
 Rec. ITU-R BR.1352-1 1

RECOMMENDATION ITU-R BR.1352-1

File format for the exchange of audio programme materials
with metadata on information technology media

(Question ITU-R 215/10)

(1998-2001)

The ITU Radiocommunication Assembly,

considering

a) that storage media based on Information Technology, including data disks and tapes, are
expected to penetrate all areas of audio production for radio broadcasting, namely non-linear
editing, on-air play-out and archives;

b) that this technology offers significant advantages in terms of operating flexibility,
production flow and station automation and it is therefore attractive for the up-grading of existing
studios and the design of new studio installations;

c) that the adoption of a single file format for signal interchange would greatly simplify the
interoperability of individual equipment and remote studios, it would facilitate the desirable
integration of editing, on-air play-out and archiving;

d) that a minimum set of broadcast related information must be included in the file to
document the audio signal;

e) that, to ensure the compatibility between applications with different complexity, a
minimum set of functions, common to all the applications able to handle the recommended file
format must be agreed;

f) that Recommendation ITU-R BS.646 defines the digital audio format used in audio
production for radio and television broadcasting;

g) that various multichannel formats are the subject of Recommendation ITU-R BS.775 and
that they are expected to be widely used in the near future;

h) that the need for exchanging audio materials also arises when ISO/IEC 11172-3 and
ISO/IEC 13818-3 coding systems are used to compress the signal;

j) that several world broadcasters have already agreed on the adoption of a common file
format for programme exchange;

k) that the compatibility with currently available commercial file formats could minimize the
industry efforts required to implement this format in the equipment;

l) that a standard format for the coding history information would simplify the use of the
information after programme exchange;

m) that the quality of an audio signal is influenced by signal processing experienced by the
signal, particularly by the use of non-linear coding and decoding during bit-rate reduction
processes,

2 Rec. ITU-R BR.1352-1

recommends

1 that, for the exchange of audio programmes on Information Technology media, the audio
signal parameters, sampling frequency, coding resolution and pre-emphasis should be set in
agreement with the relevant parts of Recommendation ITU-R BS.646;

2 that the file format specified in Annex 1 should be used for the interchange1 of audio
programmes in linear pulse code modulation (PCM) format on Information Technology media;

3 that, when the audio signals are coded using ISO/IEC 11172-3 or ISO/IEC 13818-3 coding
systems, the file format specified in Annex 1 and complemented with Annex 2 should be used for
the interchange of audio programmes on Information Technology media2;

4 that, when the file format specified in Annexes 1 and/or 2 is used to carry information on
the audio material gathered and computed by a capturing workstation (digital audio work-
station (DAW)), the metadata should conform to the specifications detailed in Annex 3.

ANNEX 1

Specification of the broadcast wave format

A format for audio data files in broadcasting

1 Introduction

The broadcast wave format (BWF) is based on the Microsoft WAVE audio file format which is a
type of file specified in the Microsoft �Resource Interchange File Format�, RIFF. WAVE files
specifically contain audio data. The basic building block of the RIFF file format, called a chunk,
contains a group of tightly related pieces of information. It consists of a chunk identifier, an integer
value representing the length in bytes and the information carried. A RIFF file is made up of a
collection of chunks.

For the BWF, some restrictions are applied to the original WAVE format. In addition the BWF file
includes a <Broadcast Audio Extension> chunk. This is illustrated in Fig. 1.

1 The adoption of the recommended file format, not only for interchange but also as the file format for the
recorded medium, would be a preferable solution for users as no overhead both in terms of time and
temporary storage space would be required for conversion when transferring the audio signal between
equipment. However, it is recognized that a recommendation in that sense could penalize developers using
some computer platforms.

2 Other annexes can be defined in future, to extend the file format to carry audio signals coded with other
systems of interest to the broadcasters.

 Rec. ITU-R BR.1352-1 3

1352-01

Compulsory
chunk defined
by Microsoft

BWF file

The audio data

Optional chunks not
supported by all applications

Custom chunk defined in this Recommendation

MPEG formats only

MPEG formats only

FIGURE 1
BWF file

<fmt-ck>

Broadcast extension data
<bext-ck>

[<fact-ck>]

[<mpeg-audio-extension>]

[<.................>]

<wave-data>

Quality chunk
<qlty-ck>

This Annex contains the specification of the broadcast audio extension chunk that is used in
all BWF files. In addition, information on the basic RIFF format and how it can be extended to
other types of audio data is given in Appendix 1. Details of the PCM wave format are also given in
Appendix 1. Detailed specifications of the extension to other types of audio data are included in
Annexes 2 and 3.

2 Broadcast wave format file

2.1 Contents of a broadcast wave format file

A broadcast wave format file shall start with the mandatory Microsoft RIFF �WAVE� header and
at least the following chunks:

<WAVE-form> ->

 RIFF(�WAVE�

 <broadcast_audio_extension> /information on the audio sequence

 <fmt-ck> //Format of the audio signal: PCM/Moving Picture Experts
Group (MPEG)

4 Rec. ITU-R BR.1352-1

 [<fact-ck>] /Fact chunk is required for MPEG formats only
 [<mpeg_audio_extension>] /MPEG Audio Extension chunk is required for MPEG

formats only
 <wave-data>) //sound data

NOTE 1 � Any additional types of chunks that are present in the file have to be considered as private.
Applications are not required to interpret or make use of these chunks. Thus the integrity of the data
contained in any chunks not listed above is not guaranteed. However BWF applications should pass on these
chunks whenever possible.

2.2 Existing chunks defined as part of the RIFF standard

The RIFF standard is defined in documents issued by the Microsoft® Corporation. This application
uses a number of chunks that are already defined. These are:

 fmt-ck

 fact-ck

The current descriptions of these chunks are given for information in Appendix 1 to Annex 1.

2.3 Broadcast audio extension chunk

Extra parameters needed for exchange of material between broadcasters are added in a specific
�Broadcast Audio Extension� chunk defined as follows:

broadcast_audio_extension typedef struct {
 DWORD ckID; /* (broadcastextension)ckID=bext. */
 DWORD ckSize; /* size of extension chunk */
 BYTE ckData[ckSize]; /* data of the chunk */
}

typedef struct broadcast_audio_extension {
CHAR Description[256]; /* ASCII : «Description of the sound sequence»*/
CHAR Originator[32]; /* ASCII : «Name of the originator»*/
CHAR OriginatorReference[32]; /* ASCII : «Reference of the originator»*/
CHAR OriginationDate[10]; /* ASCII : «yyyy:mm:dd» */
CHAR OriginationTime[8]; /* ASCII : «hh:mm:ss» */
DWORD TimeReferenceLow; /*First sample count since midnight, low word*/
DWORD TimeReferenceHigh; /*First sample count since midnight, high word */
WORD Version; /* Version of the BWF; unsigned binary number */
CHAR Reserved[254]; /* Reserved for future use, set to �NULL� */
CHAR CodingHistory[]; /* ASCII : «History coding» */
} BROADCAST_EXT

Field Description

Description ASCII string (maximum 256 characters) containing a free description of
the sequence. To help applications which only display a short description
it is recommended that a resume of the description is contained in the first
64 characters and the last 192 characters are used for details.

