

Recommendation ITU-R BS.2127-0
(06/2019)

Audio Definition Model renderer for
advanced sound systems

BS Series

Broadcasting service (sound)

ii Rec. ITU-R BS.2127-0

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-

frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit

of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional

Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution

ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are

available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent

Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

Series of ITU-R Recommendations

(Also available online at http://www.itu.int/publ/R-REC/en)

Series Title

BO Satellite delivery

BR Recording for production, archival and play-out; film for television

BS Broadcasting service (sound)

BT Broadcasting service (television)

F Fixed service

M Mobile, radiodetermination, amateur and related satellite services

P Radiowave propagation

RA Radio astronomy

RS Remote sensing systems

S Fixed-satellite service

SA Space applications and meteorology

SF Frequency sharing and coordination between fixed-satellite and fixed service systems

SM Spectrum management

SNG Satellite news gathering

TF Time signals and frequency standards emissions

V Vocabulary and related subjects

Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.

Electronic Publication

Geneva, 2019

© ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

http://www.itu.int/ITU-R/go/patents/en
http://www.itu.int/publ/R-REC/en

 Rec. ITU-R BS.2127-0 1

RECOMMENDATION ITU-R BS.2127-0, **

Audio Definition Model renderer for advanced sound systems

(2019)

Scope

This Recommendation specifies the reference renderer for use, including for programme exchange, with the

advanced sound systems specified in Recommendation ITU-R BS.2051-2, and the audio-related metadata

specified by the Audio Definition Model (ADM) in Recommendation ITU-R BS.2076-1. The audio renderer

converts a set of audio signals with associated metadata to a different configuration of audio signals and

metadata, based on the provided content metadata and local environmental metadata.

NOTE – Guidelines explaining the usage of the renderer are being developed.

Keywords

ADM, Audio Definition Model, metadata, renderer, AdvSS, advanced sound system, channel-based

audio, object-based audio, scene-based audio, multichannel audio

The ITU Radiocommunication Assembly,

considering

a) that Recommendation ITU-R BS.1909-0 – Performance requirements for an advanced

multichannel stereophonic sound system for use with or without accompanying picture, specifies the

requirements for an advanced sound system with or without accompanying picture;

b) that Recommendation ITU-R BS.2051-2 – Advanced sound system for programme

production, specifies an advanced sound system which is a system with a reproduction configuration

beyond those specified in Recommendation ITU-R BS.775-3 or a system with any reproduction

configuration that can support channel-based, object-based or scene-based input signal or their

combination with metadata;

c) that Recommendation ITU-R BS.2076-1 – Audio Definition Model, specifies the structure

of a metadata model that allows the format and content of audio files to be reliably described;

d) that Recommendation ITU-R BS.2094-1 – Common definitions for the audio definition

model, contains a set of common definitions for the Audio Definition Model;

e) that Recommendation ITU-R BS.2125-0 – A serial representation of the Audio Definition

Model, specifies a format of metadata based on the Audio Definition Model, segmented into a

time-series of frames;

f) that reproduction of advanced sound systems requires rendering of metadata associated with

sound signals in order to present the content to one of the Recommendation ITU-R BS.2051-2

loudspeaker configurations;

g) that users of advanced sound systems should have freedom in the selection of a rendering

method;

h) that it is desirable that there is an open specification of a single reference rendering method

that may be used for advanced sound system programmes;

 This Recommendation should be brought to the attention of ISO, IEC, SMPTE and ETSI.

** Radiocommunication Study Group 6 made editorial amendments to this Recommendation in the year 2021

in accordance with Resolution ITU-R 1.

2 Rec. ITU-R BS.2127-0

i) that the single reference renderer should allow content producers and broadcasters to monitor

and perform quality control during content production, verify the use of metadata, and ensure

interoperability with other elements of the production chain,

recommends

1 that the rendering methods described in Annex 1 should be the reference for how ADM

metadata specified in Recommendation ITU-R BS.2076-1, and accompanying audio signals, are to

be interpreted;

2 that Note 1 below be considered part of the Recommendation.

NOTE 1 – Compliance with this Recommendation is voluntary. However, the Recommendation may

contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance

with the Recommendation is achieved when all of these mandatory provisions are met. The words

“shall” or some other obligatory language such as “must” and the negative equivalents are used to

express requirements. The use of such words shall in no way be construed to imply partial or total

compliance with this Recommendation.

Annex 1

Specifications for ADM renderer for advanced sound systems

TABLE OF CONTENTS

 Page

Annex 1 – Specifications for ADM renderer for advanced sound systems 2

1 Introduction .. 4

1.1 Abbreviations/Glossary .. 4

2 Conventions .. 5

2.1 Notations ... 5

2.2 Coordinate System .. 5

3 Structure ... 6

3.1 Target environment behaviour .. 7

4 ADM-XML Interface ... 7

4.1 AudioBlockFormat ... 8

4.2 Position sub-elements ... 8

4.3 TypeDefinition .. 8

5 Rendering Items .. 8

 Rec. ITU-R BS.2127-0 3

5.1 Metadata Structures .. 9

5.2 Determination of Rendering Items ... 11

5.3 Rendering Item Processing ... 20

6 Shared Renderer Components .. 21

6.1 Polar Point Source Panner .. 22

6.2 Determination if angle is inside a range with tolerance 28

6.3 Determine if a channel is an LFE channel from its frequency metadata 29

6.4 Block Processing Channel .. 30

6.5 Generic Interpretation of Timing Metadata .. 31

6.6 Interpretation of TrackSpecs .. 32

6.7 Relative Angle .. 33

6.8 Coordinate Transformations ... 33

7 Render Items with typeDefinition==Objects .. 34

7.1 Structure .. 34

7.2 InterpretObjectMetadata ... 34

7.3 Gain Calculator ... 36

7.4 Decorrelation Filters ... 63

8 Render Items with typeDefinition==DirectSpeakers ... 63

8.1 Mapping Rules .. 64

8.2 LFE Determination ... 64

8.3 Loudspeaker Label Matching ... 64

8.4 Screen Edge Lock ... 64

8.5 Bounds Matching .. 65

9 Render Items with typeDefinition==HOA ... 65

9.1 Supported HOA formats ... 65

9.2 Unsupported sub-elements .. 65

9.3 Rendering of HOA signals over loudspeakers .. 66

10 Metadata Conversion .. 68

10.1 position Conversion .. 69

10.2 Extent Conversion .. 71

10.3 objectDivergence Conversion ... 73

4 Rec. ITU-R BS.2127-0

11 Data Structures and Tables ... 73

11.1 Internal Metadata Structures ... 73

11.2 Allocentric Loudspeaker Positions ... 75

11.3 DirectSpeakers mapping data ... 79

Bibliography... 85

Attachment 1 to Annex 1 (informative) – Guide to corresponding parts of the specification

to ADM Metadata ... 86

A1.1 ADM Metadata across ITU-R ADM Renderer .. 86

Attachment 2 to Annex 1 (Informative) – An Alternative virtual loudspeaker configuration 87

A2.1 Specification of alternative virtual loudspeaker configuration 87

1 Introduction

This Recommendation describes an audio renderer providing a complete interpretation of the Audio

Definition Model (ADM) metadata, specified in Recommendation ITU-R BS.2076-1. Usage of ADM

metadata is recommended to describe audio formats used in programme production for Advanced

Sound Systems (AdvSS), also known as Next-Generation Audio (NGA) systems. This renderer is

capable of rendering audio signals to all loudspeaker configurations specified in Recommendation

ITU-R BS.2051-2.

This specification is accompanied by an open source reference implementation, written in

Python for file-based ADM processing, available at:

https://www.itu.int/dms_pub/itu-r/oth/0a/07/R0A0700003E0001ZIPE.zip

This specification document is a description of the reference code.

1.1 Abbreviations/Glossary

ADM Audio definition model

BMF Broadcast metadata exchange format

BW64 Broadcast wave 64 format

BWF Broadcast wave format

HOA Higher-order ambisonics

NGA Next generation audio

PSP Point source panner

VBAP Vector base amplitude panning

XML Extensible markup language

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/dms_pub/itu-r/oth/0a/07/R0A0700003E0001ZIPE.zip

 Rec. ITU-R BS.2127-0 5

2 Conventions

2.1 Notations

In this Recommendation the following conventions will be used:

– Text in italic refers to ADM elements, sub-elements, parameters or attributes of

Recommendation ITU-R BS.2076-1: audioObject

– Monospaced text refers to source code (variables, functions, classes) of the reference

implementation: core.point_source.PointSourcePanner. It should be noted

that for readability reasons the prefix iar. is omitted.

– Upper case bold is used for matrices: 𝐗

– Lower case bold is used for vectors: 𝐱

– Subscripts in the form 𝑥𝑛 denotes the n-th element of a vector 𝐱

– Sections of monospaced text with colour highlighting are used to describe data structures:

 struct PolarPosition : Position {
 float azimuth, elevation, distance = 1;
};

2.2 Coordinate System

Both Cartesian and Polar Coordinates are used throughout this document.

FIGURE 1

Coordinate System

The polar coordinates are specified in accordance with Recommendation ITU-R BS.2076-1 as

follows:

– Azimuth, denoted by φ, is the angle in the horizontal plane, with 0 degrees in front and

positive angles counter-clockwise.

– Elevation, denoted by θ, is the angle above the horizontal plane, with 0 degrees in front and

positive angles going up.

6 Rec. ITU-R BS.2127-0

The Cartesian coordinates are specified in accordance with Recommendation ITU-R BS.2076-1 as

follows:

– The positive Y-Axis is pointing to the front.

– The positive X-Axis is pointing to the right.

– The positive Z-Axis is pointing to the top.

The HOA decoder specified in § 9 uses the HOA coordinate system and notation as specified in

Recommendation ITU-R BS.2076-1, where:

– Elevation, denoted by θ is the angle in radians from the positive Z-Axis.

– Azimuth, denoted by ϕ, is the angle in the horizontal plane in radians, with 0 in front and

positive angles counter-clockwise.

3 Structure

FIGURE 2

Overall architecture overview

The overall architecture consists of several core components and processing steps, which are

described in the following chapters of this document.

– The transformation of ADM data to a set of renderable items is described in §5.2.

– Optional processing to apply importance and conversion emulation is applied to the rendering

items as described in § 5.3.

– The rendering itself is split into subcomponents based on the type (typeDefinition) of the

item:

• Rendering of object-based content is described in § 7.

• Rendering of direct speaker signals is described in § 8.

• HOA Rendering is described in § 9.

• Shared parts for all components are described in § 6.

Matrix type processing is not shown in the diagram, as this type is handled during the creation of

rendering items and as part of the renderers for other types.

 Rec. ITU-R BS.2127-0 7

3.1 Target environment behaviour

On initialisation, the user may select a loudspeaker layout from those specified in Recommendation

ITU-R BS.2051-2.

The nominal position of each loudspeaker (polar_nominal_position) is as specified in

Recommendation ITU-R BS.2051-2. M+SC and M-SC have nominal azimuths of 15° and −15°.

The real position of each loudspeaker (polar_position) may be specified by the user. If this is not

given, then the nominal position is used. Given real positions are checked against the ranges given in

Recommendation ITU-R BS.2051-2; if they are not within range, then an error is issued. Additionally,

the absolute azimuth of both M+SC and M-SC loudspeakers must either be between 5° and 25° or

between 35° or 60°.

4 ADM-XML Interface

ADM is a generic metadata model which can be represented naturally as an XML document. The

following subsections describe how the ADM is mapped to internal data structures. These are used

in the course of this Recommendation, and are in line with the data structures used by the reference

implementation.

It should be noted that despite XML being the typical and common form to represent ADM metadata,

the renderer is not limited to this representation.

The mapping between the ADM and the internal data structures follows a set of simple rules, which

are described below. As with all rules, there are some exceptions; these are described in the following

subsections.

– All the main ADM elements shall be represented as a subclass derived from ADMElement

which has the signature:

 class ADMElement {
 string id;
 ADM adm_parent;
 bool is_common_definition;
};

– Each ADM element class shall be extended with all the ADM attributes and sub-elements,

which are mapped to class attributes.

– If a sub-element contains more than one value it is in itself a class. E.g. the jumpPosition

sub-element is a class with the signature:

 class JumpPosition {
 bool flag;
 float interpolationLength;
};

– During the parsing of the XML, references to other ADM elements are stored as plain IDs

using the sub-element name as attribute name (e.g.

AudioObject.audioPackFormatIDRef). To simplify the later on access, these

references are then resolved in a following step, where resolved elements are added to each

data structure directly (AudioObject.audioPackFormats).

Following these rules the full signature of the AudioContent element is represented like this:

class AudioContent : ADMElement {
 string audioContentName;
 string audioContentLanguage;
 LoudnessMetaData loudnessMetadata;

8 Rec. ITU-R BS.2127-0

 int dialogue;
 vector<AudioObject*> audioObjects;
 vector<string> audioObjectIDRef;
};

The main ADM elements and its dedicated classes are implemented in

fileio.adm.elements.main_elements. The reference resolving is implemented in each

class (in ADM and each main ADM element) as the lazy_lookup_references method.

The parsing and writing of the ADM is implemented in fileio.adm.xml.

4.1 AudioBlockFormat

audioBlockFormat differs from other ADM elements as its sub-elements and attributes are different

depending on the typeDefiniton. To reflect this, the AudioBlockFormat is split into multiple

classes, one for each supported typeDefinition: AudioBlockFormatObjects,

AudioBlockFormatDirectSpeakers and AudioBlockFormatHoa.

These are implemented in fileio.adm.elements.block_formats.

4.2 Position sub-elements

Positions are represented by multiple position sub-elements in the ADM. To simplify the internal

handling, the values of these sub-elements are combined into a single attribute within the

AudioBlockFormat representation.

For typeDefinition==Objects this is either ObjectPolarPosition or

ObjectCartesianPosition, depending on the coordinate system used.

For typeDefinition==DirectSpeakers this is DirectSpeakerPolarPosition or

DirectSpeakerCartesianPosition.

4.3 TypeDefinition

The typeDefinition and typeLabel attributes describe one single property. For that reason, internally

only a single entity shall be used to represent them.

enum TypeDefinition {
 DirectSpeakers = 1;
 Matrix = 2;
 Objects = 3;
 HOA = 4;
 Binaural = 5;
};

enum FormatDefinition {
 PCM = 1;
};

5 Rendering Items

A RenderingItem is a representation of an ADM item to be rendered – holding all the information

necessary to do so. An item shall therefore represent a single audioChannelFormat or a group of

audioChannelFormats. As each typeDefinition has different requirements it is necessary to have

different metadata structures for each typeDefinition to adapt to its specific needs.

The following section describes the used metadata structures in more detail.

 Rec. ITU-R BS.2127-0 9

5.1 Metadata Structures

The RenderingItems are built upon the following base classes:

– TypeMetadata to hold all the (possibly time-varying) parameters needed to render the item;

– MetadataSource to hold a series of TypeMetadata objects; and

– RenderingItem to associate a MetadataSource with a source of audio samples and

extra information not necessarily required by the renderer.

As each typeDefinition has different requirements TypeMetadata and RenderingItem have to be

subclassed for each typeDefinition to adapt to its specific needs. MetadataSource is typeDefinition

independent. Common data is consolidated in ExtraData:

struct ExtraData {
 optional<duration> object_start;
 optional<duration> object_duration;
 ReferenceScreen reference_screen;
 Frequency channel_frequency;
};

Importance data shall be stored in an ImportanceData structure:

struct ImportanceData {
 optional<int> audio_object;
 optional<int> audio_pack_format;
};

References to input audio samples shall be encapsulated in TrackSpec structures, to allow for the

specification of silent tracks and Matrix processing. DirectTrackSpec specifies that samples

shall be read directly from the indicated input track. SilentTrackSpec specifies that the samples

shall all be zero.

struct TrackSpec {};

struct DirectTrackSpec : TrackSpec {
 int track_index;
};

struct SilentTrackSpec : TrackSpec {
};

Two TrackSpec types are provided to support typeDefinition==DirectSpeakers.

MatrixCoefficientTrackSpec specifies that the parameters specified in coefficient

(from a Matrix audioBlockFormat coefficient element) are applied to the samples of

input_track, while MixTrackSpec specifies that the samples from multiple TrackSpecs

should be mixed together.

struct MatrixCoefficientTrackSpec : TrackSpec {
 TrackSpec input_track;
 MatrixCoefficient coefficient;
};

struct MixTrackSpec : TrackSpec {
 vector<TrackSpec> input_tracks;
};

This is implemented in core.utils.metadata_input. The following subsections describe the

specific implementations for each typeDefinition in more detail.

10 Rec. ITU-R BS.2127-0

5.1.1 DirectSpeakers

For typeDefinition==DirectSpeakers the TypeMetadata shall hold the audioBlockFormat, the list

of audioPackFormats leading to the containing audioChannelFormat, plus the common data

collected in ExtraData.

struct DirectSpeakersTypeMetadata : TypeMetadata {
 AudioBlockFormatDirectSpeakers block_format;
 vector<AudioPackFormat> audioPackFormats;
 ExtraData extra_data;
};

As each audioChannelFormat with typeDefinition==DirectSpeakers can be processed

independently, the RenderingItem contains only a single TrackSpec.

struct DirectSpeakersRenderingItem : RenderingItem {
 TrackSpec track_spec;
 MetadataSource metadata_source;
 ImportanceData importance;
};

5.1.2 Matrix

typeDefinition==Matrix shall be supported using the TrackSpec mechanism in rendering items for

other types, so no explicit MatrixTypeMetadata or MatrixRenderingItem classes are required.

5.1.3 Objects

The ObjectTypeMetadata shall hold an audioBlockFormat plus the common data collected in

ExtraData.

struct ObjectTypeMetadata : TypeMetadata {
 AudioBlockFormatObjects block_format;
 ExtraData extra_data;
};

As each audioChannelFormat with typeDefinition==Objects can be processed independently, the

RenderingItem shall contain only a single TrackSpec.

struct ObjectRenderingItem : RenderingItem {
 TrackSpec track_spec;
 MetadataSource metadata_source;
 ImportanceData importance;
};

5.1.4 HOA

For typeDefinition==HOA the situation is different from typeDefinition==DirectSpeakers and

typeDefinition==Objects, because a pack of audioChannelFormats has to be processed together.

That is why the HOATypeMetadata does not contain an audioBlockFormat plus ExtraData, but

the necessary information is extracted from the audioBlockFormats and directly stored in the

HOATypeMetadata.

struct HOATypeMetadata : TypeMetadata {
 vector<int> orders;
 vector<int> degrees;
 optional<string> normalization;
 optional<float> nfcRefDist;
 bool screenRef;
 ExtraData extra_data;
 optional<duration> rtime;

 Rec. ITU-R BS.2127-0 11

 optional<duration> duration;
};

For the same reason, the situation for the HOARenderingItem is different. Here the

HOARenderingItem not only contains one TrackSpec, but rather a vector of TrackSpecs.

struct HOARenderingItem : RenderingItem {
 vector<TrackSpec> track_specs;
 MetadataSource metadata_source;
 vector<ImportanceData> importances;
};

5.1.5 Binaural

As the typeDefinition==Binaural is not supported, there are no BinauralTypeMetadata or

BinauralRenderingItem classes.

5.2 Determination of Rendering Items

To determine the RenderingItems, the ADM structure shall be analysed. Figure 3 illustrates the

path that is taken.

The state of the item selection process is carried between the various components in a single object

termed the ‘item selection state’, which when completely populated represents all the components

that make up a single RenderingItem. Each component accepts a single item selection state, and

returns copies (zero to many) of it with more entries filled in. These steps are composed together in

select_rendering_items, a nested loop over the states when modified by each component in

turn.

This is implemented in core.select_items.

12 Rec. ITU-R BS.2127-0

FIGURE 3

Path through ADM structure to determine the RenderingItems

5.2.1 Starting Point

Rendering item selection can start from multiple points in the ADM structure depending on the

elements included in the file.

If there are audioProgramme elements, then a single audioProgramme is selected; otherwise if there

are audioObject elements then all audioObjects shall be selected; otherwise all audioTrackUIDs

(CHNA rows) are selected (called ‘CHNA-only mode’).

5.2.2 audioProgramme Selection

Only one audioProgramme is selected. The programme to use can be selected by the user. If no

audioProgramme is selected, the one with the numerically lowest ID shall be selected.

5.2.3 audioContent Selection

All audioContents referenced by the selected audioProgramme are selected.

5.2.4 audioObject Selection

audioObjects shall be set to all possible paths through the audioObject hierarchy starting at the

selected audioContent (following audioObject links) in turn.

 Rec. ITU-R BS.2127-0 13

5.2.5 Complementary audioObject Handling

audioComplementaryObject references shall be interpreted as defining groups of audioObjects, of

which only one audioObject will be reproduced.

A group is described by audioComplementaryObject references from the default audioObject in the

group to all non-default audioObjects in the group. The user may provide a set of audioObjects to

select, which overrides the defaults. From this, a set of audioObjects to ignore is determined, and

states are discarded if any of the audioObjects in the audioObject path are in this set.

5.2.5.1 Selection of Complementary audioObjects to Ignore

First, the set of audioObjects selected by the user shall be augmented with the defaults for each group:

for each root audioObject (an audioObject with audioComplementaryObject references), if none of

the audioObjects in the group defined by the root audioObject this group are in the set, then the root

audioObject (the default) shall be added.

The set of audioObjects to ignore is then the set of all complementary audioObjects (i.e. audioObjects

with an audioComplementaryObject reference and audioObjects pointed to by an

audioComplementaryObject reference) minus the augmented set of audioObjects selected by the user.

If audioObjects not belonging to any complementary group are selected, or multiple audioObjects

are selected in a single audioObject group (either by user error, or as a result of overlapping groups),

an error is raised.

5.2.6 audioPackFormat Matching

The next step shall be to match the information in an audioObject (the list of audioPackFormats,

audioTrackUIDs and number of silent tracks, or simply the list of all audioTrackUIDs in CHNA-only

mode) against the audioPackFormat and audioChannelFormat structures.

This is specified as a matching/search problem rather than specific paths through the reference

structures that have to be resolved, because there are multiple elements on the two sides which have

to match and not conflict to form a valid solution.

The match is considered valid only if exactly one solution is found. If no solutions are found, then

the metadata is contradictory and an error shall be raised. If multiple solutions are found, then the

metadata is ambiguous, and an error shall be raised. For both types of error, diagnostics are run in

order to display possible causes of the error to the user.

5.2.6.1 Packs to Match Against

The specification of the audioPackFormats to match against are given as a list of

AllocationPack structures:

struct AllocationChannel {
 AudioChannelFormat channel_format;
 vector<AudioPackFormat> pack_formats;
};

struct AllocationPack {
 AudioPackFormat root_pack;
 vector<AllocationChannel> channels;
};

Each one shall specify the root audioPackFormat (root_pack, the top level audioPackFormat

which references all channels to be allocated), and a list of the channels to match within that pack.

Each channel is a combination of an audioChannelFormat reference and a list of possible

audioPackFormats which that channel could be associated with.

14 Rec. ITU-R BS.2127-0

For each audioPackFormat pack where typeDefinition != Matrix, an AllocationPack object is

created where:

– root_pack is pack.

– channels has one entry for each audioChannelFormat accessible from pack (recursively

following audioPackFormat links), where pack_formats contains all the

audioPackFormats on the path from pack to the audioChannelFormat (including pack).

While this is a slight simplification of the audioPackFormat and audioChannelFormat structure, the

advantage of this representation is its ability to represent the audioPackFormat and

audioChannelFormat referencing structures used with Matrix content, described below.

5.2.6.1.1 Matrix Handling

Matrix audioPackFormats can be referenced in multiple ways depending on the intended effect.

These reference structures are reflected in the following AllocationPacks which are produced

for each audioPackFormat pack with typeDefinition==Matrix:

– If pack is a direct or decode matrix, the matrix should be applied if an audioObject

references both pack and a set of audioTrackUIDs which in turn reference pack and

channels of the input or encode audioPackFormat of pack:

• root_pack is pack.

• channels contains one value per audioChannelFormat channel in the input

audioPackFormat of pack (either the encodePackFormat or the inputPackFormat

depending on the type), where channel_format is channel and pack_formats

is [pack].

– If pack is a direct or decode matrix, the matrix should be treated as having been previously

applied to the samples in the file if an audioObject references both pack and a set of

audioTrackUIDs which in turn reference pack (or sub-packs) and channels of pack:

• root_pack is pack.

• channels contains one value per audioChannelFormat channel in pack, where

channel_format is channel and pack_formats contains all

audioPackFormats on the path from pack to channel.

– If pack is a decode matrix, its encodePackFormat followed by pack may be applied if an

audioObject references pack and a set of audioTrackUIDs which in turn reference

encodePackFormat and channels of the inputPackFormat of encodePackFormat:

• root_pack is pack.

• channels contains one value per audioChannelFormat channel in the

inputPackFormat of the encodePackFormat of pack, where channel_format is

channel, and pack_formats contains all audioPackFormats on the path from the

inputPackFormat to channel.

The ‘type’ of a matrix audioPackFormat is determined using the following rules:

– If it has both an inputPackFormat and an outputPackFormat reference, it is a direct matrix.

– If it has an inputPackFormat reference and no outputPackFormat reference, it is an encode

matrix.

– If it has an outputPackFormat reference and no inputPackFormat reference, it is a decode

matrix.

– If it has neither an inputPackFormat or an outputPackFormat reference, an error is raised.

 Rec. ITU-R BS.2127-0 15

5.2.6.2 Tracks and audioPackFormat References to Match

The tracks to match against the AllocationPacks shall be specified by three values:

– tracks, a list of AllocationTracks, each of which represents an audioTrackUID

(or CHNA row):

 class AllocationTrack {
 AudioChannelFormat channel_format;
 AudioPackFormat pack_format;
};

 channel_format is obtained from an audioTrackUID by following the

audioTrackFormat, audioStreamFormat and audioChannelFormat references, while

pack_format is referenced directly by the audioTrackUID.

– pack_refs, an optional list of audioPackFormat references found in an audioObject.

 num_silent_tracks, the number of ‘silent’ tracks to allocate, represented in the

references from an audioObject to ATU_00000000.

When determining these structures for an audioObject:

– tracks contains one entry for each (non-silent) audioTrackUID referenced from the

audioObject.

