10 bit	2640	1920	2639
24 or $24 / 1.001$ frames	10 bit	2750	1920	2749

1.3 Multiplex structure

The video data words shall be conveyed in the following order: (see Fig. 18)
Link A data stream: $B 0, G 0, R 0, G 1, B 2, G 2, R 2, G 3 \ldots$
Link B data stream: $B 1, A 0, R 1, A 1, B 3, A 2, R 3, A 3 \ldots$

FIGURE 18
Link contents for 4:4:4 ($R G B$) and 4:4:4:4 ($R G B+A$) 10-bit signals

	Sample number					
	0	1	2	3	4	5
	G	G	G	G	G	G
Link A	B	B	B	B	B	B
	R	R	R	R	R	R
Link B	A	A	A	A	A	A
						1120-18

1.4 Auxiliary signal

Use of the auxiliary (A) signal is application dependent.
If the auxiliary signal is not present, the default value of the auxiliary component shall be set to $64{ }_{h}$. If the auxiliary signal is used for conveying picture information, the raster format and frame/field rate shall be the same as the $R G B$ components carried on the interface. If the auxiliary signal is used for conveying non-picture information, data words of the auxiliary signal shall be 8 -bit maximum.
Data values 000_{h} to 003_{h} and $3 \mathrm{FC}_{\mathrm{h}}$ to $3 \mathrm{FF}_{\mathrm{h}}$ shall not be permitted.

2 4:4:4 (RGB) 12-bit signals of 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P and 24/PsF systems

2.1 Source sample numbering

Each line of the G, B, and R components consists of 2750,2640 or 2200 total samples as shown in Table 11. The samples are designated 0-2749, 0-2639 or 0-2 199 and the individual samples are designated by suffixes such as sample $G 135$ or sample $B 429$. The samples are 12 -bit quantized, which may be done according to the digital encoding equations in Recommendation ITU-R BT.1361. The most significant 10 bits of the 12 -bit samples are designated by suffixes such as sample G135:2-11 or sample B429:2-11, and the least significant 2 bits of 12-bit samples are designated by suffixes such as sample $G 135: 0-1$ or sample $B 429: 0-1$. The least significant 2 bits of the R, G and B signals are mapped to the 1 st channel of link B , and are designated by suffixes such as $R G B 135: 0-1$. The n-th bit of R, G and B signals is designated by a suffix such as $G: n$. The $R G B: 0-1$ data structure is defined in $\S 2.3$.

2.2 Interface data streams

Link A data stream contains the most significant 10 bits of all the G component samples, plus the most significant 10 bits of the even-numbered ($0,2,4$, etc.) samples in the B and R components. Link B data stream contains the most significant 10 bits of odd-numbered (1, 3, 5, etc.) samples in the B and R components, plus the least significant 2 bits from all the samples in the R, G and B components (see Fig. 19).

FIGURE 19

Multiplex structure for 4:4:4 (RGB) 12-bit signals

Link B

Frame/field rate	Pixel bit depth	Total words per transmission package	Total words of active image data per transmission package	Word number a
60 or $60 / 1.001$ fields, 30 or $30 / 1.001$ frames	12 bits	2200	1920	2199
50 fields, 25 frames	12 bits	2640	1920	2639
24 or $24 / 1.001$ frames	12 bits	2750	1920	2749

2.3 RGB:0-1 onto first channel of link B data mapping

Mapping of the least significant 2 bits from R, G and B onto the first channel of link B is shown in Table 31.

TABLE 31

RGB:0-1 onto first channel of link B mapping structure

	Bit number									
Word	9 (MSB)	8	7	6	5	4	3	2	1	0 (LSB)
	$\overline{\mathrm{B} 8}$	EP	$G: 1$	$G: 0$	$B: 1$	$B: 0$	$R: 1$	$R: 0$	Res	Res

MSB: most significant bit.
LSB: least significant bit.
Bit 8 is the even parity for Bit 7 through Bit 0 .
Bit 9 is the complement of Bit 8 .
Bit 0 and Bit 1 are the reserved bits (reserved bits shall be set to 0 until defined).