 Rec. ITU-R BR.1352-1 5

 If the length of the string is less than 256 characters the last one is
followed by a null character. (00)

Originator ASCII string (maximum 32 characters) containing the name of the
originator/producer of the audio file. If the length of the string is less than
32 characters the field is ended by a null character.

OriginatorReference ASCII string (maximum 32 characters) containing a non ambiguous
reference allocated by the originating organization. If the length of the
string is less than 32 characters the field is ended a null character.

OriginationDate 10 ASCII characters containing the date of creation of the audio sequence.
The format is « �,year�,-,�month,�-�,day,�» with 4 characters for the year
and 2 characters per other item.

 Year is defined from 0000 to 9999

 Month is define from 1 to 12

 Day is defined from 1 to 31

 The separator between the items can be anything but it is recommended
that one of the following characters be used:

 �-� hyphen �_� underscore �:� colon � � space �.� stop

OriginationTime 8 ASCII characters containing the time of creation of the audio sequence.
The format is «�hour,�-�,minute,�-�,second�» with 2 characters per item.

 Hour is defined from 0 to 23.

 Minute and second are defined from 0 to 59.

 The separator between the items can be anything but it is recommended
that one of the following characters be used:

 �-� hyphen �_� underscore �:� colon � � space �.� stop

TimeReference This field contains the time-code of the sequence. It is a 64-bit value
which contains the first sample count since midnight. The number of
samples per second depends on the sample frequency that is defined in the
field <nSamplesPerSec> from the <format chunk>.

Version An unsigned binary number giving the version of the BWF. Initially this
is set to zero.

Reserved 254 bytes reserved for extension. These 254 bytes must be set to a NULL
value. In the future the null value will be used as a default to maintain
compatibility.

CodingHistory Non-restricted ASCII characters containing a collection of strings
terminated by CR/LF. Each string contains a description of the coding
process applied. Each new coding application is required to add a new
string with the appropriate information. A standard format for the coding
history information is given in Appendix 2 to Annex 1.

6 Rec. ITU-R BR.1352-1

 This information must contain the type of sound (PCM or MPEG) with its
specific parameters:

 PCM: mode (mono, stereo), size of the sample (8, 16 bits) and sample
frequency,

 MPEG: sampling frequency, bit rate, layer (I or II) and the mode (mono,
stereo, joint stereo or dual channel),

 It is recommended that the manufacturers of the coders provide an ASCII
string for use in the coding history.

NOTE 1 � Studies are under way to propose a format for coding history that will simplify the interpretation
of the information provided in this field.

2.4 Other information specific to applications

Studies are under way to define other chunks to carry or point to data that are specific to certain
applications, e.g. for edited audio or for archival.

APPENDIX 1

TO ANNEX 1

RIFF WAVE (.WAV) file format

The information in this Appendix is taken from the specification documents of Microsoft RIFF file
format. It is included for information only.

1 Waveform audio file format (WAVE)
The WAVE form is defined as follows. Programs must expect (and ignore) any unknown chunks
encountered, as with all RIFF forms. However, <fmt-ck> must always occur before <wave-data>,
and both of these chunks are mandatory in a WAVE file.

<WAVE-form> ->
 RIFF (�WAVE�
 <fmt-ck> // Format chunk
 [<fact-ck>] // Fact chunk
 [<other-ck>] // Other optional chunks
 <wave-data>) // Sound data

The WAVE chunks are described in the following sections:

1.1 WAVE format chunk

The WAVE format chunk <fmt-ck> specifies the format of the <wave-data>. The <fmt-ck> is
defined as follows:

<fmt-ck> ->fmt(<common-fields>
 <format-specific-fields>)
<common-fields> ->

 Rec. ITU-R BR.1352-1 7

 struct{
 WORD wFormatTag; // Format category
 WORD nChannels; // Number of channels
 DWORD nSamplesPerSec; // Sampling rate
 DWORD nAvgBytesPerSec; // For buffer estimation
 WORD nBlockAlign; // Data block size
 }

The fields in the <common-fields> portion of the chunk are as follows:

Field Description

wFormatTag A number indicating the WAVE format category of the file. The content
of the <format-specific-fields> portion of the �fmt� chunk, and the
interpretation of the waveform data, depend on this value.

nchannels The number of channels represented in the waveform data, such as 1 for
mono or 2 for stereo.

nSamplesPerSec The sampling rate (in samples per second) at which each channel should
be played.

nAvgBytesPerSec The average number of bytes per second at which the waveform data
should be transferred. Playback software can estimate the buffer size
using this value.

nBlockAlign The block alignment (in bytes) of the waveform data. Playback software
needs to process a multiple of <nBlockAlign> bytes of data at a time, so
the value of <nBlockAlign> can be used for buffer alignment.

The <format-specific-fields> consists of zero or more bytes of parameters. Which parameters occur
depends on the WAVE format category � see the following sections for details. Playback software
should be written to allow for (and ignore) any unknown <format-specific-fields> parameters that
occur at the end of this field.

1.2 WAVE format categories

The format category of a WAVE file is specified by the value of the <wFormatTag> field of the
�fmt� chunk. The representation of data in <wave-data>, and the content of the <format-specific-
fields> of the �fmt� chunk, depend on the format category.

Among the currently defined open non-proprietary WAVE format categories are as follows:

wFormatTag Value Format Category

WAVE_FORMAT_PCM (0x0001) Microsoft® (PCM) format

WAVE_FORMAT_MPEG (0x0050) MPEG-1 Audio (audio only)

NOTE 1 � Although other WAVE formats are registered with Microsoft, only the above formats are used at
present with the BWF. Details of the PCM WAVE format are given in the following Section 2. General
information on other WAVE formats is given in Section 3. Details of MPEG WAVE format are given in
Annex 2. Other WAVE formats may be defined in future.

8 Rec. ITU-R BR.1352-1

2 PCM format

If the <wFormatTag> field of the <fmt-ck> is set to WAVE_FORMAT_PCM, then the waveform
data consists of samples represented in PCM format. For PCM waveform data, the <format-
specific-fields> is defined as follows:

<PCM-format-specific> ->
 struct{
 WORD nBitsPerSample; // Sample size
 }

The <nBitsPerSample> field specifies the number of bits of data used to represent each sample of
each channel. If there are multiple channels, the sample size is the same for each channel.