– pack_refs is a list of audioPackFormat references contained in the audioObject.

– num_silent_tracks is the number of silent audioTrackUIDs referenced (corresponding

to references to ATU_00000000 in the audioObject).

while in CHNA-only mode:

– tracks contains one entry for each audioTrackUID (or CHNA row) in the file.

– pack_refs is None.

– num_silent_tracks is 0.

5.2.6.3 Matching

A match solution is specified as a list of AllocatedPack objects:

struct AllocatedPack {
 AllocationPack pack;
 vector<tuple<AllocationChannel,
 optional<AllocationTrack>>> allocation;
};

Each one associates each audioChannelFormat in pack with a track, or a silent track if the

AllocationTrack is not specified.

A valid solution has the following properties:

1. For each AllocatedPack, each channel in the AllocationPack occurs exactly once

in allocation.

2. Each track in tracks occurs exactly once in the output.

3. The number of silent tracks referenced in the output is equal to num_silent_tracks.

4. For each associated AllocationChannel channel and AllocationTrack

track, track.channel_format is channel.channel_format, and

track.pack_format is in channel.pack_formats.

16 Rec. ITU-R BS.2127-0

5. If pack_refs is not None, then there is a one-to-one correspondence between

pack_refs and the values of pack.pack.root_pack for each AllocatedPack

pack.

Solutions which are the same except for the order of the AllocationPacks or the allocations

within are considered to be equivalent.

Any method which can enumerate all valid and unique (non-equivalent) solutions may be used.

In the reference implementation, solutions are found by treating the above properties as a constraint

satisfaction problem and enumerating all solutions using a backtracking search.

5.2.6.3.1 Examples

Pack format matching is illustrated in a series of examples below.

First the structures used in the examples are defined. c1, c2, etc. and p1, p2, etc. represent references

to audioChannelFormats and audioPackFormats (but may be any objects as allocate_packs

only uses information in the Allocation... structures, comparing these references by identity).

A mono pack and a track referencing it:

 ac1 = AllocationChannel(c1, [p1])
ap1 = AllocationPack(p1, [ac1])
at1 = AllocationTrack(c1, p1)

A two channel pack with two pairs of referencing tracks:

 ac2 = AllocationChannel(c2, [p2])
ac3 = AllocationChannel(c3, [p2])
ap2 = AllocationPack(p2, [ac2, ac3])

at2 = AllocationTrack(c2, p2)
at3 = AllocationTrack(c3, p2)

at4 = AllocationTrack(c2, p2)
at5 = AllocationTrack(c3, p2)

Resolving a single mono track in an audioObject results in a single solution containing a single

allocated pack:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[at1],
 pack_refs=[p1],
 num_silent_tracks=0,
) == [[AllocatedPack(pack=ap1, allocation=[(ac1, at1)])]]

Resolving a single mono track in CHNA-only mode results in the same structure:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[at1],
 pack_refs=None,
 num_silent_tracks=0,
) == [[AllocatedPack(pack=ap1, allocation=[(ac1, at1)])]]

Resolving a single silent track results in the same structure, except that the reference to the track is

replaced by None:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[],

 Rec. ITU-R BS.2127-0 17

 pack_refs=[p1],
 num_silent_tracks=1,
) == [[AllocatedPack(pack=ap1, allocation=[(ac1, None)])]]

If there are more tracks than channels available in the pack references then there will be no solutions

because rule 2 conflicts with rule 5:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[at1],
 pack_refs=[],
 num_silent_tracks=0,
) == []

If there are more silent tracks than channels available in the pack references then there will be no

solutions because rule 2 conflicts with rule 5:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[],
 pack_refs=[ap1],
 num_silent_tracks=2,
) == []

If there is a mismatch between the pack references and the channel/pack information in the tracks

there will be no solutions because rules 1, 4 and 5 conflict:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[at1, at1],
 pack_refs=[p2],
 num_silent_tracks=0,
) == []

If there are multiple instances of a multi-channel pack in an audioObject, the assignment of tracks to

packs is ambiguous so there are multiple solutions:

assert allocate_packs(
 packs=[ap1, ap2],
 tracks=[at2, at3, at4, at5],
 pack_refs=[p2, p2],
 num_silent_tracks=0,
) == [
 [AllocatedPack(pack=ap2, allocation=[(ac2, at2), (ac3, at3)]),
 AllocatedPack(pack=ap2, allocation=[(ac2, at4), (ac3, at5)])],
 [AllocatedPack(pack=ap2, allocation=[(ac2, at2), (ac3, at5)]),
 AllocatedPack(pack=ap2, allocation=[(ac2, at4), (ac3, at3)])],
]

5.2.6.4 Solution Post-Processing

It should be noted that the results of matching are specified in terms of the input structures

(AllocationPack, AllocationChannel, AllocationTrack), rather than the underlying

references to ADM structures. This is to allow arbitrary mapping between the audioPackFormat and

audioChannelFormat references (in the audioObject and audioTrackUID) and the information

provided to the renderer, as there is no simple correspondence when the typeDefinition==Matrix is

used.

18 Rec. ITU-R BS.2127-0

For a non-matrix AllocatedPack pack, the mapping is straightforward. output_pack is

pack.pack.root_pack, and there is a one-to-one mapping between the allocations in

pack.allocation and the real channel allocation: AllocationChannel channel is

mapped to channel.channel_format, AllocationTrack track is mapped to a

DirectTrackSpec for the track index of the audioTrackUID (or CHNA row) associated with

track, and a missing AllocationTrack is mapped to a SilentTrackSpec.

For a matrix AllocatedPack pack, a more complex mapping is required:

pack.root_pack is always a decode or direct pack (see § 5.2.6.1.1), so output_pack is

pack.root_pack.outputPackFormat.

The output channel to track allocation contains one entry per audioChannelFormat

matrix_channel in root_pack. These channels have a one-to-one correspondence with the

audioChannelFormats in output_pack established by outputChannelFormat references.

The audioChannelFormat is matrix_channel.block_formats[0].outputChannelFormat.

The TrackSpec is built by recursively following the inputChannelFormat references from

matrix_channel to audioChannelFormats referenced in pack.allocation, nesting

MatrixCoefficientTrackSpecs and MixTrackSpecs to apply the processing specified in

coefficient elements and mix multiple input channels together:

– If matrix_channel is referenced in pack.allocation, return a

DirectTrackSpec or SilentTrackSpec corresponding with the associated

AllocationTrack (see above).

– Otherwise, return a MixTrackSpec containing one MatrixCoefficientTrackSpec

for each coefficient element c in matrix_channel.block_formats[0].matrix

which applies the processing specified in c to the track spec for

c.inputChannelFormat, determined recursively.

In the reference implementation this is implemented in two sub-classes of AllocationPack,

which have methods to query the audioPackFormat and channel allocation for use by the renderer.

The association between AllocationTracks and their corresponding audioTrackUIDs is

likewise maintained using a sub-class of AllocationTrack.

5.2.7 Output Rendering Items

Once the root audioPackFormat has been determined, and a TrackSpec has been assigned to each

of its channels, all the information found is translated into one or more RenderingItems.

The process for doing this depends on the type of the root audioPackFormat.

5.2.7.1 Shared Components

Some data in rendering items are shared between types, and are therefore derived in the same way too.

5.2.7.1.1 Importance

An ImportanceData object should be derived from the item selection state, with the following

values:

– audio_object is the minimum importance specified in all audioObjects in the path.

– audio_pack_format is the minimum importance specified in any audioPackFormat

along the path from the root audioPackFormat to the audioChannelFormat.

In both cases None (importance not specified) is defined as being the highest importance.

 Rec. ITU-R BS.2127-0 19

5.2.7.1.2 Extra Data

An ExtraData object should be derived from the item selection state, with the following values:

– object_start is the start time of the last audioObject in the path (None in CHNA-only

mode).

– object_duration is the duration of the last audioObject in the path (None in

CHNA-only mode).

– reference_screen is the audioProgrammeReferenceScreen of the selected

audioProgramme (None if none is selected).

– channel_frequency is the frequency element of the selected audioChannelFormat

(or None if one has not been selected, as when creating a HOA rendering item).

5.2.7.2 Output Rendering Items for typeDefinition==Objects or DirectSpeakers

The process for determining rendering items for Objects and DirectSpeakers is similar – only the

types involved and the selection of parameters differ.

One rendering item is produced per audioChannelFormat and track_spec pair in the channel

allocation.

A MetadataSource is created which produces one RenderingItem (of the appropriate type)

per audioBlockFormat in the selected audioChannelFormat, where the extra_data field is

determined as above, and the audioPackFormats field contains all audioPackFormats on the

path between the root audioPackFormat and the audioChannelFormat. This is wrapped in a

RenderingItem object (again, of the appropriate type) with the track_spec and

importance determined as above.

5.2.7.3 Output Rendering Items for typeDefinition==HOA

One HOARenderingItem is produced per pack allocation, containing all the information required

to render a group of channels which make up a HOA stream. This information is spread across

multiple audioChannelFormats and audioPackFormats (when nested), which must be consistent.

HOA audioChannelFormats must only contain a single audioBlockFormat element; an error is raised

otherwise.

A single NHOATypeMetadata object is created with parameters derived according to Table 1.

TABLE 1

Properties of HOATypeMetadata parameters

HOATypeMetadata parameter audioBlockFormat parameter audioPackFormat parameter count

rtime rtime single

duration duration single

orders order per-channel

degrees order per-channel

normalization normalization normalization single

nfcRefDist nfcRefDist nfcRefDist single

screenRef screenRef screenRef single

All parameters shall be first determined for each audioChannelFormat in the root audioPackFormat.

For parameters which have both audioBlockFormat and audioPackFormat parameters, the parameter

20 Rec. ITU-R BS.2127-0

may be set on the sole audioBlockFormat in the audioChannelFormat, or any audioPackFormat on

the path from the root audioPackFormat to the audioChannelFormat. If multiple copies of a

parameter are found for a given audioChannelFormat they shall have the same value, otherwise an

error shall be raised. If no values for a given parameter and audioChannelFormat are found, then the

default specified in Recommendation ITU-R BS.2076-1 is applied.

After nfcRefDist has been found for a particular audioChannelFormat, a value of 0 shall be translated

to None, which implies that NFC shall not be applied. This is performed at this stage (rather than

during XML parsing) so that nfcRefDist==0.0 is considered to conflict with nfcRefDist==1.0, for

example.

For parameters which have only a single value (all except orders and degrees), the parameters

determined for all audioChannelFormats shall be equal, otherwise an error shall be raised.

extra_data is determined as above for the whole audioPackFormat.

A HOARenderingItem shall be produced with one entry in track_specs and importances

per item in the channel allocation (as described above), and a MetadataSource containing only

the above HOATypeMetadata object.

5.3 Rendering Item Processing

Some renderer functionality is implemented by modifying the list of selected rendering items.

Section 5.3.1 describes how content can be removed based on the specified importance level,

and § 5.3.3 describes how the effects of downstream metadata conversion may be emulated.

5.3.1 Importance emulation

The importance parameters as defined by Recommendation ITU-R BS.2076-1 allows a renderer to

discard items below a certain level of importance for as yet undetermined, application specific

reasons.

The ADM specifies three different importance parameters that should be used:

– importance as an audioObject attribute

– importance as an audioPackFormat attribute

– importance as an audioBlockFormat attribute for typeDefinition==Object

The most important difference between those importance attributes is that audioBlockFormat

importance is time-depended, i.e. it may vary over time, while the importance of audioObject and

audioPackFormat is static.

A separate threshold can be used for each importance attribute. The determination of desired

threshold values is considered as highly application and use case specific and therefore out of scope

of a production renderer specification. Instead the renderer provides means to simulate the effect of

applying a given importance threshold to the ADM. This enables content producers to investigate the

effects of using importance values on the rendering. Therefore, the importance emulation is not part

of the actual rendering process, but applied as a post processing step to the RenderingItems.

5.3.1.1 Importance values of RenderingItems

Each rendering item can have its own set of effective importance values, because audioObjects and

audioPackFormats may be nested. Thus, for each RenderingItem all referencing audioObjects

and audioPackFormats involved in the determination of this RenderingItem are taken into

account.

The following rules are applied:

 Rec. ITU-R BS.2127-0 21

– If an audioObject has an importance value below the threshold, all referenced audioObjects

shall be discarded as well. To achieve this, the lowest importance value of all audioObjects

that lead to a RenderingItem shall be used as the audioObject importance for this

RenderingItem.

– If an audioPackFormat has an importance value below the threshold, all referenced

audioPackFormats shall be discarded as well. To achieve this, the lowest importance value

of all audioPackFormats that lead to a RenderingItem shall be used as the

audioPackFormat importance for this RenderingItem.

– An audioObject without importance value shall not be taken into account when determining

the importance of a RenderingItem.

– An audioPackFormat without importance value shall not be taken into account when

determining the importance of a RenderingItem.

This is implemented in fileio.utils.RenderingItemHandler.

5.3.1.2 Static importance handling

Given a RenderingItem with ImportanceData, the item shall be removed from the list of

items to render if either the static importance value (audioObject, audioPackFormat) is below the

respective user-defined threshold:

𝚒𝚖𝚙𝚘𝚛𝚝𝚊𝚗𝚌𝚎. 𝚊𝚞𝚍𝚒𝚘_𝚘𝚋𝚓𝚎𝚌𝚝 < 𝚊𝚞𝚍𝚒𝚘_𝚘𝚋𝚓𝚎𝚌𝚝_𝚝𝚑𝚛𝚎𝚜𝚑𝚘𝚕𝚍

∨ 𝚒𝚖𝚙𝚘𝚛𝚝𝚊𝚗𝚌𝚎. 𝚊𝚞𝚍𝚒𝚘_𝚙𝚊𝚌𝚔_𝚏𝚘𝚛𝚖𝚊𝚝 < 𝚊𝚞𝚍𝚒𝚘_𝚙𝚊𝚌𝚔_𝚏𝚘𝚛𝚖𝚊𝚝_𝚝𝚑𝚛𝚎𝚜𝚑𝚘𝚕𝚍

This is implemented in core.importance.filter_audioObject_by_importance and

core.importance.filter_audioPackFormat_by_importance.

5.3.1.3 Time-varying importance handling

Importance handling on audioBlockFormat (typeDefinition==Object) level cannot be done by

filtering RenderingItems, as this item might be below the threshold only for some time. To

emulate discarding of rendering items in that particular case, the RenderingItem shall be

effectively muted for the duration of the audioBlockFormat. In this context, “muting an

audioBlockFormat” is equivalent to assuming bf.gain equal to zero for an audioBlockFormat bf.

This is implemented in core.importance.MetadataSourceImportanceFilter.

5.3.2 Conversion Emulation

Emulation of metadata conversion may optionally be applied to rendering items. Conversion

emulation may be disabled, set to convert metadata to polar form, or set to convert metadata to

Cartesian form.

If conversion emulation is enabled, the appropriate function is selected from § 10 and applied to all

audioBlockFormats with typeDefinition==Objects in the selected rendering items.

6 Shared Renderer Components

This section contains descriptions of components that are shared between the sub-renderers for the

different typeDefinitions.

22 Rec. ITU-R BS.2127-0

6.1 Polar Point Source Panner

The point source panner component is the core of the renderer; given information about the

loudspeaker layout, and a 3D direction, it produces one gain per loudspeaker which, when applied to

a mono waveform/digital signal and reproduced over loudspeakers, should cause the listener to

perceive a sound emanating from the desired direction.

The point source panner is used throughout the renderer – it is used to render point sources specified

by object metadata, as well as part of the extent rendering system, as a fall-back for the

DirectSpeakers renderer, and as part of the HOA decoder design process.

The point source panner in this renderer is based on the VBAP formulation [2], with several

enhancements which make it more suitable for use in broadcast environments:

– In addition to the triplets of loudspeakers as in VBAP, the point source panner supports

atomic quadrilaterals of loudspeakers. This solves the same problems as the use of virtual

loudspeakers in other systems, but results in a smoother overall panning function.

– Triangulation of the loudspeaker layout is performed on the nominal loudspeaker positions

and warped to match the real loudspeaker positions, which ensures that the panning behaviour

is always consistent within adaptations of a given layout.

– Virtual loudspeakers and down-mixing are used to modify the rendering in some situations

in order to correct for observed perceptual effects and produce desirable behaviours in sparse

layouts.

– To avoid complicating the design to cater for extremely restricted loudspeaker layouts, 0+2+0

is handled as a special case.

6.1.1 Architecture

The point source panner holds a list of objects with the RegionHandler interface; each region

object shall be responsible for producing loudspeaker gains over a given spatial extent.

In order to produce gains for a given direction, the point source panner shall query each region in

turn, which shall either return a gain vector if it can handle that direction, or a null result if it cannot;

the gain vector from the first region found that can handle the direction is used.

In any valid point source panner, the following two conditions hold:

– At least one region is able to handle any given direction.

– All regions which are able to handle a given direction result in similar gains (within some

tolerance).

– Within any region, the produced gains are smooth with respect to the desired direction.

These properties together ensure that gains produced by a point source panner are well defined for all

directions, and are always smooth with respect to the direction, within some tolerance.

The available RegionHandler types, and the configuration process used to generate the list of

regions for a given layout are described in the next sections.

This behaviour is implemented in core.point_source.PointSourcePanner.

Additionally, a PointSourcePannerDownmix class is implemented with the same interface.

When queried with a position, it calls another PointSourcePanner to obtain a gain vector, to

which it applies a downmix matrix and power normalisation. This is used in § 6.1.3.1 to remap virtual

loudspeakers.

 Rec. ITU-R BS.2127-0 23

6.1.2 Region Types

Most regions produce gains for a subset of the output channels; the mapping from this subset of

channels to the full vector of channels is implemented in

core.point_source.RegionHandler.handle_remap.

6.1.2.1 Triplet

This represents a spherical triangular region formed by three loudspeakers, implementing basic

VBAP.

This region shall initialised with the 3D positions of three loudspeakers:

 𝐏 = [𝐩1, 𝐩2, 𝐩3]
𝑇

The three output gains 𝐠 for a given direction 𝐷 are such that:

– 𝐠 ⋅ 𝐏 = 𝑠𝐝 for some 𝑠 > 0, within a small tolerance.

– 𝑔𝑖 ≥ 0 ∀ 𝑖 ∈ {1,2,3}

– ∥ 𝐠 ∥2= 1

This RegionHandler type is implemented in core.point_source.Triplet.

6.1.2.2 VirtualNgon

This represents a region formed by 𝑛 real loudspeakers, which is split into triangles with the addition

of a single virtual loudspeaker. Each triangle is made from two adjacent real loudspeakers and the

virtual loudspeaker, which is downmixed to the real loudspeakers by the provided downmix

coefficients.

For example, if four real loudspeaker positions {𝐩1, 𝐩2, 𝐩3, 𝐩4} and one virtual loudspeaker position

𝐩𝑣 are used, the following triangles would be created:

– {𝐩𝑣, 𝐩1, 𝐩2}

– {𝐩𝑣, 𝐩2, 𝐩3}

– {𝐩𝑣, 𝐩3, 𝐩4}

– {𝐩𝑣, 𝐩4, 𝐩1}

When this RegionHandler type is queried with a position, each triangle shall be tried in turn until

one returns valid gains, in the same way as the top level point source panner. This produces a vector

of 𝑛 gains for the real loudspeakers, 𝐠 = {𝑔1, … , 𝑔𝑛}, and the gain for the virtual loudspeaker 𝑔𝑣,

which is downmixed to the real loudspeakers by the provided downmix coefficients 𝐰dmx:

 𝐠′ = 𝐠 +𝐖dmx 𝑔𝑣

Finally, this is power normalised, resulting in the final gains:

 𝐠″ =
𝐠′

∥𝐠′∥2

This RegionHandler type is implemented in core.point_source.VirtualNgon.

6.1.2.3 QuadRegion

This represents a spherical quadrilateral region formed by four loudspeakers.

The gains are calculated for each loudspeaker by first splitting the position into two components, 𝑥

and 𝑦. 𝑥 could be considered as the horizontal position within the quadrilateral, being 0 at the left

edge and 1 at the right edge, and 𝑦 the vertical position, being 0 at the bottom edge and 1 at the top

edge.

24 Rec. ITU-R BS.2127-0

The 𝑥 and 𝑦 values are mapped to a gain for each loudspeaker using equations (1) and (2). The 𝑥 and

𝑦 value (and therefore the loudspeaker gains) that result in a given velocity vector can be determined

by solving equations (1) to (3).

The solution to this problem is of similar complexity to VBAP, and results in the same gain as VBAP

at the edges of the quadrilateral, making it possible to use with other RegionHandler types in a

single point source panner under the rules in § 6.1.1.

The resulting gains are infinitely differentiable with respect to the position within the region,

producing results comparable to pair-wise panning between virtual loudspeakers in common

situations.

This RegionHandler type is implemented in core.point_source.QuadRegion.

6.1.2.3.1 Formulation

Given the Cartesian position of four loudspeakers, 𝐏 = [𝐩1, 𝐩2, 𝐩3, 𝐩4] in anticlockwise order from

the perspective of the listener, the gain vector 𝐠 is computed as for a source direction 𝐝 as:

 𝐠′ = [(1 − 𝑥)(1 − 𝑦), 𝑥(1 − 𝑦), 𝑥𝑦, (1 − 𝑥)𝑦]  (1)

 𝐠 =
𝐠′

∥𝐠′∥2
   (2)

Where 𝑥 and 𝑦 are chosen such that the velocity vector 𝐠 ⋅ 𝐏 has the desired direction 𝐝. The

magnitude of the velocity vector 𝑟 is irrelevant, as the gains are power normalised:

 𝐠 ⋅ 𝐏 = 𝑟𝐝   (3)

for some 𝑟 > 0.

6.1.2.3.2 Solution

Given an 𝑥 value, all velocity vectors 𝐝 with this 𝑥 value are on a plane formed by the origin of the

coordinate system and two points some distance along the top and bottom of the quadrilateral:

 (1 − 𝑥)𝐩1 + 𝑥𝐩2

 (1 − 𝑥)𝐩4 + 𝑥𝐩3

Therefore:

 (((1 − 𝑥)𝐩1 + 𝑥𝐩2) × ((1 − 𝑥)𝐩4 + 𝑥𝐩3)) ⋅ 𝐝 = 0  (4)

This equation can be solved to find 𝑥 for a given source direction 𝐝.

Collect the 𝑥 terms:

 [(𝐩1 + 𝑥(𝐩2 − 𝐩1)) × (𝐩4 + 𝑥(𝐩3 − 𝐩4))] ⋅ 𝐝 = 0

Expand the cross product and collect the terms:

[(𝐩1 × 𝐩4)

+𝑥 ((𝐩1 × (𝐩3 − 𝐩4)) + ((𝐩2 − 𝐩1) × 𝐩4))

+𝑥2 ((𝐩2 − 𝐩1) × (𝐩3 − 𝐩4))

] ⋅ 𝐝 = 0

Finally, multiply through 𝐃:

[(𝐩1 × 𝐩4) ⋅ 𝐝]
+𝑥 [((𝐩1 × (𝐩3 − 𝐩4)) + ((𝐩2 − 𝐩1) × 𝐩4)) ⋅ 𝐝]

+𝑥2 [((𝐩2 − 𝐩1) × (𝐩3 − 𝐩4)) ⋅ 𝐝]

= 0

 Rec. ITU-R BS.2127-0 25

The solution for 𝑥 is therefore the root of a polynomial, which can be solved using standard methods.

By replacing 𝐏 by 𝐏′ in the above equations, 𝑦 can be determined too:

 𝐏′ = [𝐩2, 𝐩3, 𝐩4, 𝐩1]

The gains 𝐠 can then be calculated using equations 1 and 2. Since the scale of 𝐝 is ignored in equation

(4), solutions may be found that produce a velocity vector that is directly opposite to that which was

desired. This can be checked by testing that:

 𝐠𝐏 ⋅ 𝐝 > 0

6.1.2.4 StereoPanDownmix

The output signals of a point source for stereo (0+2+0) are provided by a method based on a downmix

from 0+5+0 to 0+2+0. The method is separately implemented.

The procedure is as follows:

– The input direction is panned using a point source panner configured for 0+5+0 to produce a

vector of five gains, 𝐠′, in the order M+030, M-030, M+000, M+110, M-110.

– A format conversion matrix from 0+5+0 to 0+2+0 is applied to produce stereo gains 𝐆″ in

the order M+030, M-030:

 𝐠″ =

[

 1 0 √

1

3
√
1

2
0

0 1 √
1

3
0 √

1

2]

⋅ 𝐠′

– Power normalise 𝐠″ to a value determined by the balance between the front and rear

loudspeakers in 𝐠′, such that sources between M+030 and M-030 are not attenuated, while

sources between M-110 and M+110 are attenuated by 3 dB.

𝑎front = max{𝑔′1, 𝑔′2, 𝑔′3}

𝑎rear = max{𝑔′4, 𝑔′5}

𝑟 =
𝑎rear

𝑎front+𝑎rear

𝐠 = 𝐠″
1

2

𝑟
2

∥𝐠″∥2

This RegionHandler type is implemented in core.point_source.StereoPanDownmix.

NOTE – 𝐠 from (0+5+0) to (0+2+0) is completely matched with downmix coefficients specified in

Recommendation ITU-R BS.775 as follows:

 𝐠 =

[

 1 0 √

1

2
√
1

2
0

0 1 √
1

2
0 √

1

2]

6.1.3 Configuration Process

The configuration process builds a point source panner containing the above RegionHandler

types for a given layout. The configuration process takes a Layout object (defined in § 11.1.3), and

produces a PointSourcePanner.

The configuration process initially selects the behaviour by the Layout::name attribute. If the

Layout::name attribute is 0+2+0 the configuration is handled by the special configuration

26 Rec. ITU-R BS.2127-0

function for stereo described in § 6.1.3.2. All other cases are handled by a generic function described

in § 6.1.3.1.

The configuration process is handled in core.point_source.configure.

6.1.3.1 Process for Generic Layouts

To configure a PointSourcePanner for generic loudspeaker layouts, the following process is

used:

1. Update the azimuth of the nominal positions of loudspeakers with label M+SC or M-SC to

ensure correct triangulation with widely-spaced screen loudspeakers. If the real azimuth

(polar_position.azimuth) is φ, the nominal azimuth φ𝑛

(polar_nominal_position.azimuth) is:

 φ𝑛 = sgn(φ) × {
45 |φ| > 30
15 otherwise

2. Determine the set of remapped virtual loudspeakers as described below. These loudspeakers

are added to the set of loudspeakers in the layout, to be treated the same as real loudspeakers.