2.4 Multiplex structure

The video data words shall be conveyed in the following order: (see Fig. 20)

Link A data stream: $B 0: 2-11, G 0: 2-11, R 0: 2-11, G 1: 2-11, B 2: 2-11, G 2: 2-11, R 2: 2-11, G 3: 2-11 \ldots$

Link B data stream: B1:2-11, RGB0:0-1, R1:2-11, RGB1:0-1, B3:2-11, RGB2:0-1, R3:2-11, RGB3:0-1 ...

FIGURE 20
Link contents for 4:4:4 (RGB) 12-bit signals

	Sample number					
	0	1	2	3	4	5
Link A	G:2-11	G:2-11	G:2-11	G:2-11	G:2-11	G:2-11
	B:2-11	B:2-11	B:2-11	B:2-11	B:2-11	B:2-11
	R:2-11	R:2-11	R:2-11	R:2-11	R:2-11	R:2-11
Link B	RGB:0-1	RGB:0-1	RGB:0-1	RGB:0-1	RGB:0-1	RGB:0-1
						1120-20

4:2:2 $\left(\mathrm{YC}_{B} C_{R}\right) 12$-bit signals of $30 / \mathrm{P}, 30 / \mathrm{PsF}, 60 / \mathrm{I}, 25 / \mathrm{P}, 25 / \mathrm{PsF}, 50 / \mathrm{I}, 24 / \mathrm{P}$ and $24 / \mathrm{PsF}$
systems

3.1 Source sample numbering

Each line of the Y component consists of 2750,2640 or 2200 total samples and each line of the C_{B} and C_{R} components consists of 1375,1320 , or 1100 total samples, as shown in Table 11. The samples are designated 0-2 749, 0-2 639 or 0-2 199 for Y component and 0-1 374, 0-1319 or 0-1 099 for C_{B} and C_{R} components, and the individual samples are designated by suffixes such as sample $Y 135$ or sample $C_{B} 429$. The samples are 12-bit quantized, which may be done according to the digital encoding equations in Recommendation ITU-R BT.1361. The most significant 10 bits of the 12-bit samples are designated by suffixes such as sample $Y 135: 2-11$ or sample $C_{B} 429: 2-11$, and the least significant 2 bits of 12-bit samples are designated by suffixes such as sample Y135:0-1 or sample $C_{B} 429: 0-1$. The least significant 2 bits of the Y, C_{B} and C_{R} signals are mapped to the first channel of link B, and are designated by suffixes such as $Y C_{B} C_{R} 135: 0-1$ and $Y 136: 0-1$. The n-th bit of Y, C_{B} and C_{R} signals is designated by a suffix such as $Y: n$. The $Y C_{B} C_{R}: 0-1$ and $Y: 0-1$ data structure is defined in § 3.3.

3.2 Interface data streams

Link A data stream contains the most significant 10 bits of all the Y component samples plus the most significant 10 bits of all the even-numbered C_{B}, C_{R} components samples. Link B data stream contains the least significant 2 bits of Y, C_{B}, C_{R} components samples at even-numbered sample points, and the least significant 2 bits of Y (only) at odd-numbered sample points, plus the A component (see Fig. 21).

$3.3 \quad Y C_{B} C_{R}: \mathbf{0 - 1}$ and $Y: 0$-1 onto first channel of link B data mapping

Mapping of the least significant 2 bits from the even-numbered samples of Y, C_{B} and C_{R}, and the least significant 2 bits from the odd-numbered samples of Y (only), onto the first channel of link B, is shown in Tables 32 and 33 and Fig. 22.

TABLE 32

$Y C_{B} C_{R}: \mathbf{0 - 1}$ onto first channel of link B mapping structure

Bit number										
Word	$\begin{gathered} 9 \\ (\mathrm{MSB}) \end{gathered}$	8	7	6	5	4	3	2	1	$\begin{gathered} 0 \\ \text { (LSB) } \end{gathered}$
	Bit8	EP	Y:1	$Y: 0$	$C_{B}: 1$	$C_{B}: 0$	$C_{R}: 1$	$C_{R}: 0$	Res	Res

MSB: most significant bit.
LSB: least significant bit.
Bit 8 is the even parity for Bit 7 through Bit 0 .
Bit 9 is the complement of Bit 8 .
Bit 0 and Bit 1 are the reserved bits (reserved bits shall be set to 0 until defined).