For PCM data, the <nAvgBytesPerSec> field of the �fmt� chunk should be equal to the following
formula rounded up to the next whole number:

8
mplenBitsPerSa condnBitsPerSe nChannels ××

The <nBlockAlign> field should be equal to the following formula, rounded to the next whole
number:

8
mplenBitsPerSa nChannels×

2.1 Data packing for PCM WAVE files

In a single-channel WAVE file, samples are stored consecutively. For stereo WAVE files, channel
0 represents the left-hand channel, and channel 1 represents the right-hand channel. The speaker
position mapping for more than two channels is currently undefined. In multiple-channel WAVE
files, samples are interleaved.

The following diagrams show the data packing for 8-bit mono and stereo WAVE files:

Sample 1 Sample 2 Sample 3 Sample 4

Channel 0 Channel 0 Channel 0 Channel 0

Data packing for 8-bit mono PCM

Sample 1 Sample 2

Channel 0 (left) Channel 1 (right) Channel 0 (left) Channel 1 (right)

Data packing for 8-bit stereo PCM

 Rec. ITU-R BR.1352-1 9

The following diagrams show the data packing for 16-bit mono and stereo WAVE files:

Sample 1 Sample 2

Channel 0
low-order byte

Channel 0
high-order byte

Channel 0
low-order byte

Channel 0
high-order byte

Data packing for 16-bit mono PCM

Sample 1

Channel 0 (left) Channel 0 (left) Channel 1 (right) Channel 1 (right)

low-order byte high-order byte low-order byte high-order byte

Data packing for 16-bit stereo PCM

2.2 Data format of the samples

Each sample is contained in an integer i. The size of i is the smallest number of bytes required to
contain the specified sample size. The least significant byte is stored first. The bits that represent the
sample amplitude are stored in the most significant bits of i, and the remaining bits are set to zero.

For example, if the sample size (recorded in <nBitsPerSample>) is 12 bits, then each sample is
stored in a two-byte integer. The least significant four bits of the first (least significant) byte are set
to zero. The data format and maximum and minimum values for PCM waveform samples of various
sizes are as follows:

Sample size Data format Maximum value Minimum value

One to eight bits Unsigned integer 255 (0xFF) 0

Nine or more bits Signed integer i Largest positive value of i Most negative value of i

For example, the maximum, minimum, and midpoint values for 8-bit and 16-bit PCM waveform
data are as follows:

Format Maximum value Minimum value Midpoint value

8-bit PCM 255 (0xFF) 0 128 (0x80)

16-bit PCM 32767(0x7FFF) �32768(�0x8000) 0

2.3 Examples of PCM WAVE files

Example of a PCM WAVE file with 11.025 kHz sampling rate, mono, 8 bits per sample:

RIFF(�WAVE� fmt(1, 1, 11025, 11025, 1, 8)
 data(<wave-data>))

10 Rec. ITU-R BR.1352-1

Example of a PCM WAVE file with 22.05 kHz sampling rate, stereo, 8 bits per sample:

RIFF(�WAVE� fmt(1, 2, 22050, 44100, 2, 8)
 data(<wave-data>))

Example of a PCM WAVE file with 44.1 kHz sampling rate, mono, 20 bits per sample:

RIFF(�WAVE� INFO(INAM(�O Canada�Z))
 fmt(1, 1, 44100, 132300, 3, 20)
 data(<wave-data>))

2.4 Storage of WAVE data

The <wave-data> contains the waveform data. It is defined as follows:

<wave-data> -> { <data-ck> }
<data-ck> -> data(<wave-data>)

2.5 Fact chunk

The <fact-ck> fact chunk stores important information about the contents of the WAVE file. This
chunk is defined as follows:

<fact-ck> -> fact(<dwFileSize:DWORD>) // Number of samples

The chunk is not required for PCM files.

The fact chunk will be expanded to include any other information required by future WAVE
formats. Added fields will appear following the <dwFileSize> field. Applications can use the chunk
size field to determine which fields are present.

2.6 Other optional chunks

A number of other chunks are specified for use in the WAVE format. Details of these chunks are
given in the specification of the WAVE format and any updates issued later.

NOTE 1 � The WAVE format can support other optional chunks that can be included in WAVE files to carry
specific information. As stated in Note 1 to § 2.1 of Annex 1, in the Broadcast Wave Format these are
considered to be private chunks and will be ignored by applications which cannot interpret them.

3 Other WAVE types

The following information has been extracted from the Microsoft Data Standards. It outlines the
necessary extensions of the basic WAVE files (used for PCM audio) to cover other types of WAVE
format.

3.1 General information

All newly defined WAVE types must contain both a <fact-ck> and an extended wave format
description within the <fmt-ck> format chunk. RIFF WAVE files of type WAVE_FORMAT_PCM
need not have the extra chunk nor the extended wave format description.

 Rec. ITU-R BR.1352-1 11

3.2 Fact chunk

This chunk stores file dependent information about the contents of the WAVE file. It currently
specifies the length of the file in samples.

WAVE format extension

The extended wave format structure added to the <fmt-ck> is used to defined all non-PCM format
wave data, and is described as follows. The general extended waveform format structure is used for
all non PCM formats.

typedef struct waveformat_extended_tag {

 WORD wFormatTag; /* format type */
 WORD nChannels; /* number of channels (i.e. mono, stereo...) */
 DWORD nSamplesPerSec; /* sample rate */
 DWORD nAvgBytesPerSec; /* for buffer estimation */
 WORD nBlockAlign; /* block size of data */
 WORD wBitsPerSample; /* number of bits per sample of mono data */
 WORD cbSize; /* the count in bytes of the extra size */

} WAVEFORMATEX;

Field Description

wFormatTag Defines the type of WAVE file.

nChannels Number of channels in the wave, 1 for mono, 2 for stereo.

nSamplesPerSec Frequency of the sample rate of the wave file. This should be 48000
or 44100 etc. This rate is also used by the sample size entry in the fact
chunk to determine the duration of the data.

nAvgBytesPerSec Average data rate. Playback software can estimate the buffer size using
the <nAvgBytesPerSec> value.

nBlockAlign The block alignment (in bytes) of the data in <data-ck>. Playback
software needs to process a multiple of <nBlockAlign> bytes of data at a
time, so that the value of <nBlockAlign> can be used for buffer
alignment.

wBitsPerSample This is the number of bits per sample per channel. Each channel is
assumed to have the same sample resolution. If this field is not needed,
then it should be set to zero.

cbSize The size in bytes of the extra information in the WAVE format header not
including the size of the WAVEFORMATEX structure.

NOTE 1 � The fields following the <cbSize> field contain specific information needed for the WAVE
format defined in the field <wFormatTag>. Any WAVE formats which can be used in the BWF will be
specified in individual Supplements to this Recommendation.