3. Create two lists of normalised Cartesian loudspeaker positions, which will be used in the next

steps; one containing the nominal loudspeaker positions (to triangulate the loudspeaker

layout), and one containing the real loudspeaker positions (to use when creating the regions).

Nominal loudspeaker positions are the positions specified in Recommendation

ITU-R BS.2051-2, whereas the real loudspeaker positions are positions which are actually

used by the current reproduction system.

4. To each list of loudspeaker positions, append one or two virtual loudspeakers, which will

become the virtual loudspeaker at the centre of a VirtualNgon:

• 0,0,−1 (below the listener) is always added, as no loudspeaker layouts defined in

Recommendation ITU-R BS.2051-2 have a loudspeaker in this position.

• 0,0,1 (above the listener) is added if there is no loudspeaker in the layout with the label

T+000 or UH+180. The reason this loudspeaker is not used when UH+180 exists, is

when this is used in the 3+7+0 layout defined in Recommendation ITU-R BS.2051-2,

the position may coincide with that of the virtual loudspeaker, creating a step change in

the panning function.

5. Take the convex hull of the nominal loudspeaker positions. If this algorithm is implemented

with floating point arithmetic, errors may cause some facets of the convex hull to be split –

facets are merged within a tolerance set such that the result is the same as if the algorithm

was implemented with exact arithmetic.

6. Create a PointSourcePannerDownmix with the following regions:

• For each facet of the convex hull which doesn’t contain one of the virtual loudspeakers

added in step 3:

○ If the facet has three edges, create a Triplet with the real positions of the

loudspeakers corresponding to the vertices of the facet.

○ If the facet has four edges, create a QuadRegion with the real positions of the

loudspeakers corresponding to the vertices of the facet.

• For each virtual loudspeaker added in step 3, create a VirtualNgon with the real

positions of the adjacent loudspeakers (all loudspeakers which share a convex hull facet

with the virtual loudspeaker) at the edge, the position of the virtual loudspeaker at the

 Rec. ITU-R BS.2127-0 27

centre, and all downmix coefficients set to
1

√𝑛
, where 𝑛 is the number of adjacent

loudspeakers.

 Note that no layouts defined in Recommendation ITU-R BS.2051-2 result in facets with

more than four edges.

 The downmix coefficients map the virtual loudspeakers to the physical loudspeakers, as

described below.

This is implemented in core.point_source._configure_full.

6.1.3.1.1 Determination of Virtual Loudspeakers with Direct Downmix

For each mid-layer loudspeaker, a virtual loudspeaker is added on the upper and lower layers at the

same azimuth as the real loudspeaker if there are no real loudspeakers in the upper or lower layer in

that area. These virtual loudspeakers shall have downmix coefficients that map their output directly

to the corresponding mid-level loudspeaker.

As with real loudspeakers, virtual loudspeakers have both a real and a nominal position, the real

position being derived from the real positions of the real loudspeakers, and the nominal position being

derived from the nominal positions of the real loudspeakers. The inclusion or not of a virtual

loudspeaker is based on the nominal positions of the real loudspeakers, so that for a given layout the

same set of virtual loudspeakers is always used.

To determine the set of virtual loudspeakers for a given layout, the following procedure is used:

– For each 𝑖 ∈ [1, 𝑁], where 𝑁 = 𝚕𝚎𝚗(𝚕𝚊𝚢𝚘𝚞𝚝𝚜. 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜), the number of channels,

define:

φ𝑖,𝑟 = 𝚕𝚊𝚢𝚘𝚞𝚝𝚜. 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜[𝚒]. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑

φ𝑖,𝑛 = 𝚕𝚊𝚢𝚘𝚞𝚝𝚜. 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜[𝚒]. 𝚙𝚘𝚕𝚊𝚛_𝚗𝚘𝚖𝚒𝚗𝚊𝚕_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑

θ𝑖,𝑟 = 𝚕𝚊𝚢𝚘𝚞𝚝𝚜. 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜[𝚒]. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗

θ𝑖,𝑛 = 𝚕𝚊𝚢𝚘𝚞𝚝𝚜. 𝚌𝚑𝚊𝚗𝚗𝚎𝚕𝚜[𝚒]. 𝚙𝚘𝚕𝚊𝚛_𝚗𝚘𝚖𝚒𝚗𝚊𝚕_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗

– Define three sets of channel indices, identifying channels on the upper, middle and lower

layers of the layout:

𝑆𝑢 = {𝑖 ∣ 30° ≤ θ𝑖,𝑛 ≤ 70°}

𝑆𝑚 = {𝑖 ∣ −10° ≤ θ𝑖,𝑛 ≤ 10°}

𝑆𝑙 = {𝑖 ∣ −70° ≤ θ𝑖,𝑛 ≤ −30°}

– Virtual loudspeakers have the same nominal and real azimuths as the corresponding real

loudspeaker. The real elevation is the mean elevation of the real loudspeakers in the layer if

there are any, or −30° or 30° for the lower and upper layers otherwise. The nominal elevation

is always −30° or 30° for the lower and upper layers.

 Define two nominal elevations:

 θ′𝑢,𝑛 = 30°

 θ′𝑙,𝑛 = −30°

 Define two real elevations:

 θ′𝑢,𝑟 = {
30° |𝑆𝑢| = 0
∑ φ𝑗,𝑟𝑗∈𝑆𝑢

|𝑆𝑢|
otherwise

28 Rec. ITU-R BS.2127-0

 θ′𝑙,𝑟 = {
30° |𝑆𝑢| = 0
∑ φ𝑗,𝑟𝑗∈𝑆𝑙

|𝑆𝑙|
otherwise

– Loudspeakers are only created on a layer if the absolute nominal azimuth of the

corresponding mid-layer loudspeaker is greater or equal to the maximum absolute nominal

azimuth of the real loudspeakers on the layer, plus 40°. These azimuth limits are defined as:

 𝐿𝑢 = {
0 |𝑆𝑢| = 0
max
𝑗∈𝑆𝑢

|φ𝑗,𝑛| + 40° otherwise

 𝐿𝑙 = {
0 |𝑆𝑙| = 0
max
𝑗∈𝑆𝑙

|φ𝑗,𝑛| + 40° otherwise

– For each 𝑗 in 𝑆𝑚:

• Create a virtual upper loudspeaker if φ𝑗,𝑛 ≥ 𝐿𝑢, identified by a Channel struct

channel, with:

𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑 = φ𝑗,𝑟
𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 = θ′𝑢,𝑟

𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚗𝚘𝚖𝚒𝚗𝚊𝚕_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑 = φ𝑗,𝑛
𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚗𝚘𝚖𝚒𝚗𝚊𝚕_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 = θ′𝑢,𝑛

• Create a virtual lower loudspeaker if φ𝑗,𝑛 ≥ 𝐿𝑙, identified by a Channel struct

channel, with:

𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑 = φ𝑗,𝑟
𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 = θ′𝑙,𝑟

𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚗𝚘𝚖𝚒𝚗𝚊𝚕_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑 = φ𝑗,𝑛
𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚗𝚘𝚖𝚒𝚗𝚊𝚕_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 = θ′𝑙,𝑛

 Both have downmix coefficients routing the gains from this loudspeaker to the

corresponding mid-layer loudspeaker 𝑗.

This is implemented in core.point_source.extra_pos_vertical_nominal.

6.1.3.2 Process for 0+2+0

For 0+2+0, a PointSourcePanner with a single StereoPanDownmix region is returned.

This is implemented in core.point_source._configure_stereo.

6.2 Determination if angle is inside a range with tolerance

An inside_angle_range function is used when comparing angles to given angular ranges,

allowing ranges to be specified which include the rear of the coordinate system. This is used in the

zone exclusion and DirectSpeakers components in §§ 7.3.12.1 and 8.4.

The signature is:

bool inside_angle_range(float x, float start, float end, float tol=0.0);

This returns true if an angle 𝚡 is within the circular arc which starts at 𝚜𝚝𝚊𝚛𝚝 and moves

anticlockwise until 𝚎𝚗𝚍, expanded by 𝚝𝚘𝚕. All angles are given in degrees.

 Rec. ITU-R BS.2127-0 29

In the common case where:

 −180 ≤ 𝚜𝚝𝚊𝚛𝚝 ≤ 𝚎𝚗𝚍 ≤ 180

This function is equivalent to:

 𝚜𝚝𝚊𝚛𝚝 − 𝚝𝚘𝚕 ≤ 𝚡′ ≤ 𝚎𝚗𝚍 + 𝚝𝚘𝚕

Where 𝚡′ = 𝚡 + 360 × 𝑖 for some 𝑖 such that −180 < 𝚡′ ≤ 180.

In other cases, the behaviour is more subtle. For example, if 𝚜𝚝𝚊𝚛𝚝 = 90 and 𝚎𝚗𝚍 = −90, this

specifies the rear half of the coordinate system:

 𝚡′ ≤ −90 ∨ 𝚡′ ≥ 90

Some example ranges and equivalent expressions are shown in Table 2.

TABLE 2

Expressions equivalent to inside_angle_range(x, start, end, tol)

𝚜𝚝𝚊𝚛𝚝 𝚎𝚗𝚍 𝚝𝚘𝚕 Equivalent Expression

−90 90 0 −90 ≤ 𝚡′ ≤ 90

−90 90 5 −95 ≤ 𝚡′ ≤ 95

90 −90 0 𝚡′ ≤ −90 ∨ 𝚡′ ≥ 90

90 −90 5 𝚡′ ≤ −85 ∨ 𝚡′ ≥ 85

0 0 0 𝚡′ = 0

180 180 0 𝚡′ = 180

−180 −180 0 𝚡′ = 180

180 180 5 𝚡′ ≤ −175 ∨ 𝚡′ ≥ 175

−180 180 0 true

This function is implemented in core.geom.inside_angle_range.

6.3 Determine if a channel is an LFE channel from its frequency metadata

Frequency metadata, which may be present as frequency sub-elements of audioChannelFormats, can

be used to determine if a channel is effectively an LFE channel.

The following data structure is used to represent frequency metadata:

struct Frequency {
 optional<float> lowPass;
 optional<float> highPass;
};

The function with the signature

bool is_lfe(Frequency frequency)

evaluates

𝚏𝚛𝚎𝚚𝚞𝚎𝚗𝚌𝚢. 𝚕𝚘𝚠𝙿𝚊𝚜𝚜 ∧ ¬𝚏𝚛𝚎𝚚𝚞𝚎𝚗𝚌𝚢. 𝚑𝚒𝚐𝚑𝙿𝚊𝚜𝚜 ∧ (𝚏𝚛𝚎𝚚𝚞𝚎𝚗𝚌𝚢. 𝚕𝚘𝚠𝙿𝚊𝚜𝚜 ≤ 200 Hz)

and returns True if the channel is assumed to be an LFE channel and False otherwise.

This is implemented in core.renderer_common.is_lfe.

30 Rec. ITU-R BS.2127-0

6.4 Block Processing Channel

When rendering timed ADM metadata, some functionality is required that is the same for all

typeDefinition values – for a given subset of the input channels, some processing is applied between

time bounds, producing loudspeaker channels on the output.

FIGURE 4

Structure used to process related channels. Components in blue are provided externally

Figure 4 shows the structure used to achieve this. The interface to this component is as follows:

class BlockProcessingChannel {
 BlockProcessingChannel(MetadataSource metadata_source, Callable
interpret_metadata);
 void process(int sample_rate, int start_sample,
 ndarray<float> input_samples, ndarray<float> &output_samples);
};

The MetadataSource is provided by the system as the mechanism for feeding metadata into the

renderer. It has the following interface:

class MetadataSource {
 optional<TypeMetadata> get_next_block();
};

By repeatedly calling get_next_block, the block processing channel receives a sequence of

TypeMetadata blocks as described in § 5, which correspond to time-bounded blocks of metadata

required during rendering.

These metadata blocks are interpreted by the interpret_metadata function, which is provided

by the renderer for each typeDefintion. These functions accept a TypeMetadata and return a list

of ProcessingBlock objects, which encapsulate the time-bounded audio processing required to

implement the given TypeMetadata. The interpretation for typeDefinition==Objects is described

in detail in § 7.2. For typeDefinition==HOA and typeDefinition==DirectSpeakers, a single

ProcessingBlock is returned.

ProcessingBlock objects have the following external interface:

class ProcessingBlock {
 Fraction start_sample, end_sample;
 int first_sample, last_sample;

 void process(int in_out_samples_start,
 ndarray<float> input_samples, ndarray<float> &output_samples);
}

The samples passed to process are assumed to be a subset of the samples in the input/output file,

such that 𝚒𝚗𝚙𝚞𝚝_𝚜𝚊𝚖𝚙𝚕𝚎𝚜[𝑖] and 𝚘𝚞𝚝𝚙𝚞𝚝_𝚜𝚊𝚖𝚙𝚕𝚎𝚜[𝑖] represent the global input and output

 Rec. ITU-R BS.2127-0 31

samples 𝚒𝚗_𝚘𝚞𝚝_𝚜𝚊𝚖𝚙𝚕𝚎𝚜_𝚜𝚝𝚊𝚛𝚝 + 𝑖. The first_sample and last_sample attributes

define the range of global sample numbers 𝑠 which would be affected by process:

 𝚏𝚒𝚛𝚜𝚝_𝚜𝚊𝚖𝚙𝚕𝚎 ≤ 𝑠 ≤ 𝚕𝚊𝚜𝚝_𝚜𝚊𝚖𝚙𝚕𝚎

start_sample and end_sample are the fractional start and end sample numbers, which are used

to determine the first_sample and last_sample attributes, and may be used by

ProcessingBlock subclass implementations.

BlockProcessingChannel objects store a queue of ProcessingBlock, which is refilled by

requesting blocks from the metadata_source and passing them through

interpret_metadata. BlockProcessingChannel.process applies processing blocks

in this queue to the samples passed to it, using first_sample and last_sample to determine

when to move to the next block.

This structure allows components of the renderer to be decoupled; audio samples may be processed

in chunks sizes independent of the metadata block sizes, while retaining sample-accurate metadata

processing, and without complicating the renderers with concrete timing concerns.

The decision to allow the renderer to pull metadata blocks in keeps the interpretation of timing

metadata within the renderer – if metadata was instead pushed into the renderer, the component doing

the pushing would have to know when the next block is required, which depends on the timing

information within it.

This functionality is implemented in core.renderer_common.

6.4.1 Implemented ProcessingBlock Types

Three common processing block types are:

FixedGains takes a single input channel and applies 𝑛 gains, summing the output into 𝑛 output

channels.

FixedMatrix takes 𝑁 input channels and applies a 𝑁𝑥𝑀 gain matrix to form 𝑀 output channels.

InterpGains takes a single input channel and applies 𝑛 linearly interpolated gains, summing the

output into 𝑛 output channels. Two gain vectors gains_start and gains_end are provided,

which are the gains to be applied at times start_sample and end_sample. The gain 𝑔(𝑖, 𝑠)

applied to channel 𝑖 at sample 𝑠 is given by:

 𝑝(𝑠) =
𝑠−𝚜𝚝𝚊𝚛𝚝_𝚜𝚊𝚖𝚙𝚕𝚎

𝚎𝚗𝚍_𝚜𝚊𝚖𝚙𝚕𝚎−𝚜𝚝𝚊𝚛𝚝_𝚜𝚊𝚖𝚙𝚕𝚎

 𝑔(𝑖, 𝑠) = (1 − 𝑝(𝑠)) × 𝚐𝚊𝚒𝚗𝚜_𝚜𝚝𝚊𝚛𝚝[𝑖] + 𝑝(𝑠) × 𝚐𝚊𝚒𝚗𝚜_𝚎𝚗𝚍[𝑖]

6.5 Generic Interpretation of Timing Metadata

The determination of block start and end times is shared between renderers for different

typeDefinitions. For a TypeMetadata object block, the following process is used:

– The start and end time of the object which contains the block is determined from

block.extra_data.object_start and block.extra_data.object_duration.

If object_start is None, the object is assumed to start at time 0. If object_duration is

None, it is assumed to extend to infinity.

– The block start and end times are determined from the rtime and duration attributes:

32 Rec. ITU-R BS.2127-0

• If rtime and duration are not None, then the block start time is assumed to be the

object start time plus rtime, and the block end time is assumed to be the block start

time plus duration.

• If rtime and duration are None, then the block is assumed to extend from the object

start time to the object end time.

• Other rtime and duration constellations are considered to be an error. – for

multiple audioBlockFormat objects within an audioChannelFormat, both rtime and

duration should be provided, while for a single block covering the entire audioObject,

no rtime or duration should be provided. Otherwise, the behaviour is undefined.

The times should be checked for consistency. Blocks ending after the object end time or overlapping

blocks in a sequence shall not be allowed and considered to be an error. An error condition means

that implementers must consider that something is wrong with the input data. The correct course of

action is to fix the system that produced it. In the reference implementation, errors are handled by

stopping the rendering process end reporting the error to the user. Other implementations might use

different error handing strategies based on their target application environment.

This is implemented in core.renderer_common.InterpretTimingMetadata.

6.6 Interpretation of TrackSpecs

The audio input to the renderer is through a multi-channel bus directly read from the input file. The

input metadata in the form of RenderingItems includes TrackSpec objects, which are

instructions for extracting channels from this bus, including applying Matrix preprocessing which

mixes together multiple channels.

The processing for each TrackSpec type is implemented in core.track_processor.

Given a TrackSpec, a TrackProcessor object can be created, which has a single method

process(sample_rate, input_samples), which applies the specified processing to

input_samples and returns the single-channel result (at the given sample rate).

6.6.1 SilentTrackSpec

For 𝑛 input samples, process for a SilentTrackSpec returns 𝑛 zero-valued samples.

6.6.2 DirectTrackSpec

process for a DirectTrackSpec track_spec returns the input samples in the track

specified in track_spec.track_index (using zero-based indexing).

6.6.3 MixTrackSpec

process for a MixTrackSpec track_spec returns the sum of the results of calling process

on a TrackProcessor for each sub-track in track_spec.input_tracks.

6.6.4 MatrixCoefficientTrackSpec

process for a MatrixCoefficientTrackSpec track_spec applies the matrix processing

specified in track_spec.coefficient (which represents the parameters of a single matrix

coefficient element) to a single channel specified by track_spec.input_track.

If track_spec.coefficient.gain is not None, the samples are multiplied by gain.

If track_spec.coefficient.delay is not None, the samples are delayed by 𝑛 samples,

delay msec, rounded to the nearest sample (with ties broken towards 0):

 Rec. ITU-R BS.2127-0 33

 𝑛 = ⌈
𝚜𝚊𝚖𝚙𝚕𝚎_𝚛𝚊𝚝𝚎×𝚍𝚎𝚕𝚊𝚢

1000
−
1

2
⌉

Some parameters are not supported. If gainVar, delayVar, phaseVar or phase are not None,

or delay is negative, an error is raised.

6.7 Relative Angle

𝚛𝚎𝚕𝚊𝚝𝚒𝚟𝚎_𝚊𝚗𝚐𝚕𝚎(𝑥, 𝑦) is used to find an equivalent angle to 𝑦 which is greater than or equal to 𝑥.

This is used to avoid edge-cases when working with circular arcs.

𝚛𝚎𝚕𝚊𝚝𝚒𝚟𝚎_𝚊𝚗𝚐𝚕𝚎(𝑥, 𝑦) returns 𝑦′ = 𝑦 + 360𝑛, where 𝑛 is the smallest integer such that 𝑦′ ≥ 𝑥

6.8 Coordinate Transformations

The cart function is defined to translate from polar positions to Cartesian positions according to § 2.2:

 𝑐𝑎𝑟𝑡(φ, θ, 𝑑) = {𝑥, 𝑦, 𝑧}

where:

𝑥 = sin (−
π

180
φ) cos (

π

180
θ) 𝑑

𝑦 = cos (−
π

180
φ) cos (

π

180
θ) 𝑑

𝑧 = sin (
π

180
θ) 𝑑

The inverse transformations to extract the azimuth and elevation from a Cartesian position are also

defined:

𝚊𝚣𝚒𝚖𝚞𝚝𝚑({𝑥, 𝑦, 𝑧}) = −

180

π
atan2(𝑥, 𝑦)

𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗({𝑥, 𝑦, 𝑧}) =
180

π
atan2(𝑧, √𝑥2 + 𝑦2)

The function local_coordinate_system produces a rotation matrix which maps {0,1,0} to a

given azimuth and elevation:

 𝚕𝚘𝚌𝚊𝚕_𝚌𝚘𝚘𝚛𝚍𝚒𝚗𝚊𝚝𝚎_𝚜𝚢𝚜𝚝𝚎𝚖(φ, θ) = [

𝚌𝚊𝚛𝚝(φ − 90,0,1)
𝚌𝚊𝚛𝚝(φ, θ, 1)

𝚌𝚊𝚛𝚝(φ, θ + 90,1)
]

34 Rec. ITU-R BS.2127-0

7 Render Items with typeDefinition==Objects

7.1 Structure

FIGURE 5

Structure of the Objects renderer

The structure of the renderer for typeDefinition==Objects is shown in Fig. 5. This Figure shows the

processing applied for a single rendering item; rendering multiple items behaves as if this structure is

duplicated for each item, with the outputs mixed together.

Metadata enters the renderer in the form of an ObjectRenderingItem object, which contains a

track index, and a source of ObjectTypeMetadata objects representing time-bounded rendering

parameters for the identified track.

For each ObjectTypeMetadata object, the method described in § 7.2 is applied; this interprets

the timing metadata, and calculates gain vectors using the gain calculator described in § 7.3. This

produces ProcessingBlock objects, which apply time-bounded signal processing operations to

the input audio to produce a direct and diffuse bus, each containing one channel per loudspeaker. This

approach, and the BlockProcessingChannel class which encapsulates it is described in § 6.4.

The diffuse bus is passed through a per-channel decorrelation filter bank, and the direct bus is delayed

to match, before being mixed together to form the output. The decorrelation filters and delays are

described in § 7.4.

This structure is implemented in core.objectbased.renderer.ObjectRenderer.

7.2 InterpretObjectMetadata

Object timing metadata is interpreted in the InterpretObjectMetadata class, which fits into

the block processing channel structure.

 Rec. ITU-R BS.2127-0 35

FIGURE 6

Example audioBlockFormats and the interpreted interpolation curves

For each input ObjectTypeMetadata, the following process is used:

– The start and end time start_time and end_time of the block are determined according

to § 6.5.

– The time at which interpolation in this block ends, target_time is determined according

to the following cases, which are illustrated by corresponding blocks in Fig. 6:

A

If this is the first block, or if the end_time of the previous block is less than the

start_time of the current block, then:

 𝚝𝚊𝚛𝚐𝚎𝚝_𝚝𝚒𝚖𝚎 = 𝚜𝚝𝚊𝚛𝚝_𝚝𝚒𝚖𝚎

B

If bf.jumpPosition.flag is set, and bf.jumpPosition.interpolationLength is not None, then:

 𝚝𝚊𝚛𝚐𝚎𝚝_𝚝𝚒𝚖𝚎 = 𝚜𝚝𝚊𝚛𝚝_𝚝𝚒𝚖𝚎 + 𝚋𝚏. 𝚓𝚞𝚖𝚙𝙿𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚒𝚗𝚝𝚎𝚛𝚙𝚘𝚕𝚊𝚝𝚒𝚘𝚗𝙻𝚎𝚗𝚐𝚝𝚑

C

If bf.jumpPosition.flag is set, and bf.jumpPosition.interpolationLength is None, then:

 𝚝𝚊𝚛𝚐𝚎𝚝_𝚝𝚒𝚖𝚎 = 𝚜𝚝𝚊𝚛𝚝_𝚝𝚒𝚖𝚎

D

If bf.jumpPosition.flag is not set, then interpolation occurs over the whole block:

 𝚝𝚊𝚛𝚐𝚎𝚝_𝚝𝚒𝚖𝚎 = 𝚎𝚗𝚍_𝚝𝚒𝚖𝚎

– Gain vector interp_to is calculated using a GainCalculator instance for the current

block. interp_from is the gain vector calculated for the previous block.

– If 𝚜𝚝𝚊𝚛𝚝_𝚝𝚒𝚖𝚎 < 𝚝𝚊𝚛𝚐𝚎𝚝_𝚝𝚒𝚖𝚎, an InterpGains ProcessingBlock is created,

which interpolates from interp_from to interp_to between start_time and

target_time.

36 Rec. ITU-R BS.2127-0

– If 𝚝𝚊𝚛𝚐𝚎𝚝_𝚝𝚒𝚖𝚎 < 𝚎𝚗𝚍_𝚝𝚒𝚖𝚎, an FixedGains ProcessingBlock is created, which applies

interp_to between start_time and target_time.

This is implemented in core.objectbased.renderer.InterpretObjectMetadata.

7.3 Gain Calculator

Given an ObjectTypeMetadata object, this object calculates a gain for each loudspeaker on the

direct and diffuse paths. The interface to this component is:

struct DirectDiffuseGains {
 vector<float> direct;
 vector<float> diffuse;
};

class GainCalc {
 GainCalc(Layout layout);

 DirectDiffuseGains render(ObjectTypeMetadata otm);
};

 Rec. ITU-R BS.2127-0 37

7.3.1 Structure

FIGURE 7

Structure of the gain calculator for typeDefintion==Objects

This component is primarily a composite of the sub-components listed in this section. A diagram of

the signal flow between these components is shown in Fig. 7. The behaviour for an

ObjectTypeMetadata otm containing a block_format attribute bf is as follows:

– The coordinate transform described in § 7.3.2 is applied to bf.position to yield a

CartesianPosition object position.

38 Rec. ITU-R BS.2127-0

– Screen scaling is applied using the method described in § 7.3.3, with the parameters

position, bf.screenRef, otm.extra_data.reference_screen and

bf.cartesian, updating position. This component is initialised with the reproduction

screen (layout.screen) and the reproduction layout (layout).

– Screen edge lock is applied using the method described in § 7.3.4, with the parameters

position, bf.position.screenEdgeLock and bf.cartesian, updating the

position with the result. This component is initialised with the reproduction screen

(layout.screen) and the reproduction layout (layout).