TABLE 33

Y:0-1 onto 1st channel of link B mapping structure

| | Bit number | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Word | 9
 $(M S B)$ | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| | | | | | | | | | | |
| (LSB) | | | | | | | | | | |$|$

MSB: most significant bit.
LSB: least significant bit.
Bit 8 is the even parity for Bit 7 through Bit 0 .
Bit 9 is the complement of Bit 8 .
Bit 0 and Bit 1 are the reserved bits (reserved bits shall be set to 0 until defined).

FIGURE 21

Multiplex structure for 4:2:2 $\left(Y C_{B} C_{R}\right)$ 12-bit signals

Link B

1st channel

1120-21

Frame/field rate	Pixel bit depth	Total words per transmission package	Total words of active image data per transmission package	Word number a
60 or $60 / 1.001$ fields, 30 or $30 / 1.001$ frames	12 bit	2200	1920	2199
50 fields, 25 frames	12 bit	2640	1920	2639
24 or $24 / 1.001$ frames	12 bit	2750	1920	2749

3.4 Multiplex structure

The video data words shall be conveyed in the following order: (see Fig. 22)
Link A data stream: $C_{B} 0: 2-11, \quad Y 0: 2-11, C_{R} 0: 2-11, \quad Y 1: 2-11, C_{B} 2: 2-11, \quad Y 2: 2-11, C_{R} 2: 2-11$, Y3:2-11 ...

Link B data stream: $A 0, Y C_{B} C_{R} 0: 0-1, A 1, Y 1: 0-1, A 2, Y C_{B} C_{R} 2: 0-1, A 3, Y 3: 0-1 \ldots$

FIGURE 22
Link contents for 4:2:2 (YC $C_{B} C_{R}$ 12-bit signals

	Sample number				
	0	1	2	3	
	$Y: 2-11$	$Y: 2-11$	$Y: 2-11$	$Y: 2-11$	
Link A	$C_{B}: 2-11$		$C_{B}: 2-11$		
	$C_{R}: 2-11$		$C_{R}: 2-11$		1st channel
Link B	$Y C_{B} C_{R}: 0-1$	Y:0-1	$Y C_{B} C_{R}: 0-1$	Y:0-1	
	A	A	A	A	2nd channel

3.5 Auxiliary signal

See § 1.4.
$4 \quad 4: 4: 4\left(Y C_{B} C_{R}\right), 4: 4: 4: 4\left(Y C_{B} C_{R}+A\right) 10$-bit signals of $30 / \mathrm{P}, 30 / \mathrm{PsF}, 60 / \mathrm{I}, 25 / \mathrm{P}, 25 / \mathrm{PsF}$, 50/I, 24/P and 24/PsF systems

4.1 Source sample numbering

Each line of the Y, C_{B}, C_{R} and A component consists of 2750,2640 or 2200 total samples. The samples are designated $0-2749,0-2639$, or $0-2$ I199 and the individual samples are designated by suffixes such as sample $Y 135$ or sample $C_{B} 429$.

4.2 Interface data streams

Link A data stream contains all the Y component samples plus the even-numbered ($0,2,4$, etc.) samples from the C_{B} and C_{R} components. Link B data stream contains the odd-numbered (1,3, 5, etc.) samples from the C_{B} and C_{R} components plus all the A component samples (see Fig. 23).

FIGURE 23
Multiplex structure for 4:4:4 $\left(Y C_{B} C_{R}\right)$ and 4:4:4:4 $\left(Y C_{B} C_{R}+A\right)$ 10-bit signals

Link B

Frame/field rates	Pixel bit depth	Total words per transmission package	Total words of active image data per transmission package	Word number a
60 or $60 / 1.001$ fields, 30 or $30 / 1.001$ frames	10 bit	2200	1920	2199
50 fields, 25 frames	10 bit	2640	1920	2639
24 or $24 / 1.001$ frames	10 bit	2750	1920	2749