12 Rec. ITU-R BR.1352-1

APPENDIX 2

TO ANNEX 1

Specification of the format for <CodingHistory> field

Introduction
The <CodingHistory> field in the <bext> chunk is defined as a collection of strings containing a
history of the coding processes. A new row should be added whenever the coding history is
changed. Each row should contain a string variable for each parameter of the coding. Each row
should be terminated by CR/LF. A format for the coding history strings is given below.

Syntax
The syntax of each row should be as follows:

Parameter Variable string <allowed option>

Coding algorithm A=<ANALOGUE, PCM, MPEG1L1, MPEG1L2, MPEG1L3,
MPEG2L1, MPEG2L2, MPEG2L3>

Sampling frequency (Hz) F=<16000,22050,24000,32000,44100,48000>

Bit-rate (kbit/s per channel) B=<any bit-rate allowed in MPEG 2 (ISO/IEC
13818-3)>

Word length (bits) W=<8, 12, 14, 16, 18, 20, 22, 24>

Mode M=<mono, stereo, dual-mono, joint-stereo>

Text, free string T=<a free ASCII-text string for in house
use. This string should contain no commas
(ASCII 2Chex). Examples of the contents:
ID-No; codec type; A/D type>

The variable strings should be separated by commas (ASCII 2Chex). Each row should be
terminated by CR/LF.

Variable B= is only used for MPEG coding.

Variable W= For MPEG coding, should be used to indicate the word-length of the PCM input to the
MPEG coder.

Examples of coding history fields

Example 1
A=PCM,F=48000,W=16,M=stereo,T=original,CR/LF
A=MPEG1L2,F=48000,B=192,W=16,M=stereo,T=PCX9,CR/LF

Interpretation of example 1

Line 1
The original file is recorded as a linear BWF file with PCM coding with:
� Sampling frequency: 48 kHz
� Coding resolution: 16 bits per sample
� Mode: stereo
� Status: original coding

 Rec. ITU-R BR.1352-1 13

Line 2

The original file has been converted to an MPEG-1 Layer 2 BWF file using the parameters:

� Sampling frequency: 48 kHz

� bits per second per channel: 192 kbit/s

� Coding resolution: 16 bits

� Mode: stereo

� Coder: PCX9 (digigram)

Example 2 for a digitization process of analogue material

A=ANALOGUE,M=stereo,T=StuderA816; SN1007; 38; Agfa_PER528,<CR/LF>

A=PCM,F=48000,W=18,M=stereo,T=NVision; NV1000; A/D,<CR/LF>

A=PCM,F=48000,W=16,M=stereo,T=PCX9;DIO,<CR/LF>

Interpretation of example 2

Line 1

The analogue magnetic tape, type Agfa PER528, was played back on a tape recorder, Studer model
A816, serial No. 1007:

� Tape speed: 38 cm/s

� Mode: stereo

Line 2

The recording was digitized using an A/D converter type NVision NV1000 with:

� Sampling frequency: 48 kHz

� Coding resolution: 18 bits per sample

� Mode: stereo

Line 3

The recording was stored as a BWF file with linear PCM coding using the digital input of a PCX9
interface card with:

� Sampling frequency: 48 kHz

� Coding resolution: 16 bits per sample

� Mode: stereo

14 Rec. ITU-R BR.1352-1

ANNEX 2

Specification of the broadcast wave format with MPEG-1 audio

A FORMAT FOR AUDIO DATA FILES IN BROADCASTING

1 Introduction

This Annex contains the specification for the use of the BWF to carry MPEG audio only signals.
For MPEG audio, it is necessary to add the following information to the basic chunks specified in
the main part of this Recommendation:

� an extension to the format chunk;

� a fact chunk;

� an MPEG_extension chunk.

The extension to the format chunk and the fact chunk are both specified as part of the WAVE
format and the relevant information is given in Appendix 1 to Annex 2.

The specification of the MPEG_extension chunk is given in Section 2 of Annex 2.

The main part of this Recommendation contains the specification of the broadcast audio extension
chunk that is used in all BWF. Information on the basic RIFF format is given in Appendix 1 to
Annex 2.

2 MPEG audio

Microsoft have specified how MPEG audio data can be organized in WAVE files. An extension to
the format chunk and a fact chunk carry further information needed to specify MPEG coding
options. The general principles are given in Appendix 1 to Annex 1 and the details are given in
Appendix 1 to Annex 2. For the MPEG Layer II, it has been found that extra information needs to
be carried about the coding of the signal. This is carried in the <MPEG Audio Extension> chunk,
developed by the MPEG Layer 2 Audio Interest group. This chunk is specified below.

2.1 MPEG audio extension chunk

The MPEG audio extension chunk is defined as follows:

typedef struct {

DWORD ckID; /* (mpeg_extension)ckID=’mext’ */

DWORD ckSize; /* size of extension chunk:

cksize =000C*/

BYTE ckData[ckSize]; /* data of the chunk */

}

 Rec. ITU-R BR.1352-1 15

typedef struct mpeg_audio_extension {

WORD SoundInformation; /* more information about sound */

WORD FrameSize; /* nominal size of a frame */

WORD AncillaryDataLength; /* Ancillary data length */

WORD AncillaryDataDef; /* Type of ancillary data */

CHAR Reserved [4]; /* Reserved for future use; set to
�NULL�*/

} MPEG_EXT ;

Champ Description

SoundInformation 16 bits giving additional information about the sound file:

For MPEG Layer II (or Layer I):

 Bit 0: �1� Homogeneous sound data

 �0� Non homogeneous sound data

Bits 1 and 2 are used for additional information for homogeneous sound
files:

 Bit 1: �0� Padding bit is used in the file so may alternate between
�0� or �1�

 �1� Padding bit is set to �0� in the whole file

 Bit 2: �1� The file contains a sequence of frames with padding bit set
to �0� and sample frequency equal to 22.05 or 44.1 kHz

NOTE 1 � Such a file does not comply with the MPEG standard (clause 2.4.2.3, definition of padding_bit),
but can be regarded as a special case of variable bit rate. There is no need for an MPEG decoder to decode
such a bitstream, as most decoders will perform this function. The bit rate will be slightly lower than that
indicated in the header.

 Bit 3: �1� Free format is used

 �0� No free format audio frame.

FrameSize 16 bit number of bytes of a nominal frame.

 This field has a meaning only for homogeneous files, otherwise it is set
 to �0�.

 If the padding bit is not used, i.e. it remains constant in all frames of the
 sound file, the field <FrameSize> contains the same value as the field
 <nBlockAlign> in the format chunk. If the padding bit is used and
 variable lengths occur in the sound data, <FrameSize> contains the size
 of a frame with the padding bit set to �0�. The length of a frame with the
 padding bit set to �1� is one byte more (four bytes for Layer I), i.e.
 <FrameSize+1>.