– If bf.cartesian, then:

• The allocentric position of each loudspeaker in layout.without_lfe is determined

according to § 7.3.9, yielding the allo_channel_positions array.

• The zone exclusion algorithm described in § 7.3.5 is applied to

allo_channel_positions and bf.zone_exclusion, yielding a boolean

mask of loudspeakers to exclude, excluded.

• Channel lock in the allocentric configuration described in § 7.3.6 is applied with the

parameters position, bf.channelLock and excluded, updating the

position.

 otherwise:

• Channel lock in the egocentric configuration described in § 7.3.6 is applied with the

parameters position and bf.channelLock, updating the position.

– Divergence is applied using the method described in § 7.3.7, with the parameters

position, bf.objectDivergence and bf.cartesian. This results in up to three

extended sources with gains and positions stored in diverged_gains and

diverged_positions.

– If bf.cartesian, then:

• The extent panner described in § 7.3.11 is applied to each p in

diverged_positions, with parameters channel_positions, p, bf.width,

bf.height, bf.depth resulting in gain vectors for the non-excluded loudspeaker

array. channel_positions is a list of non-excluded channel positions selected from

allo_channel_positions[i] where excluded[i] is False.

• These gain vectors are upmixed according to excluded, resulting in a gain for each

loudspeaker i where excluded[i] is False, and a zero where excluded[i] is

True, and stored in gains_for_each_pos.

 otherwise:

• The extent panner described in § 7.3.8 is applied to each p in diverged_positions,

with parameters p, bf.width, bf.height, bf.depth resulting in a per-

loudspeaker gain vector stored in gains_for_each_pos.

– The gains in gains_for_each_pos are mixed together with a power determined by

diverged_gains:

 𝚐𝚊𝚒𝚗𝚜[𝑖] = √∑ d𝚒𝚟𝚎𝚛𝚐𝚎𝚍_𝚐𝚊𝚒𝚗𝚜𝑗 [𝑗] × 𝚐𝚊𝚒𝚗𝚜_𝚏𝚘𝚛_𝚎𝚊𝚌𝚑_𝚙𝚘𝚜[𝑗, 𝑖]2

– If bf.cartesian is not set, zone exclusion as described in § 7.3.12 is applied to gains

and bf.zoneExclusion, resulting in a new gains vector. This component is initialised

with layout.without_lfe.

 Rec. ITU-R BS.2127-0 39

– gains is extended by adding LFE channel gains with value 0 to produce gains_full,

with one value per loudspeaker in layout.

– gains_full is split into a direct and diffuse vector to control the direct and diffuse paths,

depending on the bf.diffuse parameter. These are returned as a

DirectDiffuseGains with attributes:

𝚍𝚒𝚛𝚎𝚌𝚝 = 𝚐𝚊𝚒𝚗𝚜_𝚏𝚞𝚕𝚕 × √1 − 𝚋𝚏. 𝚍𝚒𝚏𝚏𝚞𝚜𝚎

𝚍𝚒𝚏𝚏𝚞𝚜𝚎 = 𝚐𝚊𝚒𝚗𝚜_𝚏𝚞𝚕𝚕 × √𝚋𝚏. 𝚍𝚒𝚏𝚏𝚞𝚜𝚎

7.3.1.1 Discussion (Informative)

The structure of the gain calculator is influenced by the following two principles:

– If the parameters are sparse (i.e. only a small number of the possible metadata fields are

used), it is desirable to preserve the obvious interpretation of those parameters.

– When combinations of parameters are used together, the option that gives the user the most

possibilities for different useful behaviours is chosen.

For example:

– Channel lock is implemented as a position modification – if channel lock is used by itself

(with appropriate maxDistance) then the source will be locked to a channel because of the

behaviour of the point source panner, however channel lock can also be used with extent

parameters to produce an extended source centred around a particular loudspeaker, for

example.

– Diffuseness is not linked to extent – a fully extended diffuse source can be obtained by setting

the extent parameters appropriately, but this also allows for use of the decorrelation filtering

with less-than-full extents.

7.3.2 Coordinate Transformation

A simple coordinate transform is implemented in core.objectbased.gain_calc.coord_trans,

which is used to convert incoming positions into a uniform Cartesian coordinate. It has the following

signature:

 CartesianPosition coord_trans(ObjectPosition position);

position is first converted to a Cartesian vector 𝐩.

If position is an ObjectCartesianPosition then the elements of 𝐩 are clipped to the range

[−1,1] before being returned:

 𝚌𝚕𝚒𝚙(𝐩,−1,1)

otherwise 𝐩 is returned unmodified.

𝚌𝚕𝚒𝚙 is defined for real numbers as:

 𝚌𝚕𝚒𝚙(𝑥, 𝑎, 𝑏) = {
𝑎 𝑥 ≤ 𝑎
𝑥 𝑎 ≤ 𝑥 ≤ 𝑏
𝑏 𝑏 ≤ 𝑥

and is trivially applied to each element in a vector:

 𝚌𝚕𝚒𝚙({𝑥, 𝑦, 𝑧}, 𝑎, 𝑏) = {𝚌𝚕𝚒𝚙(𝑥, 𝑎, 𝑏), 𝚌𝚕𝚒𝚙(𝑦, 𝑎, 𝑏), 𝚌𝚕𝚒𝚙(𝑧, 𝑎, 𝑏)}

40 Rec. ITU-R BS.2127-0

7.3.3 Screen Scaling

The screen scaling component warps source positions in order to compensate for differences in screen

geometry between the production and reproduction environments. The interface to this component is:

class ScreenScaleHandler {
 ScreenScaleHandler(Screen reproduction_screen);
 CartesianPosition handle(
 CartesianPosition position,
 bool screenRef,
 Screen reference_screen,
 bool cartesian
);
};

The two screen definitions used are:

Reference Screen

 The audioProgrammeReferenceScreen listed in the audioProgramme element,

or the default polar screen size if not provided. This was the screen geometry used during

production of the metadata.

Reproduction Screen

 Screen geometry in the reproduction environment in which the output of the renderer will be

listened to.

Positions within the reference screen are warped so that they appear at corresponding positions in the

reproduction screen.

7.3.3.1 Internal Screen Representation

Information about both screens can be provided in either polar or Cartesian coordinates

(PolarScreen or CartesianScreen objects). Unlike object source positions, there is no

obvious equivalence between the two, but in order to simplify the implementation a single screen

representation is required which can represent both screen types. This is the purpose of the

PolarEdges structure, which stores the azimuths of the left and right screen edges, and the

elevations of the top and bottom screen edges:

struct PolarEdges {
 float left_azimuth;
 float right_azimuth;
 float bottom_elevation;
 float top_elevation;
};

A PolarEdges object is created from a given PolarScreen or CartesianScreen object by

first transforming the screen into a Cartesian centre position and two vectors (along the 𝑥 and 𝑧

directions) which define the surface of the screen, then finding the azimuth and elevation of each of

the edges.

For a PolarScreen screen, where:

φ = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚌𝚎𝚗𝚝𝚛𝚎𝙿𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑
θ = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚌𝚎𝚗𝚝𝚛𝚎𝙿𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗
𝑑 = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚌𝚎𝚗𝚝𝚛𝚎𝙿𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎
𝑤 = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚠𝚒𝚍𝚝𝚑𝙰𝚣𝚒𝚖𝚞𝚝𝚑
𝑎 = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚊𝚜𝚙𝚎𝚌𝚝𝚁𝚊𝚝𝚒𝚘

 Rec. ITU-R BS.2127-0 41

the following procedure is used:

– The centre position is a simple Cartesian conversion of the centre position:

 𝑐𝑒𝑛𝑡𝑟𝑒 = 𝑐𝑎𝑟𝑡(φ, θ, 𝑑)

– A Cartesian width and height are calculated:

𝚠𝚒𝚍𝚝𝚑 = 𝑑 ∙ tan (

π

180

𝑤

2
)

𝚑𝚎𝚒𝚐𝚑𝚝 =
𝚠𝚒𝚍𝚝𝚑

𝑎

– local_coordinate_system is used to find the screen 𝑥 and 𝑧 vectors:

[

𝑙𝑥
𝑙𝑦
𝑙𝑧

] = 𝚕𝚘𝚌𝚊𝚕_𝚌𝚘𝚘𝚛𝚍𝚒𝚗𝚊𝚝𝚎_𝚜𝚢𝚜𝚝𝚎𝚖(φ, θ)

𝑣𝑥 = 𝚠𝚒𝚍𝚝𝚑 × 𝑙𝑥
𝑣𝑧 = 𝚑𝚎𝚒𝚐𝚑𝚝 × 𝑙𝑧

For a CartesianScreen screen, where:

𝑤 = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚠𝚒𝚍𝚝𝚑𝚇
𝑎 = 𝚜𝚌𝚛𝚎𝚎𝚗. 𝚊𝚜𝚙𝚎𝚌𝚝𝚁𝚊𝚝𝚒𝚘

the following procedure is used:

– The centre position is used directly:

 𝑐𝑒𝑛𝑡𝑟𝑒 = 𝑠𝑐𝑟𝑒𝑒𝑛. 𝑐𝑒𝑛𝑡𝑟𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

– The width and height are computed:

𝚠𝚒𝚍𝚝𝚑 =

𝑤

2

𝚑𝚎𝚒𝚐𝚑𝚝 =
𝚠𝚒𝚍𝚝𝚑

𝑎

– The screen 𝑥 and 𝑧 vectors are defined:

𝑣𝑥 = {𝚠𝚒𝚍𝚝𝚑, 0,0}
𝑣𝑧 = {0,0, 𝚑𝚎𝚒𝚐𝚑𝚝}

For both screen types, a PolarEdges object can then be constructed with:

𝚕𝚎𝚏𝚝_𝚊𝚣𝚒𝚖𝚞𝚝𝚑 = 𝚊𝚣𝚒𝚖𝚞𝚝𝚑(𝚌𝚎𝚗𝚝𝚛𝚎 − 𝑣𝑥)
𝚛𝚒𝚐𝚑𝚝_𝚊𝚣𝚒𝚖𝚞𝚝𝚑 = 𝚊𝚣𝚒𝚖𝚞𝚝𝚑(𝚌𝚎𝚗𝚝𝚛𝚎 + 𝑣𝑥)

𝚋𝚘𝚝𝚝𝚘𝚖_𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 = 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗(𝚌𝚎𝚗𝚝𝚛𝚎 − 𝑣𝑧)
𝚝𝚘𝚙_𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 = 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗(𝚌𝚎𝚗𝚝𝚛𝚎 + 𝑣𝑧)

7.3.3.2 Position Compensation

In some output layouts when cartesian==true, vertical panning in front of the listener may be

warped. This is compensated for using the core.screen_common.compensate_position

function:

𝚌𝚘𝚖𝚙𝚎𝚗𝚜𝚊𝚝𝚎_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗(φ, θ, 𝚕𝚊𝚢𝚘𝚞𝚝) = {
{φ′, θ} "𝚄 + 𝟶𝟺𝟻" ∈ 𝚕𝚊𝚢𝚘𝚞𝚝. 𝚌𝚑𝚊𝚗𝚗𝚎𝚕_𝚗𝚊𝚖𝚎𝚜
{φ, θ} otherwise

42 Rec. ITU-R BS.2127-0

where:

– φ𝑟 is formed by piecewise linear interpolation of θ from:

 {−90,0,30,90}

 to:

 {30,30,30
30

45
, 30}

– φ′ is formed by piecewise linear interpolation of φ from:

 {−180,−30,30,180}

 to:

 {−180,−φ𝑟 , φ𝑟 , 180}

7.3.3.3 Direction Warping

The warping of positions is defined in core.screen_scale.PolarScreenScaler.scale_az_el,

which independently warps an azimuth and elevation value. Given the PolarEdges ref of the

the reference screen and the PolarEdges rep of the reproduction screen, this works as follows:

– Piecewise linear interpolation is applied to the azimuth, mapping from the values

 {−180, 𝚛𝚎𝚏. 𝚛𝚒𝚐𝚑𝚝_𝚊𝚣𝚒𝚖𝚞𝚝𝚑, 𝚛𝚎𝚏. 𝚕𝚎𝚏𝚝_𝚊𝚣𝚒𝚖𝚞𝚝𝚑, 180}

 to

 {−180, 𝚛𝚎𝚙. 𝚛𝚒𝚐𝚑𝚝_𝚊𝚣𝚒𝚖𝚞𝚝𝚑, 𝚛𝚎𝚙. 𝚕𝚎𝚏𝚝_𝚊𝚣𝚒𝚖𝚞𝚝𝚑, 180}

– Piecewise linear interpolation is applied to the elevation, mapping from the values

 {−90, 𝚛𝚎𝚏. 𝚋𝚘𝚝𝚝𝚘𝚖_𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗, 𝚛𝚎𝚏. 𝚝𝚘𝚙_𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗, 90}

 to

 {−90, 𝚛𝚎𝚙. 𝚋𝚘𝚝𝚝𝚘𝚖_𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗, 𝚛𝚎𝚙. 𝚝𝚘𝚙_𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗, 90}

This is wrapped in core.screen_scale.PolarScreenScaler.scale_position,

which applies scale_az_el to the azimuth and elevation components of a Cartesian vector,

leaving the distance unchanged.

7.3.3.4 Metadata Interpretation

If screenRef is set and the reproduction screen is provided, the position is passed through

PolarScreenScaler.scale_direction with the reference and reproduction screen set.

Otherwise, the position is returned unmodified.

If screenRef is not set or no reproduction screen is provided, the position is returned unmodified.

Otherwise the behaviour depends on the cartesian flag:

– If cartesian is set, polar scaling and compensation is applied by using the conversion

described in § 10.1, resulting in a new position {𝑥′, 𝑦′, 𝑧′}:

{φ, θ, 𝑑} = 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚡, 𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚢, 𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚣)
{φ𝑠, θ𝑠} = 𝚜𝚌𝚊𝚕𝚎_𝚊𝚣_𝚎𝚕(φ, θ)

{φ𝑠𝑐 , θ𝑠𝑐} = 𝚌𝚘𝚖𝚙𝚎𝚗𝚜𝚊𝚝𝚎_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗(φ𝑠, θ𝑠, 𝚕𝚊𝚢𝚘𝚞𝚝)

{𝑥′, 𝑦′, 𝑧′} = 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(φ𝑠𝑐 , θ𝑠𝑐 , 𝑑)

– Otherwise, scale_az_el is applied to the azimuth and elevation components of the

position.

 Rec. ITU-R BS.2127-0 43

7.3.4 Screen Edge Lock

The screen edge lock component warps source positions in order to place the source on the indicated

edge of the screen. It has the following interface:

class ScreenEdgeLockHandler {
 ScreenEdgeLockHandler(Screen reproduction_screen);

 CartesianPosition handle_vector(
 CartesianPosition position,
 ScreenEdgeLock screen_edge_lock,
 cartesian=False
);

 tuple<float, float> handle_az_el(
 float azimuth,
 float elevation,
 ScreenEdgeLock screen_edge_lock
);
};

On initialisation, this component transforms the reproduction_screen into a PolarEdges

object polar_edges, as specified in § 7.3.3.1.

handle_az_el independently modifies the azimuth and elevation, resulting in a new azimuth and

elevation:

– If screen_edge_lock.horizontal is LEFT, then the azimuth is set to

polar_edges.left_azimuth; if it is RIGHT, then the azimuth is set to

polar_edges.right_azimuth; otherwise the azimuth is unchanged.

– If screen_edge_lock.vertical is TOP, then the elevation is set to

polar_edges.top_elevation; if it is BOTTOM, then the elevation is set to

polar_edges.bottom_elevation; otherwise the elevation is unchanged.

If reproduction_screen is not provided, no position modification occurs.

The processing takes place in the polar domain, hence Cartesian positions have to be converted first.

The back and forth conversion is applied if the handle_vector method is used instead of the

handle_az_el method.

– If cartesian is set, polar scaling and compensation is applied by using the conversion

described in § 10.1, resulting in a new position {𝑥′, 𝑦′, 𝑧′}:

{φ, θ, 𝑑} = 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚡, 𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚢, 𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚣)
{φ𝑠, θ𝑠} = 𝚑𝚊𝚗𝚍𝚕𝚎_𝚊𝚣_𝚎𝚕(φ, θ, 𝚜𝚌𝚛𝚎𝚎𝚗_𝚎𝚍𝚐𝚎_𝚕𝚘𝚌𝚔)

{φ𝑠𝑐 , θ𝑠𝑐} = 𝚌𝚘𝚖𝚙𝚎𝚗𝚜𝚊𝚝𝚎_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗(φ𝑠, θ𝑠, 𝚕𝚊𝚢𝚘𝚞𝚝)

{𝑥′, 𝑦′, 𝑧′} = 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(φ𝑠𝑐 , θ𝑠𝑐 , 𝑑)

– Otherwise, handle_az_el is applied to the azimuth and elevation components of the

position.

This component is implemented in core.screen_edge_lock.ScreenEdgeLockHandler.

7.3.5 Cartesian Zone Exclusion

The Cartesian zone exclusion algorithm begins with the full reproduction layout as

channel_positions and processes the ExclusionZone objects to identify which

loudspeakers should be removed – this follows the algorithm set out in § 7.3.12.1. For each

44 Rec. ITU-R BS.2127-0

loudspeaker found to be within any of the regions specified by an ExclusionZone object, that

loudspeaker is removed and if this results in reducing a row of loudspeakers (which share the same 𝑦

and 𝑧 coordinates) to a single loudspeaker, then all loudspeakers from the row are removed so that

the basic properties required by the point source panner in § 7.3.10 are maintained.

If the process of applying zone exclusion would result in all loudspeakers being removed, then no

loudspeakers are removed.

Finally an upmix matrix is created which maps channels in the reduced layout to their original channel

in the full layout with unity gain.

This is implemented in core.allocentric.apply_zone_exclusion.

7.3.6 Channel Lock

Channel lock is implemented as a position transformation. If channelLock is set and a loudspeaker is

within the range specified in maxDistance, the position will be transformed to the position of the

loudspeaker closest to the original position. In the absence of divergence, extent, zone exclusion and

diffuse metadata the source will be reproduced directly by the selected loudspeaker.

The objectbased._gain_calc.ChannelLockHandlerBase with the following

signature:

class ChannelLockHandlerBase {

 ChannelLockHandlerBase(Layout layout);

 CartesianPosition handle(

 CartesianPosition position,

 optional<ChannelLock> channelLock,

 vector<bool> excluded,

);

};

excluded is a channel exclusion mask to indicate which loudspeakers should be ignored and is

only used in the allocentric path, as only there the channel lock is performed after the zone exclusion.

For the egocentric path the ChannelLockHandlerBase is configured in

core.objectbased._gain_calc.EgoChannelLockHandler.

For the allocentric path the ChannelLockHandlerBase is configured in

core.objectbased._gain_calc.AlloChannelLockHandler.

In egocentric mode, the loudspeaker positions considered are the normalised real loudspeaker

positions in layout, while in allocentric mode they are the positions according to

core.allocentric.positions_for_layout(layout), as described in § 7.3.9.

To apply channel lock metadata, the following procedure is used:

– If excluded is not None, don’t consider the loudspeakers, where excluded[n] ==

True (n being the n-th loudspeaker) in the following steps.

– If channelLock is None, return the original position.

– If channelLock.maxDistance is not None calculate the ℓ2 distance between each

loudspeaker position and position, and identify all loudspeakers (within some tolerance),

where the distance is smaller than channelLock.maxDistance as possible

loudspeakers.

– If no possible loudspeaker is identified return position.

 Rec. ITU-R BS.2127-0 45

– In the set of possible loudspeakers identify those loudspeakers closest to position. In the

egocentric configuration the ℓ2 distance between position and each loudspeaker is used

and in the allocentric configuration the weighted distance between position and each

loudspeaker is used. The weighted distance is calculated as

 𝑑𝑤𝑖 = √𝑤𝑥 × (𝑥𝑜 − 𝑥𝑠𝑝𝑘𝑟𝑖)
2
+𝑤𝑦 × (𝑦𝑜 − 𝑦𝑠𝑝𝑘𝑟𝑖)

2
+ 𝑤𝑧 × (𝑧𝑜 − 𝑧𝑠𝑝𝑘𝑟𝑖)

2

 where:

𝑤𝑥 =
1

16

𝑤𝑦 = 4

𝑤𝑧 = 32

– If there is no unique closest loudspeaker (within some tolerance), then the loudspeaker from

the set of closest loudspeakers with the highest priority is chosen. Priority ordering of

loudspeakers is determined by lexicographic comparison of the tuple:

{|θ|, θ, |φ|, φ}

 Where φ and θ are the real azimuth and elevation of the loudspeaker. Lower tuples have

higher priority – loudspeakers with lower absolute elevations have highest priority, with ties

broken by the elevation, then the absolute azimuth, then the azimuth.

– The position of the chosen loudspeaker is returned.

7.3.7 Divergence

Divergence is implemented by adding two additional source positions 𝐩𝑙 and 𝐩𝑟 to the left and the right

of the original source position 𝐩𝑐. Each source position is associated with a gain value: 𝑔𝑙, 𝑔𝑐 and 𝑔𝑟.

The Divergence metadata is interpreted in core.objectbased.gain_calc.diverge, with

the following signature:

tuple<vector<float>, vector<CartesianPosition>> diverge(
 CartesianPosition position,
 ObjectDivergence objectDivergence,
 bool cartesian
);

This function accepts a 3D position (in this case, the output of the Channel Lock function) and applies

the divergence metadata supplied in objectDivergence. Three source positions and associated

gains are produced, each of which are passed to the extent panner for rendering.

The calculation of these gains and positions is described below.

7.3.7.1 Calculation of Gains

For a given objectDivergence.value 𝑥, the three gains are calculated as follows:

 𝑔𝑐 =
1−𝑥

𝑥+1

 𝑔𝑙 = 𝑔𝑟 =
𝑥

𝑥+1

This satisfies the following requirements:

– ∀𝑥, 𝑔𝑙 + 𝑔𝑟 + 𝑔𝑐 = 1

– 𝑥 = 0 ⟹ 𝑔𝑙 = 𝑔𝑟 = 0 ∧ 𝑔𝑐 = 1

46 Rec. ITU-R BS.2127-0

– 𝑥 =
1

2
⟹ 𝑔𝑙 = 𝑔𝑟 = 𝑔𝑐 =

1

3

– 𝑥 = 1 ⟹ 𝑔𝑙 = 𝑔𝑟 = 0.5 ∧ 𝑔𝑐 = 0

7.3.7.2 Calculation of Positions

The positions produced depend on the cartesian flag in the block format. A warning is raised if

azimuthRange and cartesian are set, or if positionRange is set and cartesian is not.

7.3.7.2.1 Behaviour when cartesian == true

For a position value 𝐩 and objectDivergence.positionRange value 𝑥, the centre

position is simply shifted left and right by 𝑥 along the 𝑥 axis, and clipped to [−1,1]:

𝐩𝑐 = 𝚌𝚕𝚒𝚙(𝐩,−1,1)
𝐩𝑙 = 𝚌𝚕𝚒𝚙(𝐩 − {𝑥, 0,0}, −1,1)
𝐩𝑟 = 𝚌𝚕𝚒𝚙(𝐩 + {𝑥, 0,0}, −1,1)

𝚌𝚕𝚒𝚙 is defined in § 7.3.2.

7.3.7.2.2 Behaviour when cartesian == false

Positions are calculated for a given objectDivergence.azimuthRange 𝑎 such that from the

perspective of the listener the left and right sources are 𝑎 degrees to the left and right of the centre,

and all three sources are in a straight line.

This is achieved by defining three positions centred around the +𝑦-axis at a distance 𝑑 =∥ 𝐩𝑐 ∥2,

where 𝐩𝑐 is the original source position:

 ′𝑙 = 𝚌𝚊𝚛𝚝(𝑎, 0, 𝑑)

 𝑃′𝑟 = 𝚌𝚊𝚛𝚝(−𝑎, 0, 𝑑)

 𝑃′𝑐 = 𝚌𝚊𝚛𝚝(0,0, 𝑑)

These are then rotated around the original source direction by the rotation matrix 𝐌, which is defined

such that 𝐩𝑐′ is mapped onto the original source position 𝐩𝑐:

 [𝐩𝑙 , 𝐩𝑟 , 𝐩𝑐]
𝑇 = 𝐌 ⋅ [𝐩′𝑙 , 𝐩′𝑟 , 𝐩′𝑐]

𝑇

7.3.8 Polar Extent Panner

The ADM polar extent parameters are handled in

core.objectbased.gain_calc.PolarExtentHandler; this uses the modules described

below to produce a gain vector for given position and extent parameters.

The interface to this class is:

class PolarExtentHandler {
 PolarExtentHandler(PointSourcePanner psp);

 vector<float> handle(
 CartesianPosition position,
 float width,
 float height,
 float depth);
};

 Rec. ITU-R BS.2127-0 47

FIGURE 8

Structure of the Extent Handler

The structure of the PolarExtentHandler class is shown in Fig. 8.

Internally, this object holds a reference to a PolarExtentPanner as described in § 7.3.8.2, which

it uses to calculate the gain vectors.

The width, height and position parameters shall be duplicated and modified to handle depth

parameter and the distance component of position; these parameters are passed through the Polar

Extent Panner in order to generate a loudspeaker gain vector for each, and finally these gain vectors

are mixed together. This procedure is described in § 7.3.8.2.

Polar extent rendering modes use the Spreading Panner to generate loudspeaker gains, as described

below.

7.3.8.1 Spreading Panner

The shape of extended sources in the renderer is defined in terms of a weighting function, which

given a 3D direction can calculate a weight for that direction. This weight can be thought of as the

amount that a given object should be reproduced in a given direction. For example, for a source in

front of the listener which is wider than it is tall, a weighting function like the one represented in

Fig. 10 may be used.

By producing per-loudspeaker gains which reflect this weighting function, applying these gains to

the mono waveform of an object, and applying decorrelation filtering to the resulting channels, an

impression of an extended or diffuse sound source with the intended extent parameters can be

achieved.

To calculate a gain vector for a given weighting function, the SpreadingPanner class is used.

The set of 1652 virtual source positions used in the spreading panner is determined as follows.