4.3 Multiplex structure

The video data words shall be conveyed in the following order: (see Fig. 24)
Link A data stream: $C_{B} 0, Y 0, C_{R} 0, Y 1, C_{B} 2, Y 2, C_{R} 2, Y 3 \ldots$
Link B data stream: $C_{B} 1, A 0, C_{R} 1, A 1, C_{B} 3, A 2, C_{R} 3, A 3 \ldots$

FIGURE 24
Link contents for 4:4:4 $\left(Y C_{B} C_{R}\right)$ and 4:4:4:4 $\left(Y C_{B} C_{R}+A\right)$ 10-bit signals

4.4 Auxiliary signal

See § 1.4.

$5 \quad$ 4:4:4 $\left(Y_{B} C_{R}\right)$ 12-bit signals of 30/P, 30/PsF, 60/I, 25/P, 25/PsF, 50/I, 24/P and 24/PsF systems

5.1 Source sample numbering

Each line of the Y, C_{B}, and C_{R} components consists of 2750,2640 or 2200 total samples. The samples are designated $0-2749,0-2639$ or $0-2199$ and the individual samples are designated by suffixes such as sample $Y 135$ or sample $C_{B} 429$. The samples are 12-bit quantized, which may be done according to the digital encoding equations in Recommendation ITU-R BT.1361. The most significant 10 bits of the 12-bit samples are designated by suffixes such as sample Y135:2-11 or sample $C_{B} 429: 2-11$, and the least significant 2 bits of 12 -bit samples are designated by suffixes such as sample $Y 135: 0-1$ or sample $C_{B} 429: 0-1$. The least significant 2 bits of the Y, C_{B} and C_{R} signals are mapped to the 1st channel of link B , and are designated by suffixes such as $Y C_{B} C_{R} 135: 0-1$. The n-th bit of Y, C_{B} and C_{R} signals is designated by a suffix such as $Y: n$. The $Y C_{B} C_{R}: 0-1$ data structure is defined as per § 3.3.

5.2 Interface data streams

Link A data stream contains the most significant 10 bits of all the Y component samples, plus the most significant 10 bits of the even-numbered ($0,2,4$, etc.) samples in the C_{B} and C_{R} components. Link B data stream contains the most significant 10 bits of odd-numbered ($1,3,5$, etc.) samples in the C_{B} and C_{R} components, plus the least significant 2 bits from all the samples in the Y, C_{B} and C_{R} components (see Fig. 25).

Multiplex structure for 4:4:4 $\left(Y C_{B} C_{R}\right)$ 12-bit signals

Link B

Frame/field rate	Pixel bit depth	Total words per transmission package	Total words of active image data per transmission package	Word number a
60 or $60 / 1.001$ fields, 30 or $30 / 1.001$ frames	12 bit	2200	1920	2199
50 fields, 25 frames	12 bit	2640	1920	2639
24 or $24 / 1.001$ frames	12 bit	2750	1920	2749

5.3 Multiplex structure

The video data words shall be conveyed in the following order: (see Fig. 26)
Link A data stream: $C_{B} 0: 2-11, Y 0: 2-11, C_{R} 0: 2-11, Y 1: 2-11, C_{B} 2: 2-11, Y 2: 2-11, C_{R} 2: 2-11$, Y3:2-11 ...

Link B data stream: $C_{B} 1: 2-11, Y C_{B} C_{R} 0: 0-1, C_{R} 1: 2-11, Y C_{B} C_{R} 1: 0-1, C_{B} 3: 2-11, Y C_{B} C_{R} 2: 0-1$, $C_{R} 3: 2-11, Y C_{B} C_{R} 3: 0-1 \ldots$

FIGURE 26
Link contents for 4:4:4 ($Y_{B} C_{R}$) 12-bit signals

Annex 1

Bit-serial digital checkfield for use in the HDTV digital interfaces

1 Scope

This Annex specifies digital test signals suitable for evaluating the low-frequency response of equipment handling HDTV serial digital video signals. Although a range of signals will produce the desired low-frequency effects, two specific signals are defined to test cable equalization and PLL lock-in, respectively. In the past, these two signals have been colloquially called "pathological signals."