 The fact that <nBlockAlign> is set to �1� means variable frame lengths
 (FrameSize or FrameSize+1) with variable padding bit.

16 Rec. ITU-R BR.1352-1

AncillaryDataLength 16-bit number giving the minimal number of known bytes for ancillary
 data in the full sound file. The value is relative from the end of the audio
 frame.

AncillaryDataDef This 16-bit value specifies the content of the ancillary data with:

 Bit 0 set to �1�: Energy of the left channel present in ancillary data

 Bit 1 set to �1�: A private byte, is free for internal use in ancillary data

 Bit 2 set to �1�: Energy of the right channel present in ancillary data

 Bit 3 set to �0�: Reserved for future use for ADR data

 Bit 4 set to �0�: Reserved for future use for DAB data

 Bit 5 set to �0�: Reserved for future use for J 52 data

 Bit 6 to 15 set to �0�: Reserved for future use

NOTES

� The items present in the ancillary data follow the same order as the bit numbers in AncillaryDataDef.
The first item is stored at the end of the ancillary data, the second item is stored just before the first,
etc., moving from back to front.

� For a mono file, bit 2 is always set to �0� and bit 0 concerns the energy of the mono frame.

� For a stereo file, if bit 2 equals �0� and bit 0 equals �1� the energy concerns the maximum of left and
right energy.

� The energy is stored in 2 bytes and corresponds to the absolute value of the maximum sample used
to code the frame. This is a 15-bit value in Big Endian format.

Reserved 4 bytes reserved for future use. These 4 bytes must be set to null. In any
 future use, the null value will be used for the default value to maintain
 compatibility.

APPENDIX 1

TO ANNEX 2

RIFF WAVE (.WAV) file format

This Appendix gives the specification of the extra information necessary for a WAVE file
containing MPEG Audio.

The information in this Appendix is taken from the specification documents of Microsoft RIFF file
format. It is included for information only.

 Rec. ITU-R BR.1352-1 17

1 MPEG-1 audio (audio-only)

1.1 Fact chunk

This chunk is required for all WAVE formats other than WAVE_FORMAT_PCM. It stores file
dependent information about the contents of the WAVE data. It currently specifies the time length
of the data in samples.
NOTE 1 � See also Appendix 1 to Annex 1, § 2.5.

1.2 WAVE format header

#define WAVE_FORMAT_MPEG (0x0050)

typedef struct mpeg1waveformat_tag {

WAVEFORMATEX wfx;

WORD fwHeadLayer;

DWORD dwHeadBitrate;

WORD fwHeadMode;

WORD fwHeadModeExt;

WORD wHeadEmphasis;

WORD fwHeadFlags;

DWORD dwPTSLow;

DWORD dwPTSHigh;

} MPEG1WAVEFORMAT;

Field Description

wFormatTag This must be set to WAVE_FORMAT_MPEG. [0x0050]

nChannels Number of channels in the wave, 1 for mono, 2 for stereo.

nSamplesPerSec Sampling frequency (Hz) of the wave file: 32 000, 44 100, or 48 000 etc.
Note, however, that if the sampling frequency of the data is variable, then
this field should be set to zero. It is strongly recommended that a fixed
sampling frequency be used for desktop applications.

nAvgBytesPerSec Average data rate; this might not be a legal MPEG bit rate if variable bit
rate coding under Layer III is used.

nBlockAlign The block alignment (in bytes) of the data in <data-ck>. For audio
streams that have a fixed audio frame length, the block alignment is equal
to the length of the frame. For streams in which the frame length varies,
<nBlockAlign> should be set to 1.

 With a sampling frequency of 32 or 48 kHz, the size of an MPEG audio
frame is a function of the bit rate. If an audio stream uses a constant bit
rate, the size of the audio frames does not vary. Therefore, the following
formulas apply:

 Layer I: nBlockAlign = 4*(int)(12*BitRate/SamplingFreq)

 Layers II and III: nBlockAlign = (int)(144*BitRate/SamplingFreq)

18 Rec. ITU-R BR.1352-1

Example 1: For Layer I, with a sampling frequency of 32 000 Hz and a bit
rate of 256 kbit/s, nBlockAlign = 384 bytes.

 If an audio stream contains frames with different bit rates, then the length
of the frames varies within the stream. Variable frame lengths also occur
when using a sampling frequency of 44.1 kHz: in order to maintain the
data rate at the nominal value, the size of an MPEG audio frame is
periodically increased by one �slot� (4 bytes in Layer I, 1 byte in
Layers II and III) as compared to the formulas given above. In these two
cases, the concept of block alignment is invalid. The value of
<nBlockAlign> must therefore be set to 1, so that MPEG-aware
applications can tell whether the data is block-aligned or not.

NOTE 1 − It is possible to construct an audio stream that has constant-length audio frames at 44.1 kHz by
setting the padding_bit in each audio frame header to the same value (either 0 or 1). Note, however, that the
bit rate of the resulting stream will not correspond exactly to the nominal value in the frame header, and
therefore some decoders may not be capable of decoding the stream correctly. In the interests of
standardization and compatibility, this approach is discouraged.

WBitsPerSample Not used; set to zero.

CbSize The size in bytes of the extended information after the
WAVEFORMATEX structure. For the standard WAVE _FORMAT_
MPEG format, this is 22 (0x0016). If extra fields are added, this value
will increase.

fwHeadLayer The MPEG audio layer, as defined by the following flags:

 ACM_MPEG_LAYER1 � Layer I.

 ACM_MPEG_LAYER2 � Layer II.

 ACM_MPEG_LAYER3 � Layer III

 Some legal MPEG streams may contain frames of different layers. In this
case, the above flags should be ORed together so that a driver may
determine which layers are present in the stream.

dwHeadBitrate The bit rate of the data, in bits per second. This value must be a standard
bit rate according to the MPEG specification; not all bit rates are valid for
all modes and layers. See Tables 1 and 2. Note that this field records the
actual bit rate, not MPEG frame header code. If the bit rate is variable, or
if it is a non-standard bit rate, then this field should be set to zero. It is
recommended that variable bit rate coding be avoided where possible.

fwHeadMode Stream mode, as defined by the following flags:

 ACM_MPEG_STEREO � stereo.

 ACM_MPEG_JOINTSTEREO � joint-stereo.

ACM_MPEG_DUALCHANNEL � dual-channel (for example, a
bilingual stream).

 ACM_MPEG_SINGLECHANNEL � single channel.