For each elevation between −90° and 90° inclusive in 5° steps, calculate the number of points 𝑛 to

be spaced evenly around a circle at that elevation, to achieve approximately uniform density on the

surface of the unit sphere:

𝑛′ =
360

5
 cosθ

48 Rec. ITU-R BS.2127-0

𝑛 = max(round(𝑛′),  1)

Then, for each i in range 0 to n − 1 inclusive, calculate the azimuth φ:

φ = 360 
𝑖

𝑛

This results in the point cart (φ, , 1).

Objects of this type hold a set of virtual source positions, and a loudspeaker gain vector for each of

these positions.

During start-up, the point source panner is used the calculated the gain vector for each position.

To calculate the gain vector for a given weighting function, the weighting function is applied to the

virtual source positions. The resulting per-virtual-source gain vector is multiplied by the

pre-calculated loudspeaker gain vectors to obtain a single per-loudspeaker gain vector. This is then

power normalised to obtain the final gain vector.

This is implemented in core.objectbased.extent.SpreadingPanner.

7.3.8.2 Rendering Polar Extent

The procedure used to calculate loudspeaker gains for position, width, height and depth

parameters in polar mode is as follows:

– The depth parameter is interpreted as two extended sources with the same direction but

different distances. The two distances are:

𝑑1 = max {0, ∥ 𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗 ∥2+

𝚍𝚎𝚙𝚝𝚑

2
}

𝑑2 = max {0, ∥ 𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗 ∥2−
𝚍𝚎𝚙𝚝𝚑

2
}

– For each distance, the Polar Extent Panner is used to calculate gain vectors 𝐠′1 and 𝐠′2 from

the position, and the width and height modified by the Polar Extent Modification

Function, described below.

– The gain vectors are mixed together to produce the output gain vector 𝐠, where 𝐠𝑖 is the gain

for loudspeaker 𝑖:

 𝐠𝑖 = √
𝐠′1,𝑖

2+𝐠′2,𝑖
2

2

7.3.8.2.1 Polar Extent Modification Function

The extent modification function is used to modify the width and height parameters given the distance

parameter.

It has the following properties:

– At 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 = 0, the extent is always 360°.

– At 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 = 1, the original extent is used.

– At 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 > 1, the extent decreases as the distance increases.

– When 0 < 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 < 1, the extent changes more steeply around 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 = 0 for

smaller extents.

The extent modification function for extent and distance is defined as follows:

– The extent in degrees is mapped linearly to an extent along the x axis, with a minimum size of:

 Rec. ITU-R BS.2127-0 49

 𝚖𝚒𝚗_𝚜𝚒𝚣𝚎 = 0.2

 𝚜𝚒𝚣𝚎 = 𝚖𝚒𝚗_𝚜𝚒𝚣𝚎 +
(1−𝚖𝚒𝚗_𝚜𝚒𝚣𝚎)×𝚎𝚡𝚝𝚎𝚗𝚝

360°

– A right triangle if formed, with the adjacent edge being the distance, and the opposite edge

being the distance. The angle formed is then used to determine a new extent; this is calculated

for a distance of 1 and 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎:

𝑒1 = 4 ×

180

π
× atan2(𝚜𝚒𝚣𝚎, 1)

𝑒𝑑 = 4 ×
180

π
× atan2(𝚜𝚒𝚣𝚎, 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎)

– Piecewise linear interpolation is applied to map 𝑒𝑑 back to the original extent when 𝑒𝑑 = 𝑒1:

 𝚎𝚡𝚝𝚎𝚗𝚝_𝚖𝚘𝚍 = {
𝚎𝚡𝚝𝚎𝚗𝚝 ×

𝑒𝑑

𝑒1
𝑒𝑑 < 𝑒1

𝚎𝚡𝚝𝚎𝚗𝚝 + (360° − 𝚎𝚡𝚝𝚎𝚗𝚝) ×
𝑒𝑑−𝑒1

360°−𝑒1
𝑒𝑑 ≥ 𝑒1

This is implemented in

core.objectbased.gain_calc.PolarExtentHandler.extent_mod. The shape of

the extent modification function is shown in Fig. 9.

FIGURE 9

Extent modification function for polar extended sources

NOTE – Each line shows how the output extent varies over distance for a given input extent. The extent is not

modified where 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 = 1, so for example the lowermost line shows how the modified extent varies

over distance for an input extent of 0.

7.3.8.2.2 Polar Extent Panner

In order to handle the full range of positions and extents allowed in the ADM, the size must be

modified before the Polar Weighting Function can be applied. The following steps are used:

– A modified width and height is computed as 𝑚𝑎𝑥{𝑤𝑖𝑑𝑡ℎ, 5°} and 𝑚𝑎𝑥{ℎ𝑒𝑖𝑔ℎ𝑡, 5°}; these

are used with the spreading panner described in § 7.3.8.1 and the Polar Weighting Function

described below to yield a spread gain vector 𝑔𝑠.

– The position is passed to the point source panner to yield a point source gain vector 𝑔𝑝.

50 Rec. ITU-R BS.2127-0

 The two vectors are mixed together to produce the vector 𝑔 such that for zero width and

height, the point source gains are used exclusively, while if either the width or height is

greater than 5 degrees, the spread gains are used exclusively:

 𝑔𝑖 = √𝑝𝑔𝑠,𝑖
2 + (1 − 𝑝)𝑔𝑝,𝑖

2

 where:

 𝑝 = 𝑐𝑙𝑖𝑝 (
𝑚𝑎𝑥(𝑤𝑖𝑑𝑡ℎ,ℎ𝑒𝑖𝑔ℎ𝑡)

5
, 0,1)

This is required to support small extents – here the non-zero part of the spreading function must be

large enough to cover multiple sampling points in order to produce smooth gains, and this imposes

a minimum amount of spread, which may be larger than the desired amount.

This is implemented in

core.objectbased.extent.PolarExtentPanner.calc_pv_spread.

7.3.8.2.3 Polar Weighting Function

The weighting function for polar extent rendering is parametrised by a 3D Cartesian vector

position, and angles width and height in degrees. Since the distance component of the

position is not used, this can be considered as a direction.

The weighting function is as follows:

– A rotation matrix is calculated which maps the position {0,1,0} (directly in front of the

listener) to the position of the source. This rotation matrix takes the form of a rotation around

{1,0,0} followed by a rotation around {0,0,1}. This is implemented in

core.objectbased.extent.calc_basis.

– If the height is greater than the width, then the coordinate system is flipped to simplify the

calculation, as the weighting function for a source with width 𝑤 and height ℎ should be the

same as the weighting function for a source with width ℎ and height 𝑤, rotated 90° around

the source position. This is achieved by swapping the width and height variables, and

swapping the 𝑥 and 𝑧 rows of the rotation matrix. See, for example, Figs 10 and 11, which

have the same shape but are rotated 90 degrees (ignoring the warping caused by the projection

used).

– The approximate weighting function is now 1 inside a maximally-rounded 𝚠𝚒𝚍𝚝𝚑 ×
𝚑𝚎𝚒𝚐𝚑𝚝 rectangle (stadium) in azimuth-elevation space, with a few modifications:

• The rounded caps are circular in Cartesian space, as the weight is calculated based on the

angle from two vectors at their centre. When 𝚠𝚒𝚍𝚝𝚑 = 𝚑𝚎𝚒𝚐𝚑𝚝, the weighting function

is circular.

• At 𝚠𝚒𝚍𝚝𝚑 > 180°, the width is increased so that when the width reaches 360° the

rounded parts overlap completely, forming a ‘band’, where the weighting function has

the same value for all positions of the same elevation. See Figs 12 and 13.

• A fade is added to the edge of the weighting function; the weight drops from 1 to 0 as

the angular distance from the extent reaches 10 degrees.

This function is implemented in

core.objectbased.extent.PolarExtentPanner.get_weight_func.

 Rec. ITU-R BS.2127-0 51

FIGURE 10

Polar weighting function for 𝚠𝚒𝚍𝚝𝚑 = 𝟗𝟎° and 𝚑𝚎𝚒𝚐𝚑𝚝 = 𝟑𝟎°

FIGURE 11

Polar weighting function for 𝚠𝚒𝚍𝚝𝚑 = 𝟑𝟎° and 𝚑𝚎𝚒𝚐𝚑𝚝 = 𝟗𝟎°

52 Rec. ITU-R BS.2127-0

FIGURE 12

Polar weighting function for 𝚠𝚒𝚍𝚝𝚑 = 𝟑𝟎𝟎° and 𝚑𝚎𝚒𝚐𝚑𝚝 = 𝟑𝟎°

FIGURE 13

Polar weighting function for 𝚠𝚒𝚍𝚝𝚑 = 𝟑𝟔𝟎° and 𝚑𝚎𝚒𝚐𝚑𝚝 = 𝟑𝟎°

7.3.9 Cartesian Loudspeaker Positions

To use the Cartesian point source panner specified in § 7.3.10, a Cartesian position has to be found

for each loudspeaker in the layout.

The interface to this component is as follows:

 vector<CartesianPosition> positions_for_layout(Layout layout)

First, the table of positions matching layout.name is found in § 11.2.

For each channel in layout.channels, the x, y, and z parameters of an output

CartesianPosition are determined as follows:

– If channel.name is M+SC or M-SC, then:

 {𝚡, 𝚢, 𝚣} = 𝚙𝚘𝚒𝚗𝚝_𝚙𝚘𝚕𝚊𝚛_𝚝𝚘_𝚌𝚊𝚛𝚝(𝚌𝚑𝚊𝚗𝚗𝚎𝚕. 𝚙𝚘𝚕𝚊𝚛_𝚙𝚘𝚜𝚒𝚝𝚒𝚘𝚗. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑, 0,1)

 Rec. ITU-R BS.2127-0 53

 Note that this assumes infinite precision in point_polar_to_cart. In practice the

positions must be modified such that:

• 𝑧 = 0

• The 𝑦 coordinates of both screen loudspeakers must be identical.

• The 𝑥 coordinates of both screen loudspeakers must be exactly symmetrical about 0.

– Otherwise, the values are given in the table row labelled channel.name.

This is implemented in core.allocentric.

7.3.10 Cartesian Point Source Panner

The Cartesian point panning algorithm consists of a 3D extension of the ‘dual-balance’ panner

concept that is widely used in 5.1- and 7.1-channel surround sound production.

The inputs to the panner consist of an object’s position [𝑝𝑜𝑥, 𝑝𝑜𝑦, 𝑝𝑜𝑧] and the positions of the 𝑁

output loudspeakers, all in Cartesian coordinates. Let [𝑝𝑠𝑥(𝑗), 𝑝𝑠𝑦(𝑗), 𝑝𝑠𝑧(𝑗)] denote the position of

the loudspeaker 𝑗.

With regards to loudspeaker layout, the point source panner requires that the following conditions are

satisfied in order to be able to accurately place a phantom image of the object anywhere in the room:

– The loudspeakers must be grouped into one or more discrete planes in the z-dimension.

– The loudspeakers on each plane must be grouped into one or more discrete rows in the

y-dimension.

– On any row where −1 < 𝑦 < 1 (i.e., any row that does not intersect the front or rear walls

of the room), there must be loudspeakers at 𝑥 = 1 and 𝑥 = −1.

– Every loudspeaker location must lie on the surface of the room cube, that is, either on the

floor, ceiling, or walls.

– Positions that meet these conditions can be found by following the procedure given in § 7.3.9.

Approximately, the loudspeaker gains for a given source position are found by:

– Finding layers of loudspeakers above and below the source, and calculating a 𝑧 gain for both

of these layers based on the 𝑧 position of the layers and the source.

– In each of the found layers, finding a row of loudspeakers in front and behind the source

position, and calculating a 𝑦 gain for each of these rows based on the 𝑦 position of the rows

and the source.

– In each of the found rows, finding a pair of loudspeakers to the left and the right of the source

position, and calculating an 𝑥 gain for each of these loudspeakers based on the 𝑥 positions of

the loudspeakers and the source.

Up to eight loudspeakers will have been selected; in each of these the gain is 𝑥 × 𝑦 × 𝑧; other

loudspeakers have zero gain.

The exact specification of the algorithm is given below, calculating a gain 𝑔𝑝𝑜𝑖𝑛𝑡(𝑗𝑥, 𝑗𝑦, 𝑗𝑧) for each

loudspeaker 𝑗. Noting that each axis is separable, it is also useful to observe that 𝑔𝑝𝑜𝑖𝑛𝑡(𝑥, 𝑦, 𝑧) =
𝑔𝑝𝑜𝑖𝑛𝑡𝑥(𝑥) × 𝑔𝑝𝑜𝑖𝑛𝑡𝑦(𝑦) × 𝑔𝑝𝑜𝑖𝑛𝑡𝑧(𝑧), and that the three independent gains are available as

intermediate values in the algorithm.

54 Rec. ITU-R BS.2127-0

epsilon = 0.001 //small positive constant

//simplification: Use object-centric coordinates, so that object is
//always at the origin.

for (j = 1 to N)
{
 p_sx(j) -= p_ox
 p_sy(j) -= p_oy
 p_sz(j) -= p_oz
}

for (j = 1 to N)
{
 //Z-gain
 z_this = p_sz(j)
 //find loudspeakers in other plane, on other side of object

 if (z_this >= 0) {
 z_other = max({p_sz : p_sz < z_this})

 } else {
 z_other = min({p_sz : p_sz > z_this})
 }

 if (isempty(z_other)) {
 gz = 1.0
 } else if (sign(z_other) == sign(z_this)) {
 gz = 0.0
 } else {
 gz = cos(z_this / (z_other - z_this) * pi /2)
 }

 //Y-gain
 //from among loudspeakers in this plane...
 p_sx_plane = p_sx({i:abs(p_sz(i) - z_this) < epsilon})
 p_sy_plane = p_sy({i:abs(p_sz(i) - z_this) < epsilon})
 y_this = p_sy(j)
 //...find loudspeakers in closest row, on other side of object

 if (y_this >= 0) {
 y_other = max({p_sy_plane : p_sy_plane < y_this})

 } else {
 y_other = min({p_sy_plane : p_sy_plane > y_this})
 }

 if isempty(y_other) {
 gy = 1.0
 } else if (sign(y_other) == sign(y_this)) {
 gy = 0.0
 } else {
 gy = cos(y_this / (y_other - y_this) * pi /2)
 }

 //X-gain
 //Among loudspeakers in this plane and row...
 p_sx_row = p_sx_plane({i:abs(p_sy_plane(i) - y_this) < epsilon})
 x_this = p_sx(j)
 //find loudspeakers in the closest column

 if (x_this >= 0) {
 x_other = max({p_sx_row : p_sx_row < x_this})

 } else {
 x_other = min({p_sx_row : p_sx_row > x_this})
 }

 if (isempty(x_other)) {

 Rec. ITU-R BS.2127-0 55

 gx = 1.0
 } else if (sign(x_other) == sign(x_this)) {
 gx = 0.0
 } else {
 gx = cos(x_this / (x_other - x_this) * pi /2)
 }
 g_point(j) = gx * gy * gz
}

Observe that at most eight loudspeakers will have non-zero gains, and that the sum of the squares of

the loudspeaker gains will always be 1, so the panning operation is energy-preserving.

This is implemented in core.point_source.AllocentricPanner.

7.3.11 Cartesian Extent Panner

The purpose of the extent panner is to calculate a gain coefficient for each loudspeaker in the output

loudspeaker layout, given an object position and object extents. The intention of extent is to make the

object appear larger so that when the extent is at the maximum the object fills the room, while when

it is set to zero the object is rendered as a point object.

To achieve this, the extent panner considers a grid of many virtual sources in the room. Each virtual

source fires loudspeakers exactly in the same way any object rendered with the point source panner

would. The extent panner, when given an object position and object extents, determines which

(and how many) of those virtual sources will contribute.

The following steps are necessary to calculate the gains for an object with extent. Each step is

explained in more detail in one of the following subsections.

1. Pre-scale the extent parameters.

2. Calculate point gains for all virtual sources.

3. Combine all the gains from virtual sources within the room to produce inside extent gains.

4. Combine all the gains from virtual sources on the boundaries of the room to produce

boundary extent gains.

5. Combine the inside and boundary extent gains to produce the final extent gains.

6. Combine the final extent gains with the point gains for the object.

The Cartesian extent panner is implemented is

core.objectbased.allo_extent.get_gains.

7.3.11.1 Pre-scaling of extent parameters

Prior to calculating any gains the extent parameter values are scaled up so that the source weighting

function behaves more intuitively. The user is exposed to values 𝑠 ∈ [0,1], which are mapped into

the actual extent used by the algorithm to the range [0,2.8]. The mapping is done by a piecewise

linear function defined by the value pairs (0,0), (0.2,0.3), (0.5,1.0), (0.75,1.8), (1,2.8) and shown in

Fig. 14. The maximum value of 2.8 ensures that when extent is set to maximum (1.0), it truly occupies

the whole room. In what follows, the variables 𝑠
̂

𝑥, 𝑠
̂

𝑦, 𝑠
̂

𝑧 refer to the input extent values after mapping

has been applied.

56 Rec. ITU-R BS.2127-0

FIGURE 14

Piecewise-linear mapping between ADM extent parameters and algorithm internal extent values

To maintain desired behaviour under extreme values of extent, minimum values on 𝑠
̂

𝑥, 𝑠
̂

𝑦, 𝑠
̂

𝑧 are

applied as follows:

 𝑠𝑥 = 𝑚𝑎𝑥 (𝑠
̂

𝑥,
2

𝑁𝑥−1
) , 𝑠𝑦 = 𝑚𝑎𝑥 (𝑠

̂

𝑦,
2

𝑁𝑦−1
) , 𝑠𝑧 = 𝑚𝑎𝑥 (𝑠

̂

𝑧,
2

𝑁𝑧−1
)

These restricted values 𝑠𝑥, 𝑠𝑦, 𝑠𝑧 are used throughout in the algorithm.

7.3.11.2 Calculating virtual source gains

The grid of virtual sources is defined as a static rectangular uniform grid of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 points. The

grid spans the range of positions [−1,1] in each dimension. The density needs to be set in a manner

that includes a few sources between loudspeakers in a typical layout. Empirical testing showed that

𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 40 created an appropriate grid of virtual sources1. The notation (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) will be

used to denote the possible coordinates of the virtual sources. Each virtual source creates a set of

gains 𝑔𝑗
𝑝𝑜𝑖𝑛𝑡(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) to each loudspeaker 𝑗 = 1, . . . , 𝑁𝑗 of the layout according to the Cartesian

point source panner algorithm described in § 7.3.10. Note that if any loudspeakers have been excluded

from the layout due to a Zone Exclusion object (see § 7.3.5) the reduced loudspeaker layout is used

when calculating the gains.

7.3.11.3 Combining virtual source gains inside the room

The object position and extent (𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧) are used to calculate a set of weights that

determine how much each virtual source will contribute to the final gains2. The weights for each

virtual source are denoted 𝑤(𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑜, 𝑦𝑜 , 𝑧𝑜, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧) and are used to scale the point gains for

each virtual source. After being weighted, all the virtual source gains are summed together to produce

the inside extent gains:

1 For loudspeaker layouts where there are no bottom layer loudspeakers the range of virtual sources in the Z

dimension is limited to [0,1], and the recommended value of 𝑁𝑧 is 20.

2 For loudspeaker layouts where there are no bottom layer loudspeakers the extent algorithm uses 𝑧𝑜 =
𝑚𝑎𝑥(𝑝𝑜𝑧, 0) as the objects’s position in the Z dimension. Otherwise, 𝑧𝑜 = 𝑝𝑜𝑧. For all loudspeaker layouts,

the extent algorithm uses the same X- and Y-position as the point source panner (i.e., 𝑦𝑜 = 𝑝𝑜𝑦 , 𝑥𝑜 = 𝑝𝑜𝑥).

 Rec. ITU-R BS.2127-0 57

 𝑔𝑗
𝑖𝑛𝑠𝑖𝑑𝑒(𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) = ∑ 𝑤𝑥𝑠,𝑦𝑠,𝑧𝑠 (𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑜, 𝑦𝑜 , 𝑧𝑜, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧) × 𝑔𝑗

𝑝𝑜𝑖𝑛𝑡(𝑥𝑠, 𝑦𝑠, 𝑧𝑠)

However, the extent algorithm combines virtual source gains in a way that varies depending on the

extent of the object. In general, this can be described as:

𝑔𝑗
𝑖𝑛𝑠𝑖𝑑𝑒(𝑥𝑜, 𝑦𝑜 , 𝑧𝑜, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧) = [∑ [𝑤(𝑥𝑠, 𝑦𝑥 , 𝑧𝑠, 𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑦) × 𝑔𝑗

𝑝𝑜𝑖𝑛𝑡(𝑥𝑠, 𝑦𝑠, 𝑧𝑠)]
𝑝

𝑥𝑠,𝑦𝑠,𝑧𝑠

]

1
𝑝

The extent-dependent exponent 𝑝 controls the smoothness of the gains across loudspeakers. It ensures

homogeneous growth of the object at small 𝑠 and correct energy distribution across all directions at

large 𝑠. To calculate 𝑝, first sort {𝑠𝑥 , 𝑠𝑦, 𝑠𝑧} in descending order, and label the resulting ordered triad:

{𝑠1, 𝑠2, 𝑠3}. The triad can then be combined to give an effective extent:

 𝑠𝑒𝑓𝑓 =
6

9
𝑠1 +

2

9
𝑠2 +

1

9
𝑠3

For layouts with a single plane of loudspeakers, such as 0+5+0 or if zone exclusion results in the

layout being reduced to a single plane, first sort {𝑠𝑥, 𝑠𝑦} in descending order, and label the resulting

ordered duo: {𝑠1, 𝑠2} giving:

 𝑠𝑒𝑓𝑓 =
3

4
𝑠1 +

1

4
𝑠2

For 0+2+0 layout (Stereo) or if zone exclusion reduces the set of loudspeakers to a single row, 𝑠𝑒𝑓𝑓 = 𝑠𝑥.

The effective extent is them used to calculate a piecewise defined exponent:

 𝑝 = {
6 𝑠𝑒𝑓𝑓 ≤ 0.5

6 − 4 ×
𝑠𝑒𝑓𝑓−0.5

𝑠𝑚𝑎𝑥−0.5
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑠𝑚𝑎𝑥 = 2.8, such that when 𝑠 is at its maximum, 𝑝 = 2.

The weight function can also treat each axis separately and the whole extent computation simplifies

if separable weight functions are used:

 𝑤(𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) = 𝑤𝑥(𝑥𝑠, 𝑥𝑜 , 𝑠𝑥)𝑤𝑦(𝑦𝑠, 𝑦𝑜, 𝑠𝑦)𝑤𝑧(𝑧𝑠, 𝑧𝑜, 𝑠𝑧)

The chosen functions look like something between circles and squares (or spheres and cubes, in 3D):

𝑤𝑥(𝑝, 𝑜, 𝑠) = 𝑤𝑦(𝑝, 𝑜, 𝑠) = 10

−min([
3

2
(
𝑝−𝑜

2𝑠
)]
4
,6.5)

𝑤𝑧(𝑝, 𝑜, 𝑠) = 10
−min([

3

2
(
𝑝−𝑜

𝑠
)]
4
,6.5)

× cos (𝑠
3π

7
)

This means that 𝑔𝑗
𝑖𝑛𝑠𝑖𝑑𝑒 can be simplified to

 𝑔𝑗
𝑖𝑛𝑠𝑖𝑑𝑒(𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) = 𝑓𝑗

𝑥(𝑥𝑜, 𝑠𝑥)𝑓𝑗
𝑦
(𝑦𝑜, 𝑠𝑦)𝑓𝑗

𝑧(𝑧𝑜, 𝑠𝑧)

58 Rec. ITU-R BS.2127-0

where:

𝑓𝑗
𝑥(𝑥𝑜, 𝑠𝑥) = ∑ [𝑔𝑗

𝑝𝑜𝑖𝑛𝑡𝑥(𝑥𝑠)𝑤𝑥(𝑥𝑠, 𝑥𝑜, 𝑠𝑥)]
𝑝

𝑥𝑠

𝑓𝑗
𝑦
(𝑦𝑜, 𝑠𝑦) = ∑ [𝑔

𝑗

𝑝𝑜𝑖𝑛𝑡𝑦(𝑦𝑠)𝑤𝑦(𝑦𝑠, 𝑦𝑜, 𝑠𝑦)]
𝑝

𝑦𝑠

𝑓𝑗
𝑧(𝑧𝑜, 𝑠𝑧) = ∑ [𝑔𝑗

𝑝𝑜𝑖𝑛𝑡𝑧(𝑧𝑠)𝑤𝑧(𝑧𝑠, 𝑧𝑜, 𝑠𝑧)]
𝑝

𝑧𝑠

Note that for layouts limited to a single plane of loudspeakers, 𝑓𝑗
𝑧(𝑧𝑜, 𝑠𝑧) = 1, and for a single row

of loudspeakers, 𝑓𝑗
𝑧(𝑧𝑜, 𝑠𝑧) = 𝑓𝑗

𝑦
(𝑦𝑜 , 𝑠𝑦) = 1.

Additionally, very small values of 𝑓𝑗(𝑐, 𝑠) (10
−6.5) are rounded down to zero to avoid floating point

underflow in implementations.

A normalization step is applied to 𝑔𝑗
𝑖𝑛𝑠𝑖𝑑𝑒:

 𝑔
̃

𝑗
𝑖𝑛𝑠𝑖𝑑𝑒 = {

𝑔𝑗
𝑖𝑛𝑠𝑖𝑑𝑒

√∑ [𝑔𝑛
𝑖𝑛𝑠𝑖𝑑𝑒]

2
𝑛

√∑ [𝑔𝑛
𝑖𝑛𝑠𝑖𝑑𝑒]

2
𝑛 > 𝑡𝑜𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑡𝑜𝑙 = 10−5.

7.3.11.4 Combining boundary gains

One further modification is that, for aesthetic reasons, it is important to have a mode where there is

no opposite loudspeaker firing. This is accomplished by using virtual sources located only on the

boundary. To handle certain loudspeaker layouts as special cases;

• 𝑑𝑖𝑚 = 1 for layouts with only a single row of loudspeakers after zone exclusion is applied

(e.g. 0+2+0),

• 𝑑𝑖𝑚 = 2 for layouts with only a single plane of loudspeakers after zone exclusion is applied

(e.g. 0+5+0),

• 𝑑𝑖𝑚 = 4 for layouts with more than two distinct height planes of loudspeakers after zone

exclusion is applied (e.g. 3+7+0 and 9+10+3), and

• 𝑑𝑖𝑚 = 3 otherwise.