2 General considerations

Stressing of the automatic equalizer is accomplished by using a signal with the maximum number of ones or zeros, with infrequent single clock period pulses to the opposite level. Stressing of the PLL is accomplished by using a signal with a maximum low-frequency content; that is, with a maximum time between level transitions.
2.1 Channel coding of the serial digital signal defined in this Recommendation utilizes scrambling and encoding into NRZI accomplished by a concatenation of the two following functions:

$$
G 1(x)=x^{9}+x^{4}+1
$$

$$
G 2(x)=x+1
$$

As a result of the channel coding, long runs of zeros in the $G 2(x)$ output data can be obtained when the scrambler, $G 1(x)$, is in a certain state at the time when the specific words arrive. That certain state will be present on a regular basis; therefore, continuous application of the specific data words will regularly produce the low-frequency effects.
2.2 Although the longest run of parallel data zeros (40 consecutive zeros) will occur during the EAV/SAV timing reference sequence (TRS) words, the frequency with which the scrambling of the TRS words coincide with the required scrambler state to permit either stressing condition is low. In the instances where this coincident occurs, the generation of the stressing condition is so time limited that equalizers and PLLs are not maximally stressed.
2.3 In the data portions of digital video signals (excluding TRS words in EAVs or SAVs, and ANC data flag words), the sample values are restricted to exclude data levels 0.00 to 0.75 and 255.00 to $255.75\left(000_{\mathrm{h}}\right.$ to 003_{h} and $3 \mathrm{FC}_{\mathrm{h}}$ to $3 \mathrm{FF}_{\mathrm{h}}$ in 10 -bit hexadecimal representation and 00.0_{h} to $00 . \mathrm{C}_{\mathrm{h}}$ and FF. 0_{h} to FF. C_{h}, in 8.2 hexadecimal notation) (see Note 1). the result of this restriction is that the longest run of zeros, at the scrambler input, is 16 (bits), occurring when a sample value of $128.00\left(200_{\mathrm{h}}\right.$ or $\left.80.0_{\mathrm{h}}\right)$ is followed by a value between $1.00\left(004_{\mathrm{h}}\right.$ or $\left.01.0_{\mathrm{h}}\right)$ and $1.75\left(007_{\mathrm{h}}\right.$ or $\left.01 . \mathrm{C}_{\mathrm{h}}\right)$. This situation can produce up to 26 consecutive zeros at the NRZI output, which is (also) not a maximally stressed case.

NOTE 1 - Within this Annex, the contents of digital word are expressed in both decimal and hexadecimal form. In decimal form, the eight MSBs are considered to be an integer part while the two additional bits are considered to be fractional parts. In hexadecimal form, both 10-bit hexadecimal and 8.2 hexadecimal notation are used. For example, the bit pattern 1001000101 would be expressed as $145.25,245_{\mathrm{h}}$ or 91.4_{h}.
2.4 Other specific data words in combination with specific scrambler states can produce a repetitive low-frequency serial output signal until the next EAV or SAV affects the scrambler state. It is these combinations of data words that form the basis of the test signals defined by this Annex.
2.5 Because of the Y / C interleaved nature of the component digital signal, it is possible to obtain nearly any permutation of word pair data values over the entire active picture area by defining a particular flat colour field in a noise-free environment. Certain of these permutations of word pair data values will produce the desired low-frequency effects.