 Rec. ITU-R BR.1352-1 19

Some legal MPEG streams may contain frames of different modes. In this
case, the above flags should be ORed together so that a driver may tell
which modes are present in the stream. This situation is particularly likely
with joint-stereo encoding, as encoders may find it useful to switch
dynamically between stereo and joint-stereo according to the
characteristics of the signal. In this case, both the ACM_MPEG_STEREO
and the ACM_MPEG_JOINTSTEREO flags should be set.

fwHeadModeExt Contains extra parameters for joint-stereo coding; not used for other
modes. See Table 3. Some legal MPEG streams may contain frames of
different mode extensions. In this case, the values in Table 3 may be
ORed together. Note that fwHeadModeExt is only used for joint-stereo
coding; for other modes (single channel, dual channel, or stereo), it should
be set to zero.

 In general, encoders will dynamically switch between the various possible
mode_extension values according to the characteristics of the signal.
Therefore, for normal joint-stereo encoding, this field should be set to
0x000f. However, if it is desirable to limit the encoder to a particular type
of joint-stereo coding, this field may be used to specify the allowable
types.

wHeadEmphasis Describes the de-emphasis required by the decoder; this implies the
emphasis performed on the stream prior to encoding. See Table 4.

fwHeadFlags Sets the corresponding flags in the audio frame header:

 ACM_MPEG_PRIVATEBIT � set the private bit.

 ACM_MPEG_COPYRIGHT � set the copyright bit.

 ACM_MPEG_ORIGINALHOME � sets the original/home bit.

ACM_MPEG_PROTECTIONBIT � sets the protection bit, and
inserts a 16-bit error protection code into each frame.

ACM_MPEG_ID_MPEG1 � sets the ID bit to 1, defining the
stream as an MPEG-1 audio stream. This flag must always be set
explicitly to maintain compatibility with future MPEG audio
extensions (i.e. MPEG-2).

 An encoder will use the value of these flags to set the corresponding bits
in the header of each MPEG audio frame. When describing an encoded
data stream, these flags represent a logical OR of the flags set in each
frame header. That is, if the copyright bit is set in one or more frame
headers in the stream, then the ACM_MPEG_COPYRIGHT flag will be
set. Therefore, the value of these flags is not necessarily valid for every
audio frame.

20 Rec. ITU-R BR.1352-1

dwPTSLow This field (together with the following field) consists of the presentation
time stamp (PTS) of the first frame of the audio stream, as taken from the
MPEG system layer. dwPTSLow contains the 32 LSBs of the 33-bit PTS.
The PTS may be used to aid in the re-integration of an audio stream with
an associated video stream. If the audio stream is not associated with a
system layer, then this field should be set to zero

dwPTSHigh This field (together with the previous field) consists of the presentation
time stamp (PTS) of the first frame of the audio stream, as taken from the
MPEG system layer. The LSB of dwPTSHigh contains the MSB of the
33-bit PTS. The PTS may be used to aid in the re-integration of an audio
stream with an associated video stream. If the audio stream is not
associated with a system layer, then this field should be set to zero.

NOTE 1 � The previous two fields can be treated as a single 64-bit integer; optionally, the dwPTSHigh field
can be tested as a flag to determine whether the MSB is set or cleared.

TABLE 1

Allowable bit rates (bit/s)

MPEG frame
header code Layer I Layer II Layer III

�0000� free format free format free format
�0001� 32000 32000 32000
�0010� 64000 48000 40000
�0011� 96000 56000 48000
�0100� 128000 64000 56000
�0101� 160000 80000 64000
�0110� 192000 96000 80000
�0111� 224000 112000 96000
�1000� 256000 128000 112000
�1001� 288000 160000 128000
�1010� 320000 192000 160000
�1011� 352000 224000 192000
�1100� 384000 256000 224000
�1101� 416000 320000 256000
�1110� 448000 384000 320000
�1111� forbidden forbidden forbidden

 Rec. ITU-R BR.1352-1 21

TABLE 2

Allowable mode-bit rate combinations for Layer II

TABLE 3

Mode extension

Bit rate (bit/s) Allowable modes

32000 single channel
48000 single channel
56000 single channel
64000 all modes
80000 single channel
96000 all modes

112000 all modes
128000 all modes
160000 all modes
192000 all modes
224000 stereo, intensity stereo, dual channel
256000 stereo, intensity stereo, dual channel
320000 stereo, intensity stereo, dual channel
384000 stereo, intensity stereo, dual channel

fwHeadModeExt MPEG frame
header code Layers I and II Layers III

0x0001 �00� sub-bands 4-31 in
intensity stereo

no intensity or MS-stereo
coding

0x0002 �01� sub-bands 8-31 in
intensity stereo intensity stereo

0x0004 �10� sub-bands 12-31 in
intensity stereo MS-stereo

0x0008 �11� sub-bands 16-31 in
intensity stereo

both intensity and MS-stereo
coding

22 Rec. ITU-R BR.1352-1

TABLE 4

Emphasis field

1.3 Flags used in data fields

fwHeadLayer

The following flags are defined for the <fwHeadLayer> field. For encoding, one of these flags
should be set so that the encoder knows what layer to use. For decoding, the driver can check these
flags to determine whether it is capable of decoding the stream. Note that a legal MPEG stream may
use different layers in different frames within a single stream. Therefore, more than one of these
flags may be set.

#define ACM_MPEG_LAYER1 (0x0001)

#define ACM_MPEG_LAYER2 (0x0002)

#define ACM_MPEG_LAYER3 (0x0004)

fwHeadMode

The following flags are defined for the <fwHeadMode> field. For encoding, one of these flags
should be set so that the encoder knows what layer [mode ?] to use; for joint-stereo encoding,
typically the ACM_MPEG_STEREO and ACM_MPEG_JOINTSTEREO flags will both be set so
that the encoder can use joint-stereo coding only when it is more efficient than stereo. For decoding,
the driver can check these flags to determine whether it is capable of decoding the stream. Note that
a legal MPEG stream may use different layers in different frames within a single stream. Therefore,
more than one of these flags may be set.

#define ACM_MPEG_STEREO (0x0001)

#define ACM_MPEG_JOINTSTEREO (0x0002)

#define ACM_MPEG_DUALCHANNEL (0x0004)

#define ACM_MPEG_SINGLECHANNEL (0x0008)

fwHeadModeExt

Table 3 defines flags for the <fwHeadModeExt> field. This field is only used for joint-stereo
coding; for other encoding modes, this field should be set to zero. For joint-stereo encoding, these
flags indicate the types of joint-stereo encoding which an encoder is permitted to use. Normally, an
encoder will dynamically select the mode extension which is most appropriate for the input signal;

wHeadEmphasis MPEG frame header code De-emphasis required

1 �00� no emphasis
2 �01� 50/15 µs emphasis
3 �10� reserved
4 �11� ITU-T Recommendation J.17

 Rec. ITU-R BR.1352-1 23

therefore, an application would typically set this field to 0x000f so that the encoder may select
between all possibilities; however, it is possible to limit the encoder by clearing some of the flags.
For an encoded stream, this field indicates the values of the MPEG mode_extension field which are
present in the stream.

fwHeadFlags

The following flags are defined for the <fwHeadFlags> field. These flags should be set before
encoding so that the appropriate bits are set in the MPEG frame header. When describing an
encoded MPEG audio stream, these flags represent a logical OR of the corresponding bits in the
header of each audio frame. That is, if the bit is set in any of the frames, it is set in the
<fwHeadFlags> field. If an application wraps a RIFF WAVE header around a pre-encoded MPEG
audio bit stream, it is responsible for parsing the bit stream and setting the flags in this field.