The boundary gain is then:

𝑔𝑗
𝑏𝑜𝑢𝑛𝑑(𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) = 𝑏𝑗

𝑓𝑙𝑜𝑜𝑟
(𝑧𝑜, 𝑠𝑧)𝑓𝑗

𝑥(𝑥𝑜, 𝑠𝑥)𝑓𝑗
𝑦
(𝑦𝑜, 𝑠𝑦)

 +𝑏𝑗
𝑐𝑒𝑖𝑙(𝑧𝑜, 𝑠𝑧)𝑓𝑗

𝑥(𝑥𝑜, 𝑠𝑥)𝑓𝑗
𝑦
(𝑦𝑜, 𝑠𝑦)

 +𝑏𝑗
𝑙𝑒𝑓𝑡

(𝑥𝑜, 𝑠𝑥)𝑓𝑗
𝑦
(𝑦𝑜, 𝑠𝑦)𝑓𝑗

𝑧(𝑧𝑜, 𝑠𝑧)

 +𝑏𝑗
𝑟𝑖𝑔ℎ𝑡

(𝑥𝑜, 𝑠𝑥)𝑓𝑗
𝑦
(𝑦𝑜, 𝑠𝑦)𝑓𝑗

𝑧(𝑧𝑜, 𝑠𝑧)

 +𝑏𝑗
𝑓𝑟𝑜𝑛𝑡

(𝑦𝑜, 𝑠𝑦)𝑓𝑗
𝑥(𝑥𝑜, 𝑠𝑥)𝑓𝑗

𝑧(𝑧𝑜, 𝑠𝑧)

 +𝑏𝑗
𝑏𝑎𝑐𝑘(𝑦𝑜, 𝑠𝑦)𝑓𝑗

𝑥(𝑥𝑜, 𝑠𝑥)𝑓𝑗
𝑧(𝑧𝑜, 𝑠𝑧)

 Rec. ITU-R BS.2127-0 59

where:

𝑏𝑗
𝑓𝑙𝑜𝑜𝑟

(𝑧𝑜, 𝑠𝑧) = {[𝑔𝑗
𝑝𝑜𝑖𝑛𝑡(𝑧𝑠 = −1.0)𝑤(−1.0, 𝑧𝑜, 𝑠𝑧)]

𝑝
𝑑𝑖𝑚 = 4

0 otherwise

𝑏𝑗
𝑐𝑒𝑖𝑙(𝑧𝑜, 𝑠𝑧) = {[𝑔𝑗

𝑝𝑜𝑖𝑛𝑡(𝑧𝑠 = 1.0)𝑤(1.0, 𝑧𝑜, 𝑠𝑧)]
𝑝

𝑑𝑖𝑚 ≥ 3

0 otherwise

𝑏𝑗
𝑙𝑒𝑓𝑡

(𝑥𝑜, 𝑠𝑥) = [𝑔𝑗
𝑝𝑜𝑖𝑛𝑡(𝑥𝑠 = −1.0)𝑤(−1.0, 𝑥𝑜, 𝑠𝑥)]

𝑝

𝑏𝑗
𝑟𝑖𝑔ℎ𝑡

(𝑥𝑜, 𝑠𝑥) = [𝑔𝑗
𝑝𝑜𝑖𝑛𝑡(𝑥𝑠 = 1.0)𝑤(1.0, 𝑥𝑜 , 𝑠𝑥)]

𝑝

𝑏𝑗
𝑓𝑟𝑜𝑛𝑡

(𝑦𝑜, 𝑠𝑦) = {[𝑔𝑗
𝑝𝑜𝑖𝑛𝑡(𝑦𝑠 = 1.0)𝑤(1.0, 𝑦𝑜, 𝑠𝑦)]

𝑝
𝑑𝑖𝑚 > 1

0 otherwise

𝑏𝑗
𝑏𝑎𝑐𝑘(𝑦𝑜, 𝑠𝑦) = {[𝑔𝑗

𝑝𝑜𝑖𝑛𝑡(𝑦𝑠 = −1.0)𝑤(−1.0, 𝑦𝑜 , 𝑠𝑦)]
𝑝

𝑑𝑖𝑚 > 1

0 otherwise

7.3.11.5 Combining inside and boundary gains

The boundary gains now need to be combined with the inside gains, so a fade-out factor is introduced

for all virtual sources inside the room, with fade-out amount = ‘fraction of object outside the room’.

The result is:

 𝑔𝑗
𝑒𝑥𝑡𝑒𝑛𝑡 = [�̃�𝑗

𝑏𝑜𝑢𝑛𝑑 + (μ × �̃�𝑗
𝑖𝑛𝑠𝑖𝑑𝑒)]

1

𝑝

where:

 𝑑𝑏𝑜𝑢𝑛𝑑 = {

min(𝑥𝑜 + 1,1 − 𝑥𝑜) 𝑑𝑖𝑚 = 1

min(𝑥𝑜 + 1,1 − 𝑥𝑜, 𝑦𝑜 + 1,1 − 𝑦𝑜) 𝑑𝑖𝑚 = 2

min(𝑥𝑜 + 1,1 − 𝑥𝑜, 𝑦𝑜 + 1,1 − 𝑦𝑜, 𝑧𝑜 + 1, 𝑧𝑜 − 1) otherwise

 𝜇 = {

ℎ(𝑥𝑜, 𝑠𝑥)
3 𝑑𝑖𝑚 = 1

ℎ(𝑥𝑜, 𝑠𝑥)ℎ(𝑦𝑜, 𝑠𝑦)
3

2 𝑑𝑖𝑚 = 2

ℎ(𝑥𝑜, 𝑠𝑥)ℎ(𝑦𝑜, 𝑠𝑦)ℎ(𝑧𝑜, 𝑠𝑧) otherwise

and ℎ(𝑐, 𝑠) is a fade out function for a single dimension.

 ℎ(𝑐, 𝑠) =

{

[
max(2𝑠,0.4)3

0.16×2𝑠
]

1

3
𝑑𝑏𝑜𝑢𝑛𝑑 ≥ 𝑠 ∧ 𝑑𝑏𝑜𝑢𝑛𝑑 ≥ 0.4

[
𝑑𝑏𝑜𝑢𝑛𝑑

2
(
𝑑𝑏𝑜𝑢𝑛𝑑

0.4
)
2
]

1

3

otherwise

As part of the extended object starts moving outside the room, all virtual sources inside the object

start fading out, except for those at the boundaries. When an object reaches a boundary, only the

boundary gains will be contributing to the extent gains. 𝑑𝑏𝑜𝑢𝑛𝑑 is the minimum distance to a

boundary.

A normalization step is applied to 𝑔𝑗
𝑒𝑥𝑡𝑒𝑛𝑡

 �̃�
𝑗
𝑒𝑥𝑡𝑒𝑛𝑡 = {

𝑔𝑗
𝑒𝑥𝑡𝑒𝑛𝑡

√∑ [𝑔𝑛
𝑒𝑥𝑡𝑒𝑛𝑡]

2
𝑛

√∑ [𝑔𝑛
𝑒𝑥𝑡𝑒𝑛𝑡]2𝑛 > 𝑡𝑜𝑙

0 otherwise

60 Rec. ITU-R BS.2127-0

7.3.11.6 Combining extent gains and point gains

The extent contributions are then combined with the point gains, and a crossfade between them is

applied as a function of extent:

 𝑔𝑗
𝑡𝑜𝑡𝑎𝑙 = (𝛼 × 𝑔𝑗

𝑝𝑜𝑖𝑛𝑡(𝑥𝑜, 𝑦𝑜, 𝑧𝑜)) + (β × �̃�𝑗
𝑒𝑥𝑡𝑒𝑛𝑡)

where:

𝛼 = {
cos (

𝑠𝑒𝑓𝑓

𝑠𝑓𝑎𝑑𝑒
×
π

2
) 𝑠𝑒𝑓𝑓 < 𝑠𝑓𝑎𝑑𝑒

0 otherwise

β = {
sin (

𝑠𝑒𝑓𝑓

𝑠𝑓𝑎𝑑𝑒
×
π

2
) 𝑠𝑒𝑓𝑓 < 𝑠𝑓𝑎𝑑𝑒

1 otherwise

and 𝑠𝑓𝑎𝑑𝑒 = 0.2.

This ensures smooth panning and smooth growth of the object, providing a nice transition all the way

between the smallest and the largest possible extents.

Finally, a last normalization is applied to the gains:

 𝐺𝑗
𝑆 = {

𝑔𝑗
𝑡𝑜𝑡𝑎𝑙

√∑ [𝑔𝑛
𝑡𝑜𝑡𝑎𝑙]

2
𝑛

√∑ [𝑔𝑛
𝑡𝑜𝑡𝑎𝑙]2𝑛 > 𝑡𝑜𝑙

0 otherwise

7.3.12 Polar Zone Exclusion

Zone exclusion is applied by downmixing the loudspeaker gain vector produced earlier in the gain

calculator in order to avoid sending output to loudspeakers in the excluded zone. This can be split

into two parts: deciding which of the loudspeakers are within the excluded zone, in § 7.3.12.1, and

calculating the downmix to route away from the excluded loudspeakers, in § 7.3.12.2.

Both the selection of excluded loudspeakers and the calculation of the downmix matrix only consider

the nominal position of loudspeakers, so that small changes in the loudspeaker positions do not affect

the behaviour of zone exclusion.

7.3.12.1 Selecting Excluded Loudspeakers

The selection of loudspeakers is implemented by processing a list of ExclusionZone objects,

producing a boolean flag for each loudspeaker which is true if the loudspeaker is within any of the

exclusion zones and should therefore be excluded.

For CartesianZone objects, the following expression is used to determine if a loudspeaker is

within the zone, where {𝑥, 𝑦, 𝑧} is the nominal position of the loudspeaker, converted from polar with

a radius of 1:

𝚖𝚒𝚗𝚇 − ϵ < 𝑥 < 𝚖𝚊𝚡𝚇 + ϵ
∧ 𝚖𝚒𝚗𝚈 − ϵ < 𝑦 < 𝚖𝚊𝚡𝚈 + ϵ
∧ 𝚖𝚒𝚗𝚉 − ϵ < 𝑧 < 𝚖𝚊𝚡𝚉 + ϵ

where ϵ = 10−6 is a safety margin to allow for rounding errors when converting between polar and

Cartesian coordinates.

 Rec. ITU-R BS.2127-0 61

For PolarZone objects, the following expression is used to determine if a loudspeaker is within the

zone, where φ and θ denote the nominal azimuth and elevation of the loudspeaker.

𝚖𝚒𝚗𝙴𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 − ϵ < θ < 𝚖𝚊𝚡𝙴𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 + ϵ

∧ (
|θ| > 90 − ϵ

∨ IAR(φ, 𝚖𝚒𝚗𝙰𝚣𝚒𝚖𝚞𝚝𝚑, 𝚖𝚊𝚡𝙰𝚣𝚒𝚖𝚞𝚝𝚑, ϵ)
)

IAR is the function inside_angle_range; see § 6.2.

The elevation of the loudspeaker must be within the allowed range, while the azimuth only has to be

within the allowed range if the absolute elevation is less than 90 degrees.

This is implemented in

core.objectbased.gain_calc.ZoneExclusionHandler.get_excluded.

7.3.12.2 Downmix for Excluded Loudspeakers

Once the loudspeakers within the zone have been determined, a downmix matrix is designed to route

the gains away from these loudspeakers.

The zone exclusion panner object associates with each loudspeaker in the layout a list of groups of

output loudspeakers. The downmix matrix is such that the gain from an excluded loudspeaker is

routed to all the non-excluded loudspeakers in the first group for which there are non-excluded

loudspeakers. This functionality is described in more detail in the next two sections.

As an example, Table 3 shows the groups for loudspeakers in 4+5+0. The first row shows that if

M+030 is excluded, the output for this speaker would be routed to M+000, unless this is excluded in

which case it would be routed to M-030, etc. until U-110.

A more complicated example where the grouping has some effect is M+000. If this is excluded, then

this channel would be split between the non-excluded loudspeakers in {𝙼 + 𝟶𝟹𝟶, 𝙼 − 𝟶𝟹𝟶}, unless

both of these loudspeakers are excluded in which case it would be routed to the non-excluded

loudspeakers in {𝙼 + 𝟷𝟷𝟶, 𝙼 − 𝟷𝟷𝟶}, etc.

TABLE 3

Example loudspeaker association for 4+5+0

Input Output Groups

𝙼 + 𝟶𝟹𝟶 {𝙼 + 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟷𝟷𝟶}, {𝙼 − 𝟷𝟷𝟶}, {𝚄 + 𝟶𝟹𝟶}, {𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟷𝟷𝟶}, {𝚄 − 𝟷𝟷𝟶}

𝙼 − 𝟶𝟹𝟶 {𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 + 𝟶𝟹𝟶}, {𝙼 − 𝟷𝟷𝟶}, {𝙼 + 𝟷𝟷𝟶}, {𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟶𝟹𝟶}, {𝚄 − 𝟷𝟷𝟶}, {𝚄 + 𝟷𝟷𝟶}

𝙼 + 𝟶𝟶𝟶 {𝙼 + 𝟶𝟶𝟶}, {𝙼 + 𝟶𝟹𝟶 , 𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟷𝟷𝟶 , 𝙼 − 𝟷𝟷𝟶}, {𝚄 + 𝟶𝟹𝟶 , 𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟷𝟷𝟶 , 𝚄 − 𝟷𝟷𝟶}

𝙼 + 𝟷𝟷𝟶 {𝙼 + 𝟷𝟷𝟶}, {𝙼 − 𝟷𝟷𝟶}, {𝙼 + 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 − 𝟶𝟹𝟶}, {𝚄 + 𝟷𝟷𝟶}, {𝚄 − 𝟷𝟷𝟶}, {𝚄 + 𝟶𝟹𝟶}, {𝚄 − 𝟶𝟹𝟶}

𝙼 − 𝟷𝟷𝟶 {𝙼 − 𝟷𝟷𝟶}, {𝙼 + 𝟷𝟷𝟶}, {𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 + 𝟶𝟹𝟶}, {𝚄 − 𝟷𝟷𝟶}, {𝚄 + 𝟷𝟷𝟶}, {𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟶𝟹𝟶}

𝚄 + 𝟶𝟹𝟶 {𝚄 + 𝟶𝟹𝟶}, {𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟷𝟷𝟶}, {𝚄 − 𝟷𝟷𝟶}, {𝙼 + 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟷𝟷𝟶}, {𝙼 − 𝟷𝟷𝟶}

𝚄 − 𝟶𝟹𝟶 {𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟶𝟹𝟶}, {𝚄 − 𝟷𝟷𝟶}, {𝚄 + 𝟷𝟷𝟶}, {𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 + 𝟶𝟹𝟶}, {𝙼 − 𝟷𝟷𝟶}, {𝙼 + 𝟷𝟷𝟶}

𝚄 + 𝟷𝟷𝟶 {𝚄 + 𝟷𝟷𝟶}, {𝚄 − 𝟷𝟷𝟶}, {𝚄 + 𝟶𝟹𝟶}, {𝚄 − 𝟶𝟹𝟶}, {𝙼 + 𝟷𝟷𝟶}, {𝙼 − 𝟷𝟷𝟶}, {𝙼 + 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 − 𝟶𝟹𝟶}

𝚄 − 𝟷𝟷𝟶 {𝚄 − 𝟷𝟷𝟶}, {𝚄 + 𝟷𝟷𝟶}, {𝚄 − 𝟶𝟹𝟶}, {𝚄 + 𝟶𝟹𝟶}, {𝙼 − 𝟷𝟷𝟶}, {𝙼 + 𝟷𝟷𝟶}, {𝙼 − 𝟶𝟹𝟶}, {𝙼 + 𝟶𝟶𝟶}, {𝙼 + 𝟶𝟹𝟶}

This functionality is implemented in core.objectbased.zone.ZoneExclusionDownmix

and core.objectbased.gain_calc.ZoneExclusionHandler.

62 Rec. ITU-R BS.2127-0

7.3.12.2.1 Determination of Loudspeaker Groups

During initialisation, the output loudspeaker groups for each loudspeaker are determined.

For each input loudspeaker, each output loudspeaker is assigned a tuple of floats termed a key. The

output groups then consist of the output loudspeakers sorted by key, and collected into groups with

similar keys. The ordering and grouping is therefore defined mainly by the key function.

The key for an input and output loudspeaker consists of four keys:

– An integer layer priority, which is zero if both loudspeakers are on the same layer, and

increases as the input and output layers are separated, preferring to select a loudspeaker from

a higher layer before a lower one. The layer priorities are drawn from Table 4.

– An integer front/back priority, which is lower if input and output loudspeakers are both in

front, to the side of, or behind the listener. Given the 𝑦 component of the polar nominal

position of the input and output loudspeakers after converting to Cartesian, 𝑦𝑖 and 𝑦𝑜, this is

calculated as:

 |sgn𝑦𝑖 − sgn𝑦𝑜|

– The vector distance between the nominal positions of the two loudspeakers, in order to prefer

smaller movements.

– The absolute difference in nominal 𝑦 coordinates between the two loudspeakers, in order to

split groups which are not symmetrical around the 𝑦𝑧 or 𝑥𝑧 planes.

TABLE 4

Layer priority value between two loudspeakers.

Input Layer Bottom Mid Upper Top

Bottom 0 1 2 3

Mid 3 0 1 2

Upper 3 2 0 1

Top 3 2 1 0

7.3.12.2.2 Application of Zone Exclusion

The downmix matrix for a set of excluded loudspeakers 𝐸 is calculated as follows:

– For 𝑁 loudspeakers, start with an 𝑁 × 𝑁 downmix matrix 𝐃, with each element initialised to 0.

– For each input loudspeaker 𝑖, consider each group of candidate loudspeaker indices 𝐶 in row 𝑖
of the group table.

• If all loudspeakers in the group are in the set of ignored loudspeakers, that is 𝐶 ⊆ 𝐸,

move to the next group.

• Otherwise, for each 𝑗 in 𝐶 ∖ 𝐸 (the set of loudspeakers in the group that is not excluded), set:

 𝐷𝑖,𝑗 =
1

|𝐶∖𝐸|

 and move to the next loudspeaker.

If all loudspeakers are excluded, 𝐃 is set to the identity matrix.

𝐃 is then applied to the incoming gain vector 𝐆 to produce 𝐆′, by:

 𝐆′𝑗 = √∑ 𝐆𝑖
2

𝑖 𝐃𝑖,𝑗

 Rec. ITU-R BS.2127-0 63

7.4 Decorrelation Filters

When rendering objects where the diffuse parameter is greater than 0, the diffuse path of the object

renderer is used, which has one decorrelation filter per loudspeaker output.

The filters used are 𝑁 = 512 sample long random-phase allpass FIR filters. The filter for a given

output is generated as follows:

– A pseudorandom vector 𝐫 with values in the range [0,1) of length
𝑁

2
− 1 is generated using

the MT19937 pseudorandom number generator, seeded with the index of the channel name

in a sorted list of all channel names in the layout.

– A phase vector 𝐩 of length
𝑁

2
+ 1 is defined as:

 𝐩𝑛 = {
2π𝐫𝑛−1 1 ≤ 𝑛 ≤

𝑁

2
− 1

0 otherwise

– The corresponding frequency vector 𝐱 is defined as 𝐱𝑛 = exp(𝑖𝐩𝑛).

– An inverse real-valued Fourier transform (irfft function) is taken of the non-negative-

frequency components in 𝐱 to obtain the time-domain filter.

This is implemented in core.objectbased.decorrelate.design_decorrelators.

The delay introduced by these filters is matched by a
(𝑁−1)

2
 sample delay in the direct path.

8 Render Items with typeDefinition==DirectSpeakers

To render an audioChannelFormats with typeDefintion==DirectSpeakers it is routed to a matching

loudspeaker. If this is not possible the PSP will be used as a fallback.

The basic algorithm is as follows:

1. For inputs specified using common definitions audioPackFormats describing layouts

specified in Recommendation ITU-R BS.2051-2, mapping rules according to § 8.1 are

applied.

2. Determine if the metadata refers to an LFE channel (see § 8.2). If it does, then only LFE

outputs will be considered, and if it doesn’t, only non-LFE outputs will be considered.

3. If any of the speakerLabels match a loudspeaker (see § 8.3) the channel is routed to the first

loudspeaker that matches. If no speakerLabel matches, continue to the next step.

4. If screenEdgeLock is specified the nominal position will be shifted to the horizontal

and/or vertical edge of the screen. The minimum and maximum bounds are left untouched

(see § 8.4).

5. If the nominal position of any loudspeaker is within the specified position bounds (see § 8.5),

route the channel to the loudspeaker closest to the specified nominal position. The

loudspeaker positions used are determined by the type of the position as in § 8.5. If there are

no loudspeakers within the bounds, or the closest loudspeaker to the nominal position is not

unique), continue to the next step.

6. If the metadata refers to an LFE route the channel to LFE1 (if it exists), or discard it. If the

metadata refers to a non-LFE channel, use the PSP corresponding to the coordinate type used

to define its position to render the channel at its nominal position.

The following subsections describe the individual steps in more detail.

This is implemented in core.direct_speakers.panner.DirectSpeakersPanner.

64 Rec. ITU-R BS.2127-0

8.1 Mapping Rules

– If the last audioPackFormat listed in type_metadata.audioPackFormats is not a

common definitions pack format (i.e. it was specified in the input metadata, not read from

the common definitions file), do not apply mapping rules.

– Look up the ID of the last audioPackFormat listed in

type_metadata.audioPackFormats in Table 15 to determine input_layout. If

it is not listed, do not apply mapping rules.

– Try to apply each rule listed in Table 16 in turn. If any rule applies, then the gains for the

first matching rule listed are used to reproduce this channel. If no rule matches, continue to

the next step. A rule matches if all these conditions are met:

• rule.speakerLabel is equal to the first (and only) speakerLabel after the

normalisation described in § 8.3 is applied.

• input_layout (as determined above) is listed in rule.input_layouts, if this is

listed.

• The name of the output loudspeaker layout, layout.name, is listed in

rule.output_layouts, if this is listed.

• All channel names listed in rule.gains exist in layout.channel_names.

8.2 LFE Determination

A channel is considered to be an LFE channel if either the frequency element in the

audioChannelFormat has a lowPass of ≤ 200 Hz (see § 6.3), or if there is a speakerLabel which refers

to an LFE channel (LFE1 or LFE2 after the matching process described below has been applied).

8.3 Loudspeaker Label Matching

The matching for speakerLabels only works for the labels used in Recommendation. ITU-R BS.2051-2

(e.g. M+030) and the URNs used in the file of the common definitions of the ADM specified in

Recommendation ITU-R BS.2094-1 (e.g. urn:itu:bs:2051:0:speaker:M+030). The labels

of LFE1 and LFE2 are specified in Recommendation ITU-R BS.2051-2. When the following

speakerLabels are used in the ADM file, some substitutions are applied:

– LFE → LFE1

– LFEL → LFE1

– LFER → LFE2

8.4 Screen Edge Lock

The screenEdgeLock implementation for typeDefintion==DirectSpeakers reuses the

ScreenEdgeLockHandler used for typeDefintion==Objects; described in detail in § 7.3.4. It is

used to transform the nominal position only; the minimum and maximum bounds will be left

untouched.

This means that if bounds are specified then they are interpreted as absolute bounds irrespective of

the screen position; the source will only lock to a channel within the original specified bounds. If

bounds are not specified, then the point source panner behaviour will be activated, causing the source

to lock to the edge of the screen regardless of if there is a loudspeaker there or not. It is recommended

that screenEdgeLock and coordinate bounds should not be used together.

 Rec. ITU-R BS.2127-0 65

8.5 Bounds Matching

A specified minimum or maximum bound expands the allowable range away from the nominal

position. If the minimum or maximum bound is not specified it is set to the nominal coordinate. A

loudspeaker matches if all coordinates lie within the specified bounds. With the exception, that

loudspeakers with polar coordinates at the poles (e.g. T+000) match any azimuth range, as they have

an indeterminate azimuth.

A loudspeaker with nominal polar position speaker matches bounds specified in polar

coordinates if

(
IAR(𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚊𝚣𝚒𝚖𝚞𝚝𝚑, 𝚊𝚣𝚒𝚖𝚞𝚝𝚑. 𝚖𝚒𝚗, 𝚊𝚣𝚒𝚖𝚞𝚝𝚑. 𝚖𝚊𝚡, ϵ)

∨ |𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗| ≥ 90° − ϵ
)

∧ 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗. 𝚖𝚒𝚗 − ϵ ≤ 𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗 ≤ 𝚎𝚕𝚎𝚟𝚊𝚝𝚒𝚘𝚗. 𝚖𝚊𝚡 + ϵ
∧ 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎. 𝚖𝚒𝚗 − ϵ ≤ 𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎 ≤ 𝚍𝚒𝚜𝚝𝚊𝚗𝚌𝚎. 𝚖𝚊𝚡 + ϵ

Where IAR is the function inside_angle_range (see § 6.2) and ϵ = 10−5 is a safety margin to

allow for rounding errors.

A loudspeaker with Cartesian position speaker having been converted to Cartesian coordinates

using § 7.3.9 matches bounds specified using Cartesian coordinates if

𝚇. 𝚖𝚒𝚗 − ϵ ≤ 𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚇 ≤ 𝚇. 𝚖𝚊𝚡 + ϵ
∧ 𝚈. 𝚖𝚒𝚗 − ϵ ≤ 𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚈 ≤ 𝚈. 𝚖𝚊𝚡 + ϵ
∧ 𝚉. 𝚖𝚒𝚗 − ϵ ≤ 𝚜𝚙𝚎𝚊𝚔𝚎𝚛. 𝚉 ≤ 𝚉. 𝚖𝚊𝚡 + ϵ

is true.

9 Render Items with typeDefinition==HOA

9.1 Supported HOA formats

9.1.1 HOA order and degree

HOA signals, as defined by Recommendation ITU-R BS.2076-1, can be rendered up to the order 50

(see details below). In ADM, the HOA channels are signalled individually by their order and degree

via the corresponding HOA type sub-elements. Thus, full-3D HOA scenes (comprised of every order

𝑙 and degree 𝑚 up to a given order 𝐿), 2D HOA scenes (comprised of every HOA component such

that |𝑚| = 𝑙 up to a given order 𝐿), as well as mixed-order HOA scenes can be rendered.