3 Checkfield data

3.1 Receiver equalizer testing is accomplished by producing a serial digital signal with maximum d.c. content. Applying the sequence 192.00 (300_{h} or $\mathrm{C} 0.0_{\mathrm{h}}$), $102.00\left(198_{\mathrm{h}}\right.$ or $\left.66.0_{\mathrm{h}}\right)$ continuously to the C and Y samples (respectively) during the active line will produce a signal of 19 consecutive high (low) states followed by one low (high) state in a repetitive manner, once the
scrambler attains the required starting condition. Either polarity of the signal can be realized, indicated by the level of the 19 consecutive states. By producing approximately half of a field of continuous lines containing this sequence, the required scrambler starting condition will be realized on several lines, and this will result in the generation of the desired equalizer testing condition.
3.2 Receiver PLL testing is accomplished by producing a serial digital signal with maximum low-frequency content and minimum high-frequency content (i.e., lowest frequency of level transitions). Applying the sequence $128.00\left(200_{\mathrm{h}}\right.$ or $\left.80.0_{\mathrm{h}}\right), 68.00\left(110_{\mathrm{h}}\right.$ or $\left.44.0_{\mathrm{h}}\right)$ continuously to the C and Y samples (respectively) during the active line will produce a signal of 20 consecutive high (low) states followed by 20 low (high) states in a repetitive manner, once the scrambler attains the required starting condition. By producing approximately half of a field of continuous lines containing this sequence, the required scrambler starting condition will be realized on several lines, and this will result in the generation of the desired PLL testing condition.
3.3 Because the equalizer test works by producing a serial digital signal with a bias, steps must be taken to ensure that both polarities of bias are realized. To change the polarity of the bias from one frame to the next, the sum total of all the bits in all the data words in all the lines in a video field must be odd.

To ensure that the polarity of the bias can change often, a single Y sample data word in the signal is changed from $120.00\left(198_{\mathrm{h}}\right.$ or $\left.66.0_{\mathrm{h}}\right)$ to $100.00\left(190_{\mathrm{h}}\right.$ or $\left.64.0_{\mathrm{h}}\right)$ (a net change of 1 data bit), once every other frame. This causes the bias polarity to alternate at a frame rate regardless of whether the original frame bit sum is even or odd. The data word in which the value substitution is made is the first Y sample in the first active picture line of every other frame. The specific word and line for each signal format is listed in Table 34 as the polarity control word.
3.4 The sequence $192.00\left(300_{\mathrm{h}}\right.$ or $\left.\mathrm{C} 0.0_{\mathrm{h}}\right), 102.00\left(198_{\mathrm{h}}\right.$ or $\left.66.0_{\mathrm{h}}\right)$ and $128.00\left(200_{\mathrm{h}}\right.$ or $\left.80.0_{\mathrm{h}}\right)$, $68.00\left(110_{\mathrm{h}}\right.$ or $\left.44.0_{\mathrm{h}}\right)$ applied to C and Y samples results in shades of purple and gray, respectively. Reversing the C and Y ordering for each of these two sequences results in lighter and darker shades of green, respectively. Table 34 illustrates one ordering of each of the two sequences, but either ordering of the data values for each sequence is permitted by this Annex.

If the ordering described in $\S 3.1$ is reversed, then the polarity control word described in $\S 3.3$ is changed to $128.00\left(200_{\mathrm{h}}\right.$ or $\left.80.0_{\mathrm{h}}\right)$. The polarity control word in either case is located at the first Y sample in the first active picture line in the field(s) specified in § 3.3.

4 Serial digital interface (SDI) checkfield

Distribution of data in the SDI checkfield is shown in Fig. 27 for the signal standards. Specific distributions of sample values are shown in Table 34. In each field, the line where the signal transitions from the equalizer test signal data pattern to the PLL test signal data pattern is specified as a range of lines, rather than as a single specific line. Although the specific line selected within the specified range is not technically significant, the transition point should be consistent from frame-to-frame and from field-to-field (in the case of interlaced signal formats).

TABLE 34
SDI checkfield sample values

(1) The ordering of data values for each of the pairs of sample values may be reversed. If the ordering of the samples is reversed from the ordering in this Table, then the polarity control word value is $(128.00 Y)$ (see § 3.4).
(2) The polarity change word is a substitution of the first active picture area Y sample, made in the first active picture line of every other frame (see § 3.3).
(3) A range of line numbers for transitioning between the two test patterns is provided. The transition point within these ranges must be consistent across all fields (see § 4).

FIGURE 27

SDI checkfield

	Vertical blanking interval
$\begin{array}{ll} \text { EAV SAV } \end{array}$	First line of active picture 1 st half of active field 192.00, 102.00 for equalizer testing ${ }^{(1)}$
Horizontal blanking interval	2st half of active field $128.00,68.00$ for PLL testing ${ }^{(1)}$ Last line of active picture

(1) The ordering of data values for each of the pairs of sample values may be reversed (see § 3.4).