#define ACM_MPEG_PRIVATEBIT (0x0001)

#define ACM_MPEG_COPYRIGHT (0x0002)

#define ACM_MPEG_ORIGINALHOME (0x0004)

#define ACM_MPEG_PROTECTIONBIT (0x0008)

#define ACM_MPEG_ID_MPEG1 (0x0010)

1.4 Audio data in MPEG files

The <data chunk> consists of an MPEG-1 audio sequence as defined by the ISO 11172
specification, Part 3 (audio). This sequence consists of a bit stream, which is stored in the data
chunk as an array of bytes. Within a byte, the MSB is the first bit of the stream, and the LSB is the
last bit. The data is not byte-reversed. For example, the following data consists of the first 16 bits
(from left to right) of a typical audio frame header:

syncword ID Layer ProtectionBit …

111111111111 1 10 1 …

This data would be stored in bytes in the following order:

Byte0 Byte1 ...

FF FD ...

1.4.1 MPEG audio frames

An MPEG audio sequence consists of a series of audio frames, each of which begins with a frame
header. Most of the fields within this frame header correspond to fields in the
MPEG1WAVEFORMAT structure defined above. For encoding, these fields can be set in the
MPEG1WAVEFORMAT structure, and the driver can use this information to set the appropriate
bits in the frame header when it encodes. For decoding, a driver can check these fields to determine
whether it is capable of decoding the stream.

1.4.2 Encoding

A driver that encodes an MPEG audio stream should read the header fields in the
MPEG1WAVEFORMAT structure and set the corresponding bits in the MPEG frame header. If
there is any other information that a driver requires, it must get this information either from a
configuration dialogue box, or through a driver callback function. For more information, see the
Ancillary Data section, below.

24 Rec. ITU-R BR.1352-1

If a pre-encoded MPEG audio stream is wrapped with a RIFF header, it is a function of the
application to separate the bit stream into its component parts and set the fields in the
MPEG1WAVEFORMAT structure. If the sampling frequency or the bit rate index is not constant
throughout the data stream, the driver should set the corresponding MPEG1WAVEFORMAT fields
(<nSamplesPerSec> and <dwHeadBitrate>) to zero, as described above. If the stream contains
frames of more than one layer, it should set the flags in <fwHeadLayer> for all layers which are
present in the stream. Since fields such as <fwHeadFlags> can vary from frame to frame, caution
must be used in setting and testing these flags; in general, an application should not rely on them to
be valid for every frame. When setting these flags, adhere to the following guidelines:

� ACM_MPEG_COPYRIGHT should be set if any of the frames in the stream have the
copyright bit set.

� ACM_MPEG_PROTECTIONBIT should be set if any of the frames in the stream have the
protection bit set.

� ACM_MPEG_ORIGINALHOME should be set if any of the frames in the stream have the
original/home bit set. This bit may be cleared if a copy of the stream is made.

� ACM_MPEG_PRIVATEBIT should be set if any of the frames in the stream have the
private bit set.

� ACM_MPEG_ID_MPEG1 should be set if any of the frames in the stream have the ID bit
set. For MPEG-1 streams, the ID bit should always be set; however, future extensions of
MPEG (such as the MPEG-2 multi-channel format) may have the ID bit cleared.

If the MPEG audio stream was taken from a system-layer MPEG stream, or if the stream is intended
to be integrated into the system layer, then the PTS fields may be used. The PTS is a field in the
MPEG system layer that is used for synchronization of the various fields. The MPEG PTS field is
33 bits, and therefore the RIFF WAVE format header stores the value in two fields: <dwPTSLow>
contains the 32 LSBs of the PTS, and <dwPTSHigh> contains the MSB. These two fields may be
taken together as a 64-bit integer; optionally, the <dwPTSHigh> field may be tested as a flag to
determine whether the MSB is set or cleared. When extracting an audio stream from a system layer,
a driver should set the PTS fields to the PTS of the first frame of the audio data. This may later be
used to re-integrate the stream into the system layer. The PTS fields should not be used for any
other purpose. If the audio stream is not associated with the MPEG system layer, then the PTS
fields should be set to zero.

1.4.3 Decoding

A driver may test the fields in the MPEG1WAVEFORMAT structure to determine whether it is
capable of decoding the stream. However, the driver must be aware that some fields, such as the
<fwHeadFlags> field, may not be consistent for every frame in the bit stream. A driver should
never use the fields of the MPEG1WAVEFORMAT structure to perform the actual decoding. The
decoding parameters should be taken entirely from the MPEG data stream.

A driver may check the <nSamplesPerSec> field to determine whether it supports the sampling
frequency specified. If the MPEG stream contains data with a variable sampling rate, then the
<nSamplesPerSec> field will be set to zero. If the driver cannot handle this type of data stream, then
it should not attempt to decode the data, but should fail immediately.

 Rec. ITU-R BR.1352-1 25

1.5 Ancillary data

The audio data in an MPEG audio frame may not fill the entire frame. Any remaining data is called
ancillary data. This data may have any format desired, and may be used to pass additional
information of any kind. If a driver wishes to support the ancillary data, it must have a facility for
passing the data to and from the calling application. The driver may use a callback function for this
purpose. Basically, the driver may call a specified callback function whenever it has ancillary data
to pass to the application (i.e. on decode) or whenever it requires more ancillary data (on encode).

Drivers should be aware that not all applications will want to process the ancillary data. Therefore, a
driver should only provide this service when explicitly requested by the application. The driver may
define a custom message that enables and disables the callback facility. Separate messages could be
defined for the encoding and decoding operations for more flexibility.

Note that this method may not be appropriate for all drivers or all applications; it is included only as
an illustration of how ancillary data may be supported.

NOTE 1 � More information on the ancillary data is contained in the <MPEG_Audio_Extension chunk>
which should be used for MPEG files conforming to the Broadcast Wave format. See Section 2 of the main
body of Annex 2.

References

ISO/IEC 11173-3: MPEG 1.

ISO/IEC 13818-3: MPEG 2.

NOTE 1 � Microsoft documents are available at the following Internet address:
http://www.microsoft.com.