However, in the event where two HOA signals share the same order and degree, an exception is raised

and the signals are not rendered.

9.1.2 Normalisation

HOA signal normalisation is indicated via the normalization HOA type sub-element. All three

possible normalisations (N3D, SN3D and FuMa) are supported by this renderer. In ADM, HOA

normalisation is specified for each HOA signal individually, thus it is theoretically possible to define

HOA scenes whereby the different signals use different normalisations. However this is not supported

by this renderer: all HOA channels in an audioBlockFormat must share the same normalisation.

Lastly, note that the FuMa normalisation is supported up to order three only.

9.2 Unsupported sub-elements

The following three sub-elements of the HOA type are currently not interpreted in the rendering:

https://www.itu.int/rec/R-REC-BS.2076/en

66 Rec. ITU-R BS.2127-0

– nfcRefDist, which indicates a reference distance for the loudspeakers. The Near-Field

Compensation (NFC) effect, which compensates mismatches between the loudspeaker

reference distance and the distance at which loudspeakers are located in the playback layout,

is not implemented in this renderer. Implementing this effect in the HOA rendering

significantly increases the computational complexity of the renderer, while having a

relatively minor impact on the listener’s perception of the audio content.

– screenRef, which indicates whether the HOA component is screen-related. The expected use

of this sub-element is ambiguous in the HOA context; therefore it is not taken into account

in the rendering.

– equation, which is meant to be used as a replacement of the order and degree sub-elements.

The current ADM standard does not provide precise rules regarding the format used to

specify mathematical formulas. Therefore, this sub-element cannot be supported reliably.

Note that, similar to the normalization sub-element, all HOA channels in an audioBlockFormat must

share the same nfcRefDist and screenRef value to be rendered.

9.3 Rendering of HOA signals over loudspeakers

FIGURE 15

HOA rendering flow diagram

The process of rendering HOA signals over loudspeakers is summarized in Fig. 15. First, the ADM

metadata is parsed to identify the format of the HOA object and check whether the signals can be

rendered unambiguously. Specifically, as stated above, all HOA channels in an audioBlockFormat

must share the same normalization, nfcRefDist and screenRef sub-element values. Then, a

loudspeaker decoding matrix is calculated and applied to the HOA signals. This is expressed by the

following equation:

 𝐒spk = 𝐃 𝐒HOA

where:

 𝐒𝚜𝚙𝚔 matrix of loudspeaker signals, with dimensions 𝑁𝚜𝚙𝚔 × 𝑁samp

 𝐒HOA matrix of HOA signals, with dimensions 𝑁HOA × 𝑁samp

 𝐃 real-valued matrix, with dimensions 𝑁spk × 𝑁HOA and is referred to as the HOA

decoding matrix

𝑁HOA, 𝑁spk and 𝑁samp denote the number of HOA signals, loudspeaker signals and times samples,

respectively.

 Rec. ITU-R BS.2127-0 67

This section expresses the decoding matrix calculation in ACN channel ordering, however the

channel allocation used is as specified in the order and degree parameters in the audioBlockFormat.

The decoding matrix is applied through the use of the Block Processing Channel structure described

in § 6.4. Specifically, for each incoming HOATypeMetadata object, a single FixedMatrix

processing block is generated, which applies the decoding matrix between times determined in § 6.5.

9.3.1 HOA decoding matrix calculation

The renderer implements the AllRAD HOA decoding technique [1]. This method provides robust

HOA decoding over irregular loudspeaker layouts such as that described in Recommendation

ITU-R BS.2051-2. The calculation of the decoding matrix is done in

core.scenebased.design.HOADecoderDesign.

Conceptually, the AllRAD decoding method is equivalent to:

1. Decoding the HOA signals to a grid of virtual loudspeakers which are evenly distributed over

the sphere, and

2. Panning the virtual loudspeaker signals over the actual loudspeakers.

Mathematically, this can be expressed as:

 𝐃′ = 𝜈 𝐆 𝐃virt

 𝐃 = 𝐃′diag(𝐧−1)

where 𝐃′ denotes the HOA decoding matrix for N3D normalisation, 𝐆 is the panning gain matrix,

𝐃virt is the virtual speaker decoding matrix and 𝜈 is an energy normalisation factor. 𝐃 is the

completed decoding matrix after applying the HOA normalisation vector 𝐧 to 𝐃′ to apply the desired

normalisation.

9.3.1.1 Virtual loudspeaker positions

In order to facilitate the calculation of the decoding matrix, the angular positions of the virtual

loudspeakers must be distributed as evenly as possible over the sphere. In addition, as a rule of thumb,

there should be about twice as many virtual loudspeaker positions than there are HOA signals.

In this renderer, the virtual loudspeaker positions constitute a 5200-point spherical-T design, which

makes it well suited for decoding HOA signals up to order 50.

9.3.1.2 Calculation of the virtual loudspeaker decoding matrix

In order to calculate the decoding matrix for the virtual loudspeakers, first the matrix of the HOA

coefficients for the virtual loudspeakers, 𝐘virt, is calculated. This matrix is given by:

 𝐘virt = [𝐲1,  𝐲2,   . . . ,  𝐲𝑁virt]

 𝐲𝑛 = [𝑌0
0(θ𝑛,  ϕ𝑛),  𝑌1

−1(θ𝑛,  ϕ𝑛),   . . .]
T

where (θ𝑛,  ϕ𝑛) denotes the elevation and azimuth angles for the 𝑛-th virtual loudspeaker (using the

HOA coordinate system and notation as defined in Recommendation ITU-R BS.2076-1) and 𝑌𝑙
𝑚

denote the real-valued order-𝑙 and degree-𝑚 spherical harmonic function with N3D normalisation.

Note that the value of each 𝑌𝑙
𝑚(θ,  ϕ) term depends on the order and degree sub-elements for each

HOA channel.

The virtual loudspeaker HOA decoding matrix is then calculated as the transpose of 𝐘virt:

 𝐃virt = 𝑁samp
−1 𝐘virt

T

For the choice of virtual loudspeaker positions and N3D normalisation this is equivalent to taking the

pseudo-inverse of 𝐘virt.

68 Rec. ITU-R BS.2127-0

9.3.1.3 Calculation of the panning gain matrix

VBAP panning is typically employed for the calculation of the panning gain matrix in the AllRAD

HOA decoding method. In this renderer’s implementation, the method used to calculate the panning

gains is simply that provided for panning point source objects (core.point_source).

9.3.1.4 Energy normalisation

The HOA decoding matrix is normalised so that, in the case where the HOA scene consists of a single

point source, the total power of the loudspeaker signals is equal to that of the source signal, on average

for every possible source location over the sphere.

Mathematically, the normalisation factor 𝜈 is calculated as:

 𝜈 =
√𝑁virt

∥∥𝐆 𝐃virt 𝐘virt∥∥F

Where ∥⋅∥F denotes the Frobenius norm.

9.3.1.5 HOA normalisation

The decoding matrix is divided by the vector 𝐧 in order to convert the signal to the N3D normalisation

for which 𝐃′ is designed for. 𝐧 is defined for a given normalization parameter 𝚗𝚘𝚛𝚖 as:

 𝐧𝑛
𝑚 =

𝑁𝚗𝚘𝚛𝚖𝑛
|𝑚|

𝑁N3D𝑛
|𝑚|

 𝐧 = [𝐧0
0,  𝐧1

−1,   . . .]

10 Metadata Conversion

This section specifies a method for converting between polar and Cartesian parameters within

audioBlockFormats with typeDefinition==Objects. Metadata conversion cannot by nature be exact;

the results of conversion will not exactly match those without. Therefore, the results of conversion

should be monitored. Note that extent conversion is not invertible, so conversion back and forth

between polar and Cartesian should be avoided.

The interface to the conversion functionality is as follows:

AudioBlockFormat to_cartesian(AudioBlockFormat input);
AudioBlockFormat to_polar(AudioBlockFormat input);

When to_cartesian is called with an AudioBlockFormat input where

input.cartesian is set, input is returned as-is. Conversely, to_polar is called with an

AudioBlockFormat input where input.cartesian is not, input is returned as-is.

Otherwise, in both cases input.cartesian is inverted, and the following changes are made to

input before it is returned:

– input.position is converted according to § 10.1.

– input.width, input.height and input.depth are converted according to § 10.2.

– input.objectDivergence is converted according to § 10.3.

Conversion is implemented in core.objectbased.conversion.

 Rec. ITU-R BS.2127-0 69

10.1 position Conversion

Positions are converted such that the polar position of a loudspeaker in the 4+5+0 layout is mapped

to the Cartesian coordinate of that loudspeaker used in the Cartesian point source panner, as given in

Table 8.

Note that the same conversion, the one based on the 4+5+0 channel configuration, is used regardless

of the renderer channel layout. This is done to ensure that the results of the conversion are always

consistent, even in the use cases when the renderer reproduction layout being used is not known

during the time of the conversion. The 4+5+0 layout was chosen primarily to ensure good conversion

for content authored using 0+5+0.

This section describes common definitions used for conversion in both directions; the conversion

functions themselves are described in §§ 10.1.1 and 10.1.2.

𝚖𝚊𝚙_𝚕𝚒𝚗𝚎𝚊𝚛_𝚝𝚘_𝚊𝚣 and 𝚖𝚊𝚙_𝚊𝚣_𝚝𝚘_𝚕𝚒𝚗𝚎𝚊𝚛 define an invertible mapping of source positions

between azimuths (φ) and linear coordinates (𝑥) between a pair of loudspeakers with azimuths φ𝑙
and 𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑟, considering the panning curves of the point source panners used for polar and

Cartesian coordinates.

For example, a polar position φ𝑜 between 0° and −30° has an 𝑥 position given by:

 𝑥 = 𝚖𝚊𝚙_𝚊𝚣_𝚝𝚘_𝚕𝚒𝚗𝚎𝚊𝚛(0,−30, φ𝑜)

The linear to azimuth mapping is defined as:

 𝚖𝚊𝚙_𝚕𝚒𝚗𝚎𝚊𝚛_𝚝𝚘_𝚊𝚣(φ𝑙 , φ𝑟 , 𝑥) = φ𝚖𝚒𝚍 + φ𝚛𝚎𝚕

where:

φ𝚖𝚒𝚍 =
φ𝑙+φ𝑟

2
φ𝚛𝚊𝚗𝚐𝚎 = φ𝑟 − φ𝚖𝚒𝚍

𝑔′𝑙 = cos
𝑥π

2

𝑔′𝑟 = sin
𝑥π

2

𝑔𝑟 =
𝑔′𝑟

𝑔′𝑙+𝑔′𝑟

φ𝚛𝚎𝚕 =
180

π
arctan (2 (𝑔𝑟 −

1

2
) tan (

π

180
φrange))

The inverse function is defined as:

 𝚖𝚊𝚙_𝚊𝚣_𝚝𝚘_𝚕𝚒𝚗𝚎𝚊𝚛(φ𝑙 , φ𝑟 , φ) =
2

π
atan2(𝑔𝑟 , 1 − 𝑔𝑟)

where:

φ𝚖𝚒𝚍 =
φ𝑙+φ𝑟

2
φ𝚛𝚊𝚗𝚐𝚎 = φ𝑟 − φ𝚖𝚒𝚍
φ𝚛𝚎𝚕 = φ − φ𝚖𝚒𝚍

𝑔𝑟 =
1

2
+

tan(
π

180
φ𝚛𝚎𝚕)

2tan(
π

180
φ𝚛𝚊𝚗𝚐𝚎)

This mapping is applied between the mid-layer loudspeaker positions, according to the following

rules giving a left and right azimuth, and a left and right 𝑥 and 𝑦 position for a given input azimuth:

70 Rec. ITU-R BS.2127-0

𝑓𝑖𝑛𝑑𝑠𝑒𝑐𝑡𝑜𝑟(φ)

{

{30,0, {−1,1}, {0,1}} 𝐼𝐴𝑅(φ, 0,30)

{0, −30, {0,1}, {1,1}} 𝐼𝐴𝑅(φ,−30,0)

{−30,−110, {1,1}, {1, −1}} 𝐼𝐴𝑅(φ,−110,−30)

{−110,110, {1, −1}, {−1,−1}} 𝐼𝐴𝑅(φ, 110,−110)

{110,30, {−1,−1}, {−1,1}} 𝐼𝐴𝑅(φ, 30,110)

𝑓𝑖𝑛𝑑 (φ)

{

{30,0, {−1,1}, {0,1}} 𝐼𝐴𝑅(φ, 0,45)

{0, −30, {0,1}, {1,1}} 𝐼𝐴𝑅(φ,−45,0)

{−30,−110, {1,1}, {1, −1}} 𝐼𝐴𝑅(φ,−135,−45)

{−110,110, {1, −1}, {−1,−1}} 𝐼𝐴𝑅(φ, 135,−135)

{110,30, {−1,−1}, {−1,1}} 𝐼𝐴𝑅(φ, 45,135)

where 𝐼𝐴𝑅 is the function inside_angle_range described in § 6.2.

The following parameters are common for both conversion directions:

θ𝚝𝚘𝚙 = 30

θ′𝚝𝚘𝚙 = 45

ϵ = 1 × 10−10

10.1.1 Polar to Cartesian

To convert a polar coordinate with azimuth φ, elevation θ and distance 𝑑 to a Cartesian coordinate

the function

 𝚙𝚘𝚒𝚗𝚝_𝚙𝚘𝚕𝚊𝚛_𝚝𝚘_𝚌𝚊𝚛𝚝(φ, θ, 𝑑) = 𝑥, 𝑦, 𝑧

is used, where if |θ| > θ𝚝𝚘𝚙 then:

θ′ = θ′𝚝𝚘𝚙 + (90 − θ′𝚝𝚘𝚙)
|θ|−θ𝚝𝚘𝚙

90−θ𝚝𝚘𝚙

𝑧 = 𝑑sgn(θ)

𝑟𝑥𝑦 = 𝑑tan (
π

180
(90 − θ′))

otherwise:

θ′ = θ′𝚝𝚘𝚙
𝜃

θ𝚝𝚘𝚙

𝑧 = 𝑑tan (
π

180
θ′)

𝑟𝑥𝑦 = 𝑑

finally:

{φ𝑙 , φ𝑟 , {𝑥𝑙 , 𝑦𝑙}, {𝑥𝑟 , 𝑦𝑟}} = 𝚏𝚒𝚗𝚍_𝚜𝚎𝚌𝚝𝚘𝚛(φ)

φ′ = 𝚛𝚎𝚕𝚊𝚝𝚒𝚟𝚎_𝚊𝚗𝚐𝚕𝚎(φ𝑟 , φ)

φ′𝑙 = 𝚛𝚎𝚕𝚊𝚝𝚒𝚟𝚎_𝚊𝚗𝚐𝚕𝚎(φ𝑟 , φ𝑙)

𝑝 = 𝚖𝚊𝚙_𝚊𝚣_𝚝𝚘_𝚕𝚒𝚗𝚎𝚊𝚛(φ′𝑙 , φ𝑟 , φ′)
𝑥 = 𝑟𝑥𝑦(𝑥𝑙 + 𝑝(𝑥𝑟 − 𝑥𝑙))

𝑦 = 𝑟𝑥𝑦(𝑦𝑙 + 𝑝(𝑦𝑟 − 𝑦𝑙))

relative_angle is described in § 6.7.

 Rec. ITU-R BS.2127-0 71

10.1.2 Cartesian to Polar

To convert a Cartesian position with coordinates 𝑥, 𝑦 and 𝑧 to polar, the function

 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(𝑥, 𝑦, 𝑧) = φ, θ, 𝑑

is used, where if |𝑥| < ϵ and |𝑦| < ϵ then:

 {φ, θ, 𝑑} = {
{0,0,0} |𝑧| < ϵ

{0,90sgn(𝑧), |𝑧|} otherwise

otherwise, continue:

φ′ = −
180

π
atan2(𝑥, 𝑦)

{φ𝑙 , φ𝑟 , {𝑥𝑙 , 𝑦𝑙}, {𝑥𝑟 , 𝑦𝑟}} = 𝚏𝚒𝚗𝚍_𝚌𝚊𝚛𝚝_𝚜𝚎𝚌𝚝𝚘𝚛(φ′)

[𝑔𝑙 𝑔𝑟] = [𝑥 𝑦] ⋅ [
𝑥𝑙 𝑦𝑙
𝑥𝑟 𝑦𝑟

]
−1

𝑟𝑥𝑦 = 𝑔𝑙 + 𝑔𝑟
φ′𝑙 = 𝚛𝚎𝚕𝚊𝚝𝚒𝚟𝚎_𝚊𝚗𝚐𝚕𝚎(φ𝑟 , φ𝑙)

φ𝚛𝚎𝚕 = 𝚖𝚊𝚙_𝚕𝚒𝚗𝚎𝚊𝚛_𝚝𝚘_𝚊𝚣 (φ′𝑙 , φ𝑟 ,
𝑔𝑟

𝑟𝑥𝑦
)

φ = 𝚛𝚎𝚕𝚊𝚝𝚒𝚟𝚎_𝚊𝚗𝚐𝚕𝚎(−180,φ𝚛𝚎𝚕)

θ′ =
180

π
arctan

𝑧

𝑟𝑥𝑦

If |θ′| > θ′𝚝𝚘𝚙, then:

|θ| = θ𝚝𝚘𝚙 + (90 − θ𝚝𝚘𝚙)
|θ′|−θ′𝚝𝚘𝚙

90−θ′𝚝𝚘𝚙

θ = |θ|sgnθ′
𝑑 = |𝑧|

otherwise:

θ = θ′

θ𝚝𝚘𝚙

θ′𝚝𝚘𝚙

𝑑 = 𝑟𝑥𝑦

local_coordinate_system is defined in § 6.8.

10.2 Extent Conversion

Conversion of extent parameters is implemented in two parts:

– 𝑤ℎ𝑑2𝑥𝑦𝑧 and 𝑥𝑦𝑧2𝑤ℎ𝑑: Functions which convert extent parameters between Cartesian and

polar, assuming a source position directly in front of the listener with radius 1.

– 𝚙𝚘𝚒𝚗𝚝_𝚙𝚘𝚕𝚊𝚛_𝚝𝚘_𝚌𝚊𝚛𝚝 and 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛: functions which handle position

and extent conversion. Positions are converted using the methods described in § 10.1. Extent

conversion uses 𝑤ℎ𝑑2𝑥𝑦𝑧 and 𝑥𝑦𝑧2𝑤ℎ𝑑, rotating the Cartesian extent to match the position.

Note that extent conversion is not in general invertible.

72 Rec. ITU-R BS.2127-0

10.2.1 Polar to Cartesian

extent_polar_to_cart takes a polar source position in the form of an azimuth, elevation and

distance, and a polar width, height and depth, and returns the Cartesian 𝑥, 𝑦 and 𝑧 coordinates, and

the Cartesian 𝑥, 𝑦 and 𝑧 sizes:

 𝚎𝚡𝚝𝚎𝚗𝚝_𝚙𝚘𝚕𝚊𝚛_𝚝𝚘_𝚌𝚊𝚛𝚝(φ, θ, 𝑑, 𝚠𝚒𝚍𝚝𝚑, 𝚑𝚎𝚒𝚐𝚑𝚝, 𝚍𝚎𝚙𝚝𝚑) = {𝑥, 𝑦, 𝑧, 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧}

where:

{𝑥, 𝑦, 𝑧} = 𝚙𝚘𝚒𝚗𝚝_𝚙𝚘𝚕𝚊𝚛_𝚝𝚘_𝚌𝚊𝚛𝚝(φ, θ, 𝑑)
{𝑠𝑥,𝑓, 𝑠𝑦,𝑓, 𝑠𝑧,𝑓} = 𝚠𝚑𝚍𝟸𝚡𝚢𝚣(𝚠𝚒𝚍𝚝𝚑, 𝚑𝚎𝚒𝚐𝚑𝚝, 𝚍𝚎𝚙𝚝𝚑)

[𝐌𝑥 𝐌𝑦 𝐌𝑧] = diag([𝑠𝑥,𝑓, 𝑠𝑦,𝑓, 𝑠𝑧,𝑓]) ⋅ 𝚕𝚘𝚌𝚊𝚕_𝚌𝚘𝚘𝚛𝚍𝚒𝚗𝚊𝚝𝚎_𝚜𝚢𝚜𝚝𝚎𝚖(𝜑, 𝜃)

𝑠𝑥 =∥ 𝐌𝑥 ∥2
𝑠𝑦 =∥ 𝐌𝑦 ∥2
𝑠𝑧 =∥ 𝐌𝑧 ∥2

and

 𝑤ℎ𝑑2𝑥𝑦𝑧(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑑𝑒𝑝𝑡ℎ) = {𝑠𝑥,𝑤, 𝑚𝑎𝑥(𝑠𝑦,𝑤, 𝑠𝑦,ℎ, 𝑠𝑦,𝑑), 𝑠𝑧,ℎ}

where:

𝑠𝑥,𝑤 = {
sin

π

180

𝚠𝚒𝚍𝚝𝚑

2
𝚠𝚒𝚍𝚝𝚑 < 180

1 otherwise

𝑠𝑦,𝑤 =
1−cos

π

180

𝚠𝚒𝚍𝚝𝚑

2

2

𝑠𝑧,ℎ = {
sin

π

180

𝚑𝚎𝚒𝚐𝚑𝚝

2
𝚑𝚎𝚒𝚐𝚑𝚝 < 180

1 otherwise

𝑠𝑦,ℎ =
1−cos

π

180

𝚑𝚎𝚒𝚐𝚑𝚝

2

2

𝑠𝑦,𝑑 = 𝚍𝚎𝚙𝚝𝚑

10.2.2 Cartesian to Polar

extent_cart_to_polar takes a Cartesian source position in the form of an 𝑥, 𝑦 and 𝑧

coordinate, a Cartesian extent in the form of an 𝑥, 𝑦 and 𝑧 size, and returns a polar position and extent

as an azimuth, elevation, distance, and a width, height and depth:

 𝚎𝚡𝚝𝚎𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(𝑥, 𝑦, 𝑧, 𝑠𝑥, 𝑠𝑦, 𝑠𝑧) = {φ, θ, 𝑑, 𝚠𝚒𝚍𝚝𝚑, 𝚑𝚎𝚒𝚐𝚑𝚝, 𝚍𝚎𝚙𝚝𝚑}

where:

{φ, θ, 𝑑} = 𝚙𝚘𝚒𝚗𝚝_𝚌𝚊𝚛𝚝_𝚝𝚘_𝚙𝚘𝚕𝚊𝚛(𝑥, 𝑦, 𝑧)

[𝐌𝑥 𝐌𝑦 𝐌𝑧] = diag([𝑠𝑥, 𝑠𝑦, 𝑠𝑧]) ⋅ 𝚕𝚘𝚌𝚊𝚕_𝚌𝚘𝚘𝚛𝚍𝚒𝚗𝚊𝚝𝚎_𝚜𝚢𝚜𝚝𝚎𝚖(φ, θ)
𝑇

𝑠𝑥,𝑓 =∥ 𝐌𝑥 ∥2
𝑠𝑦,𝑓 =∥ 𝐌𝑦 ∥2
𝑠𝑧,𝑓 =∥ 𝐌𝑧 ∥2

{𝚠𝚒𝚍𝚝𝚑, 𝚑𝚎𝚒𝚐𝚑𝚝, 𝚍𝚎𝚙𝚝𝚑} = 𝚡𝚢𝚣𝟸𝚠𝚑𝚍(𝑠𝑥,𝑓, 𝑠𝑦,𝑓 , 𝑠𝑧,𝑓)

and

 𝑥𝑦𝑧2𝑤ℎ𝑑(𝑠𝑥 , 𝑠𝑦, 𝑠𝑧) = {𝑤, ℎ, 𝑑}

 Rec. ITU-R BS.2127-0 73

where:

𝑤𝑠𝑥 = 2
180

π
arcsin𝑠𝑥

𝑤𝑠𝑦 = 2
180

π
arccos(1 − 2𝑠𝑦)

𝑤 = 𝑤𝑠𝑥 + 𝑠𝑥max(𝑤𝑠𝑦 − 𝑤𝑠𝑥, 0)

ℎ𝑠𝑧 = 2
180

π
arcsin𝑠𝑧

ℎ𝑠𝑦 = 2
180

π
arccos(1 − 2𝑠𝑦)

ℎ = ℎ𝑠𝑧 + 𝑠𝑧max(ℎ𝑠𝑦 − ℎ𝑠𝑧, 0)

{𝑠𝑥,𝚎𝚚, 𝑠𝑦,𝚎𝚚, 𝑠𝑧,𝚎𝚚} = 𝚠𝚑𝚍𝟸𝚡𝚢𝚣(𝑤, ℎ, 0)

𝑑 = max(0, 𝑠𝑦 − 𝑠𝑦,𝚎𝚚,)

10.3 objectDivergence Conversion

azimuthRange and positionRange are converted according to the following relationship:

 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑅𝑎𝑛𝑔𝑒 = 𝑡𝑎𝑛
270×𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑅𝑎𝑛𝑔𝑒

π

11 Data Structures and Tables

11.1 Internal Metadata Structures

11.1.1 Shared Structures

struct Position { };

struct PolarPosition : Position {
 float azimuth, elevation, distance = 1;
};

struct CartesianPosition : Position {
 float x, y, z;
};

struct Screen { };

struct PolarScreen : Screen {
 float aspectRatio;
 PolarPosition centrePosition;
 float widthAzimuth;
};

struct CartesianScreen : Screen {
 float aspectRatio;
 CartesianPosition centrePosition;
 float widthX;
};

struct Frequency {
 optional<float> lowPass;
 optional<float> highPass;
};

struct ExtraData {
 Fraction object_start;

74 Rec. ITU-R BS.2127-0

 Fraction object_duration;
 Screen reference_screen;
 Frequency channel_frequency;
};

11.1.2 Input Metadata

struct ChannelLock {
 optional<float> maxDistance;
};

struct ObjectDivergence {
 float value;
 optional<float> azimuthRange;
 optional<float> positionRange;
};

struct JumpPosition {
 bool flag;
 optional<float> interpolationLength;
};

struct ExclusionZone { };

struct CartesianZone : ExclusionZone {
 float minX;
 float minY;
 float minZ;
 float maxX;
 float maxY;
 float maxZ;
};

struct PolarZone : ExclusionZone {
 float minElevation;
 float maxElevation;
 float minAzimuth;
 float maxAzimuth;
};

struct ScreenEdgeLock {
 enum Horizontal { LEFT; RIGHT; };
 enum Vertical { BOTTOM; TOP; };

 optional<Horizontal> horizontal;
 optional<Vertical> vertical;
};

struct ObjectPosition { };

class PolarObjectPosition : ObjectPosition {
 float azimuth, elevation, distance;
 ScreenEdgeLock screenEdgeLock;
};

class CartesianObjectPosition | ObjectPosition {
 float X, Y, Z;
 ScreenEdgeLock screenEdgeLock;
};

struct AudioBlockFormatObjects {

 Rec. ITU-R BS.2127-0 75

 ObjectPosition position;
 bool cartesian;
 float width, height, depth;
 float diffuse;
 optional<ChannelLock> channelLock;
 optional<ObjectDivergence> objectDivergence;
 optional<JumpPosition> jumpPosition;
 bool screenRef;
 int importance;
 vector<ExclusionZone> zoneExclusion;
};

struct ObjectTypeMetadata {
 AudioBlockFormatObjects block_format;
 ExtraData extra_data;
};

11.1.3 Reproduction Environment Data

struct Channel {
 string name;
 /// The real position of the loudspeaker
 PolarPosition polar_position;
 /// The nominal position of the loudspeaker as in bs.2051-2.
 PolarPosition polar_nominal_position;
 bool is_lfe;
};

struct Layout {
 /// the ITU-format layout name, e.g. "9+10+3"
 string name;
 vector<Channel> channels;
 Screen screen;
};

11.2 Allocentric Loudspeaker Positions

This data is available in machine readable form in iar/core/data/allo_positions.yaml,

but is included here for reference.

TABLE 5

Allocentric loudspeaker positions for 0+2+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

76 Rec. ITU-R BS.2127-0

TABLE 6

Allocentric loudspeaker positions for 0+5+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+110 −1 −1 0

M-110 1 −1 0

LFE1 -1 1 -1

TABLE 7

Allocentric loudspeaker positions for 2+5+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+110 −1 −1 0

M-110 1 −1 0

U+030 −1 1 1

U-030 1 1 1

LFE1 -1 1 -1

TABLE 8

Allocentric loudspeaker positions for 4+5+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+110 −1 −1 0

M-110 1 −1 0

U+030 −1 1 1

U-030 1 1 1

U+110 −1 −1 1

U-110 1 −1 1

LFE1 -1 1 -1

 Rec. ITU-R BS.2127-0 77

TABLE 9

Allocentric loudspeaker positions for 4+5+1

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+110 −1 −1 0

M-110 1 −1 0

U+030 −1 1 1

U-030 1 1 1

U+110 −1 −1 1

U-110 1 −1 1

B+000 0 1 −1

LFE1 -1 1 -1

TABLE 10

Allocentric loudspeaker positions for 3+7+0

Channel X Y Z

M+000 0 1 0

M+030 −1 1 0

M-030 1 1 0

U+045 −1 1 1

U-045 1 1 1

M+090 −1 0 0

M-090 1 0 0

M+135 −1 −1 0

M-135 1 −1 0

UH+180 0 −1 1

LFE1 -1 1 -1

LFE2 1 1 -1

TABLE 11

Allocentric loudspeaker positions for 4+9+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+090 −1 0 0

78 Rec. ITU-R BS.2127-0

TABLE 11 (end)

Channel X Y Z

M-090 1 0 0

M+135 −1 −1 0

M-135 1 −1 0

U+045 −1 1 1

U-045 1 1 1

U+135 −1 −1 1

U-135 1 −1 1

LFE1 -1 1 -1

TABLE 12

Allocentric loudspeaker positions for 9+10+3

Channel X Y Z

M+060 −1 0.414214 0

M-060 1 0.414214 0

M+000 0 1 0

M+135 −1 −1 0

M-135 1 −1 0

M+030 −1 1 0

M-030 1 1 0

M+180 0 −1 0

M+090 −1 0 0

M-090 1 0 0

U+045 −1 1 1

U-045 1 1 1

U+000 0 1 1

T+000 0 0 1

U+135 −1 −1 1

U-135 1 −1 1

U+090 −1 0 1

U-090 1 0 1

U+180 0 −1 1

B+000 0 1 −1

B+045 −1 1 −1

 Rec. ITU-R BS.2127-0 79

TABLE 12 (end)

Channel X Y Z

B-045 1 1 −1

LFE1 -1 1 -1

LFE2 1 1 -1

TABLE 13

Allocentric loudspeaker positions for 0+7+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+090 −1 0 0

M-090 1 0 0

M+135 −1 −1 0

M-135 1 −1 0

LFE1 -1 1 -1

TABLE 14

Allocentric loudspeaker positions for 4+7+0

Channel X Y Z

M+030 −1 1 0

M-030 1 1 0

M+000 0 1 0

M+090 −1 0 0

M-090 1 0 0

M+135 −1 −1 0

M-135 1 −1 0

U+045 −1 1 1

U-045 1 1 1

U+135 −1 −1 1

U-135 1 −1 1

LFE1 -1 1 -1

11.3 DirectSpeakers mapping data

This data is available in machine readable form in

core.direct_speakers.panner.itu_packs and

core.direct_speakers.panner.rules, but is included here for reference.

80 Rec. ITU-R BS.2127-0

TABLE 15

Mapping from common definitions audioPackFormatID to layout name (see § 8.1)

audioPackFormatID input_layout

AP_00010001 0+1+0

AP_00010002 0+2+0

AP_00010003 0+5+0

AP_00010004 2+5+0

AP_00010005 4+5+0

AP_00010007 3+7+0

AP_00010008 4+9+0

AP_00010009 9+10+3

AP_0001000c 0+5+0

AP_0001000f 0+7+0

AP_00010010 4+5+1

AP_00010017 4+7+0

TABLE 16

Mapping rules for DirectSpeakers (see § 8.1)

Input

speakerLabel
Output reproduction gains input_layouts output_layouts

M+000 M+000 = 1

M+000
M+030 = M-030 = √

1

2

M+060 M+060 = 1

M-060 M-060 = 1

M+060
M+110 = √

1

3
, M+030 = √

2

3

M-060
M-110 = √

1

3
, M-030 = √

2

3

M+060
M+030 = M+090 = √

1

2

M-060
M-030 = M-090 = √

1

2

M+060 M+030 = 1

M-060 M-030 = 1

M+090 M+090 = 1

M-090 M-090 = 1

M+090
M+030 = √

1

3
, M+110 = √

2

3

9+10+3

M-090
M-030 = √

1

3
, M-110 = √

2

3

9+10+3

 Rec. ITU-R BS.2127-0 81

M+090
M+030 = M+110 = √

1

2

M-090
M-030 = M-110 = √

1

2

TABLE 16 (continued)

Input

speakerLabel
Output reproduction gains input_layouts output_layouts

M+090
M+030 = √

1

2

M-090
M-030 = √

1

2

M+110 M+110 = 1

M-110 M-110 = 1

M+110 M+135 = 1

M-110 M-135 = 1

M+110
M+030 = √

1

2

M-110
M-030 = √

1

2

M+135 M+135 = 1

M-135 M-135 = 1

M+135 M+110 = 1

M-135 M-110 = 1

M+135
M+030 = √

1

2

M-135
M-030 = √

1

2

M+180 M+180 = 1

M+180
M+135 = M-135 = √

1

2

M+180
M+110 = M-110 = √

1

2

M+180
M+030 = M-030 = √

1

4

U+000 U+000 = 1

U+000
U+030 = U-030 = √

1

2

U+000
U+045 = U-045 = √

1

2

U+000 M+000 = 1

82 Rec. ITU-R BS.2127-0

U+000
M+030 = M-030 = √

1

2

U+030 U+030 = 1

U-030 U-030 = 1

U+030 U+045 = 1

U-030 U-045 = 1

TABLE 16 (continued)

Input

speakerLabel
Output reproduction gains input_layouts output_layouts

U+030 M+030 = 1

U-030 M-030 = 1

U+045 U+045 = 1

U-045 U-045 = 1

U+045 U+030 = 1

U-045 U-030 = 1

U+045 M+030 = 1

U-045 M-030 = 1

U+090 U+090 = 1

U-090 U-090 = 1

U+090
UH+180 = √

1

3
, U+045 = √

2

3

9+10+3

U-090
UH+180 = √

1

3
, U-045 = √

2

3

9+10+3

U+090
U+030 = U+110 = √

1

2

U-090
U-030 = U-110 = √

1

2

U+090
U+045 = U+135 = √

1

2

U-090
U-045 = U-135 = √

1

2

U+090 M+090 = 1

U-090 M-090 = 1

U+090
U+030 = M+110 = √

1

2

U-090
U-030 = M-110 = √

1

2

U+090
M+030 = M+110 = √

1

2

U-090
M-030 = M-110 = √

1

2

 Rec. ITU-R BS.2127-0 83

U+090
M+030 = √

1

2

U-090
M-030 = √

1

2

U+110 U+110 = 1

U-110 U-110 = 1

U+110 U+135 = 1

U-110 U-135 = 1

TABLE 16 (continued)

Input

speakerLabel
Output reproduction gains input_layouts output_layouts

U+110
U+045 = UH+180 = √

1

2

U-110
U-045 = UH+180 = √

1

2

U+110 M+110 = 1

U-110 M-110 = 1

U+110 M+135 = 1

U-110 M-135 = 1

U+110
M+030 = √

1

2

U-110
M-030 = √

1

2

U+135 U+135 = 1

U-135 U-135 = 1

U+135 U+110 = 1

U-135 U-110 = 1

U+135
U+045 = √

1

3
, UH+180 = √

2

3

9+10+3

U-135
U-045 = √

1

3
, UH+180 = √

2

3

9+10+3

U+135
U+045 = UH+180 = √

1

2

U-135
U-045 = UH+180 = √

1

2

U+135 M+135 = 1

U-135 M-135 = 1

U+135 M+110 = 1

U-135 M-110 = 1

U+135
M+030 = √

1

2

84 Rec. ITU-R BS.2127-0

U-135
M-030 = √

1

2

U+180 U+180 = 1

U+180 UH+180 = 1

U+180
U+135 = U-135 = √

1

2

U+180
U+110 = U-110 = √

1

2

U+180
M+135 = M-135 = √

1

2

TABLE 16 (continued)

Input

speakerLabel
Output reproduction gains input_layouts output_layouts

U+180
M+110 = M-110 = √

1

2

U+180
M+030 = M-030 = √

1

4

UH+180 UH+180 = 1

UH+180 U+180 = 1

UH+180
U+135 = U-135 = √

1

2

UH+180
U+110 = U-110 = √

1

2

UH+180
M+135 = M-135 = √

1

2

UH+180
M+110 = M-110 = √

1

2

UH+180
M+030 = M-030 = √

1

4

T+000 T+000 = 1

T+000
U+045 = U-045 = U+135 = U-135 = √

1

4

T+000
U+030 = U-030 = U+110 = U-110 = √

1

4

T+000
U+045 = U-045 = UH+180 = √

1

3

T+000
U+045 = U-045 = M+135 = M-135 = √

1

4

T+000
U+030 = U-030 = M+110 = M-110 = √

1

4

T+000
M+030 = M-030 = M+135 = M-135 = √

1

4

 Rec. ITU-R BS.2127-0 85

T+000
M+030 = M-030 = M+110 = M-110 = √

1

4

T+000
M+030 = M-030 = √

1

4

B+000 B+000 = 1

B+000 M+000 = 1

B+000
M+030 = M-030 = √

1

2

B+045 B+045 = 1

B-045 B-045 = 1

B+045 M+030 = 1

TABLE 16 (end)

Input

speakerLabel
Output reproduction gains input_layouts output_layouts

B-045 M-030 = 1

LFE1 LFE1 = 1 9+10+3, 3+7+0 9+10+3, 3+7+0

LFE2 LFE2 = 1 9+10+3, 3+7+0 9+10+3, 3+7+0

LFE1
LFE1 = √

1

2

9+10+3, 3+7+0

LFE2
LFE1 = √

1

2

9+10+3, 3+7+0

LFE1 LFE1 = 1

Bibliography

[1] F. Zotter and M. Frank (2012), All-round ambisonic panning and decoding, Journal of

the audio engineering society, vol. 60, no. 10, pp. 807-820.

[2] V. Pulkki, (1997), Virtual sound source positioning using vector base amplitude

panning, Journal of the audio engineering society, vol. 45, no. 6, pp. 456-466.

86 Rec. ITU-R BS.2127-0

Attachment 1

to Annex 1

(informative)

Guide to corresponding parts of the specification to ADM Metadata

A1.1 ADM Metadata across ITU-R ADM Renderer

The purpose of the table below is to provide a summary list of the key elements of the Renderer

together with their locations in the specifications that are given in Annex 1. The specifications should

be taken from the listed references.

ADM Metadata

sub-element (attribute)[coordinate system]

Recommendation

ITU-R BS.2076-1

Annex 1 in this

Recommendation

typeDefinition == “DirectSpeakers” § 5.4.3.1

Table 11

§ 8

 speakerLabel § 8.2

 position (azimuth, elevation, distance,

screenEdgeLock)

§ 8

typeDefinition == “Matrix” § 5.4.3.2 § 5.2.6.1.1

§ 5.2.6.4

 outputChannelIDRef Table 12 § 5.2.6.1.1

 matrix → coefficient (gain, gainVar, phase,

phaseVar, delay, delayVar)

Table 13 § 5.6.4

 input / outputPackFormatIDRef § 5.5.5.1 § 5.2.6.1.1

 encode / decodePackFormatIDRef § 5.2.6.1.1

typeDefinition == “Objects” § 5.4.3.3 § 7

 position (azimuth, elevation, distance,

screenEdgeLock) [polar]

Table 14 § 6.1

§ 7

§ 7.3.4

 position (X, Y, Z, screenEdgeLock) [cartesian] Table 15 § 6.1

§ 7

§ 7.3.10

 width, height, depth [polar] Table 14 § 7.3.8

 width, height, depth [cartesian] Table 15 § 7.3.11

 cartesian Table 16 § 7.3.1

§ 7.3.2

 gain § 7.3.1

 diffuse § 7.3.1

§ 7.4

 channelLock (maxDistance) § 7.3.6

 objectDivergence (azimuthRange, positionRange)

[polar]

§ 7.3.7

§ 7.3.1

 objectDivergence (azimuthRange, positionRange)

[cartesian]

§ 7.3.7

§ 7.3.1

 jumpPosition (interpolationLength) § 7.2

 Rec. ITU-R BS.2127-0 87

ADM Metadata

sub-element (attribute)[coordinate system]

Recommendation

ITU-R BS.2076-1

Annex 1 in this

Recommendation

 zoneExclusion → zone (minX, maxX, minY, maxY,

minZ, maxZ, minElevation, maxElevation,

minAzimuth, maxAzimuth)

 § 7.3.5

§ 7.3.12

 screenRef § 7.3.3

 importance § 5.3.1

§ 5.2.7.1.1

typeDefinition == “HOA” § 5.4.3.4 § 9

§ 5.2.7.3

 equation Table 17 § 9.2

 order § 9.1.1

§ 9.3.1.2

 degree § 9.1.1

§ 9.3.1.2

 normalization § 5.4.3.4 § 9.1.2

§ 9.3.1.5

 nfcRefDist Table 17 § 9.2

 screenRef § 9.2

typeDefinition == “Binaural” § 5.4.3.5 –

Attachment 2

to Annex 1

(informative)

An alternative virtual loudspeaker configuration

A2.1 Specification of alternative virtual loudspeaker configuration

An alternative VBAP virtual loudspeaker configuration to the one specified in § 6.1.3.1 describes the

positions of virtual loudspeakers not located on the poles and their fold-down coefficients. The

treatment of the ADM metadata remains the same as specified in the main body of this

recommendation, with no additional metadata required. The alternative virtual loudspeaker positions

and their fold-down coefficients are based on by-ear optimizations. Below is the description of this

alternative virtual speaker configuration.

A2.1.1 Configuration Process

The configuration process follows the steps as described in § 6.1.3.1, with the exception of the second

step which should be as follows:

2) Virtual speakers are determined by first looking up the tables defined in § A2.1.2. Each

subsection under § A2.1.2 define virtual speaker configuration and their fold-downs for

specific layout defined in Recommendation ITU-R BS.2051-2.

The other configuration process steps, step (1) and steps (3) through (6), remain as described in

§ 6.1.3.1.

https://www.itu.int/rec/R-REC-BS.2051/en

88 Rec. ITU-R BS.2127-0

A2.1.2 Virtual Speakers and Fold-down tables

In the Tables below, the virtual loudspeakers (specified as azimuth and elevation) are in the first row

and the physical loudspeakers in the first column. The virtual loudspeaker locations have the same

nominal and real positions. The table shows the fold-down coefficients going from virtual

loudspeakers to physical loudspeakers.

System A: 0+2+0

For the system A:0+2+0, the method based on a downmix from system B:0+5+0 to system A:0+2+0

as described in § 6.1.2.4 is used. For obtaining the 0+5+0 channels, virtual loudspeakers for the

system B:0+5+0 are used as described below.

System B: 0+5+0

 −45, 45 45, 45 −135, 45 135, 45 −45, −45 45, −45 −135, −45 135, −45

M+030 1.0 1.0

M-030 1.0 1.0

M+000

LFE1

M+110 0.3162 0.9486 0.3162 0.9486

M-110 0.9486 0.3162 0.9486 0.3162

System C: 2+5+0

 −135, 30 135, 30 −45, −45 45, −45 −135, −45 135, −45

M+030 1.0

M-030 1.0

M+000

LFE1

M+110 0.3162 0.9486 0.3162 0.9486

M-110 0.9486 0.3162 0.9486 0.3162

U+030

U-030

System D: 4+5+0

 −45, −45 45, −45 −110, −45 110, −45

M+030 1.0

M-030 1.0

M+000

LFE1

M+110 0.3162 0.9486

M-110 0.9486 0.3162

U+030

U-030

U+110

U-110

 Rec. ITU-R BS.2127-0 89

System E: 4+5+1

This layout has both upper and bottom loudspeakers. No need for virtual loudspeakers as the hull is

complete.

System F: 3+7+0

 −135, 30 135, 30 −45, -45 45, −45 −135, −45 135, −45

M+000

M+030 1.0

M-030 1.0

U+045

U-045

M+090

M-090

M+135 0.7071 1.0

M-135 0.7071 1.0

UH+180 0.7071 0.7071

LFE1

LFE2

System G: 4+9+0

 −45, −45 45, −45 −135, −45 135, −45

M+030 1.0

M-030 1.0

M+000

LFE1

M+090

M-090

M+135 1.0

M-135 1.0

U+045

U-045

U+135

U-135

M+SC

M-SC

System H: 9+10+3

Contains loudspeakers in both upper and bottom hemisphere; the hull is complete and so no need

for virtual loudspeakers.

System I: 0+7+0

 −45, 45 45, 45 −135, 45 135, 45 −45, −45 45, −45 −135, −45 135, −45

90 Rec. ITU-R BS.2127-0

M+030 1.0

M-030 1.0 1.0 1.0

M+000

LFE1

M+090

M-090

M+135 1.0 1.0

M-135 1.0 1.0.

System J: 4+7+0

 −45, −45 45, −45 −135, −45 135, −45

M+030 1.0

M-030 1.0

M+000

LFE1

M+090

M-090

M+135 1.0

M-135 1.0

U+045

U-045

U+135

U-135

	Recommendation ITU-R BS.2127-0 (06/2019) Audio Definition Model renderer for advanced sound systems
	Foreword
	Policy on Intellectual Property Right (IPR)
	Scope
	Annex 1 Specifications for ADM renderer for advanced sound systems
	1 Introduction
	1.1 Abbreviations/Glossary

	2 Conventions
	2.1 Notations
	2.2 Coordinate System

	3 Structure
	3.1 Target environment behaviour

	4 ADM-XML Interface
	4.1 AudioBlockFormat
	4.2 Position sub-elements
	4.3 TypeDefinition

	5 Rendering Items
	5.1 Metadata Structures
	5.1.1 DirectSpeakers
	5.1.2 Matrix
	5.1.3 Objects
	5.1.4 HOA
	5.1.5 Binaural

	5.2 Determination of Rendering Items
	5.2.1 Starting Point
	5.2.2 audioProgramme Selection
	5.2.3 audioContent Selection
	5.2.4 audioObject Selection
	5.2.5 Complementary audioObject Handling
	5.2.5.1 Selection of Complementary audioObjects to Ignore

	5.2.6 audioPackFormat Matching
	5.2.6.1 Packs to Match Against
	5.2.6.1.1 Matrix Handling

	5.2.6.2 Tracks and audioPackFormat References to Match
	5.2.6.3 Matching
	5.2.6.3.1 Examples

	5.2.6.4 Solution Post-Processing

	5.2.7 Output Rendering Items
	5.2.7.1 Shared Components
	5.2.7.1.1 Importance
	5.2.7.1.2 Extra Data

	5.2.7.2 Output Rendering Items for typeDefinition==Objects or DirectSpeakers
	5.2.7.3 Output Rendering Items for typeDefinition==HOA

	5.3 Rendering Item Processing
	5.3.1 Importance emulation
	5.3.1.1 Importance values of RenderingItems
	5.3.1.2 Static importance handling
	5.3.1.3 Time-varying importance handling

	5.3.2 Conversion Emulation

	6 Shared Renderer Components
	6.1 Polar Point Source Panner
	6.1.1 Architecture
	6.1.2 Region Types
	6.1.2.1 Triplet
	6.1.2.2 VirtualNgon
	6.1.2.3 QuadRegion
	6.1.2.3.1 Formulation
	6.1.2.3.2 Solution

	6.1.2.4 StereoPanDownmix

	6.1.3 Configuration Process
	6.1.3.1 Process for Generic Layouts
	6.1.3.1.1 Determination of Virtual Loudspeakers with Direct Downmix

	6.1.3.2 Process for 0+2+0

	6.2 Determination if angle is inside a range with tolerance
	6.3 Determine if a channel is an LFE channel from its frequency metadata
	6.4 Block Processing Channel
	6.4.1 Implemented ProcessingBlock Types

	6.5 Generic Interpretation of Timing Metadata
	6.6 Interpretation of TrackSpecs
	6.6.1 SilentTrackSpec
	6.6.2 DirectTrackSpec
	6.6.3 MixTrackSpec
	6.6.4 MatrixCoefficientTrackSpec

	6.7 Relative Angle
	6.8 Coordinate Transformations

	7 Render Items with typeDefinition==Objects
	7.1 Structure
	7.2 InterpretObjectMetadata
	7.3 Gain Calculator
	7.3.1 Structure
	7.3.1.1 Discussion (Informative)

	7.3.2 Coordinate Transformation
	7.3.3 Screen Scaling
	7.3.3.1 Internal Screen Representation
	7.3.3.2 Position Compensation
	7.3.3.3 Direction Warping
	7.3.3.4 Metadata Interpretation

	7.3.4 Screen Edge Lock
	7.3.5 Cartesian Zone Exclusion
	7.3.6 Channel Lock
	7.3.7 Divergence
	7.3.7.1 Calculation of Gains
	7.3.7.2 Calculation of Positions
	7.3.7.2.1 Behaviour when cartesian == true
	7.3.7.2.2 Behaviour when cartesian == false

	7.3.8 Polar Extent Panner
	7.3.8.1 Spreading Panner
	7.3.8.2 Rendering Polar Extent
	7.3.8.2.1 Polar Extent Modification Function
	7.3.8.2.2 Polar Extent Panner
	7.3.8.2.3 Polar Weighting Function

	7.3.9 Cartesian Loudspeaker Positions
	7.3.10 Cartesian Point Source Panner
	7.3.11 Cartesian Extent Panner
	7.3.11.1 Pre-scaling of extent parameters
	7.3.11.2 Calculating virtual source gains
	7.3.11.3 Combining virtual source gains inside the room
	7.3.11.4 Combining boundary gains
	7.3.11.5 Combining inside and boundary gains
	7.3.11.6 Combining extent gains and point gains

	7.3.12 Polar Zone Exclusion
	7.3.12.1 Selecting Excluded Loudspeakers
	7.3.12.2 Downmix for Excluded Loudspeakers
	7.3.12.2.1 Determination of Loudspeaker Groups
	7.3.12.2.2 Application of Zone Exclusion

	7.4 Decorrelation Filters

	8 Render Items with typeDefinition==DirectSpeakers
	8.1 Mapping Rules
	8.2 LFE Determination
	8.3 Loudspeaker Label Matching
	8.4 Screen Edge Lock
	8.5 Bounds Matching

	9 Render Items with typeDefinition==HOA
	9.1 Supported HOA formats
	9.1.1 HOA order and degree
	9.1.2 Normalisation

	9.2 Unsupported sub-elements
	9.3 Rendering of HOA signals over loudspeakers
	9.3.1 HOA decoding matrix calculation
	9.3.1.1 Virtual loudspeaker positions
	9.3.1.2 Calculation of the virtual loudspeaker decoding matrix
	9.3.1.3 Calculation of the panning gain matrix
	9.3.1.4 Energy normalisation
	9.3.1.5 HOA normalisation

	10 Metadata Conversion
	10.1 position Conversion
	10.1.1 Polar to Cartesian
	10.1.2 Cartesian to Polar

	10.2 Extent Conversion
	10.2.1 Polar to Cartesian
	10.2.2 Cartesian to Polar

	10.3 objectDivergence Conversion

	11 Data Structures and Tables
	11.1 Internal Metadata Structures
	11.1.1 Shared Structures
	11.1.2 Input Metadata
	11.1.3 Reproduction Environment Data

	11.2 Allocentric Loudspeaker Positions
	11.3 DirectSpeakers mapping data

	Bibliography
	Attachment 1 to Annex 1 (informative) Guide to corresponding parts of the specification to ADM Metadata
	A1.1 ADM Metadata across ITU-R ADM Renderer

	Attachment 2 to Annex 1 (informative) An alternative virtual loudspeaker configuration
	A2.1 Specification of alternative virtual loudspeaker configuration
	A2.1.1 Configuration Process
	A2.1.2 Virtual Speakers and Fold-down tables