ANNEX 3

Specification of the BWF

A format for audio data files in broadcasting

METADATA SPECIFICATIONS

1 Introduction

This Annex contains the specification for the use of the BWF to carry information on the audio
material gathered and computed by a DAW (see Fig. 2). The BWF file is used as a
platform-independent container for the sound signal and all the relevant metadata. The receiving
archive server is able to extract the required information from the file and use it as necessary; for
example, enter it into the database etc. (see Fig. 3).

http://www.microsoft.com./

26 Rec. ITU-R BR.1352-1

1352-02BWF file

Header Metadata Audio data

Platform independent

Quality data

Cue sheet data

Coding history

Content data

Migration data

FIGURE 2
Data gathering by a workstation into the BWF file

Database

1352-03BWF file

Header Metadata Audio data

Platform independent

Cue sheet data

Quality data

Coding history

Content data

FIGURE 3
Receiving archive server extracting data from the BWF file

Database

This Annex specifies a new chunk to carry the information not already present in a basic BWF file
and also specifies how existing chunks in the BWF should be used.

Care should be taken when BWF files containing quality reports are edited. If an editing system
combines more than one BWF file, the edit decision list (EDL) should point to appropriate parts of
the coding history and quality chunks of each BWF source file. Furthermore, if a new file is
rendered from parts of other files, a new coding history and quality chunk should be produced for
the new file.

 Rec. ITU-R BR.1352-1 27

2 Capturing report

To safeguard original analogue or digital single carriers held archives, it is important to re-record
the original sound signal at full quality into the BWF files. A capturing report contains information
on the whole processing chain from the analogue to digital domain, or for transfers from within the
digital domain (e.g. from CD or DAT).

The capturing report is laid down, together with data from the analysis of the audio signal, as part of
the metadata of the BWF file.

The capturing report consists of three parts:

� CodingHistory field in the <bext> chunk of the BWF file. This contains details of the whole
transmission chain, e.g. from the type of magnetic tape, compact disc or DAT cassette
through to BWF file (history of the sound signal).

� The Quality Report in the <qlty> chunk. This contains information describing all relevant
events affecting the quality of the recorded sound signal in the wave data chunk. Each
event, whether recognized by the operator or the computer, is listed with details of the type
of event, exact time stamps, priority and event status. Overall quality parameters, etc. are
also reported.

� The Cue Sheet in the <qlty> chunk is a list of events marked with exact time stamps and
further description of the sound signal, e.g. the beginning of an aria or the starting point of
an important speech. Thus archivists are able to complete the metadata of the database with
computer aided tools.

2.1 Syntax of the capturing report

� The capturing report consists of strings of ASCII (ISO 646) [ISO/IEC, 1991] characters
arranged in rows of up to 256 characters.

� Each row should be terminated by <CR/LF> (ASCII 0Dh, 0Ah).

� A row may contain one or more variable strings separated by commas (ASCII 2Bh).

� Variable strings are in ASCII characters and should contain no commas.

� Semicolons (ASCII 3Bh) should be used as separators within variable strings.

3 CodingHistory field in the <bext> chunk

The strings used in the coding history field are specified in Appendix 2 to Annex 1. This infor-
mation is repeated below for convenience.

A=<ANALOGUE, ���..> Information about the analogue sound signal path
A=<PCM, .������...> Information about the digital sound signal path
F=<48000, 441000, etc.> Sampling frequency [Hz]
W=<16, 18, 20, 22, 24, etc.> Word length [bits]
M=<mono, stereo, 2-channel> Mode
T=<free ASCII-text string> Text for comments

28 Rec. ITU-R BR.1352-1

4 Quality Chunk
The Quality Chunk is defined in the italic text in § 4.1:

4.1 Elements of the Quality Chunk

FileSecurityReport: This field contains the FileSecurityCode of QualityChunk.
 It is a 32-bit value which contains the checksum [0231].

FileSecurityWave: This field contains the FileSecurityCode of BWF Wave data.
 It is a 32-bit value which contains the checksum [0231].

Quality-chunk typedef struct {
 DWORD ckID; /* (quality-chunk) cklD='qlty' */
 DWORD ckSize; /* size of quality chunk */
 BYTE ckData[ckSize]; /* data of the chunk */
}

typedef struct quality_chunk {
DWORD FileSecurityReport; /* FileSecurityCode of quality report */
DWORD FileSecurityWave; /* FileSecurityCode of BWF wave data */
CHAR BasicData[]; /* ASCII: « Basic data » */
CHAR StartModulation[] ; /* ASCII: « Start modulation data » */
CHAR QualityEvent[]; /* ASCII: « Quality event data » */
CHAR EndModulation[]; /* ASCII: « End modulation data » */
CHAR QualityParameter[] /* ASCII: « Quality parameter data » */
CHAR OperatorComment[]; /* ASCII: « Comments of operator » */
CHAR CueSheet[]; /* ASCII: « Cue sheet data » */
} quality-chunk

BasicData: Basic data of capturing.

B= ASCII string containing basic data about the sound material.

Archive No. (AN): Archive number (maximum 32 characters).

Title (TT): Title/Take of the sound data (maximum 256 characters).

Duration (TD): 10 ASCII characters containing the time duration of the sound sequence.

 Format: « hh:mm:ss:d »
 Hours hh: 0�23
 Minutes mm: 0�59
 Seconds ss: 0�59
 1/10s d: 0�9

Date (DD): 10 ASCII characters containing the date of digitization.

 Format: « yyyy:mm:dd »
 Year yyyy: 0000...9999
 Month mm: 0...12
 Day dd: 0�31

Operator (OP): ASCII string (maximum 64 characters) containing the name of the person
carrying out the digitizing operation.

 Rec. ITU-R BR.1352-1 29

Copying station (CS): ASCII string (maximum 64 characters) containing the type and serial No.
of the workstation used to create the file.

StartModulation: Start of modulation (SM) of the original recording.

SM= 10 ASCII characters containing the starting time of the sound signal from
the start of the file.

 Format: « hh:mm:ss:d »
 Hours hh: 0�23
 Minutes mm: 0�59
 Seconds ss: 0�59
 1/10 s d: 0�9

Sample count (SC): Sample address code of the SM point from the start of the file
(hexadecimal start of modulation).

 Format: « ########H »

 0H�.. FFFFFFFFH (0�.. 4.295 × 109)

Comment (T): ASCII string containing comments.

OualityEvent Information describing each quality event in the sound signal. One
QualityEvent string is used for each event.

Q= ASCII string (maximum 256 characters) containing quality events.

Event number (M): Numbered mark originated manually by operator.

 Format: « M### » ###: 001...999

Event number (A): Numbered mark originated automatically by system.

 Format: « A### » ###: 001�999

Priority (PRI): Priority of the quality event

 Format: « # » #: 1 (LO)�� 5 (HI)

Time stamp (TS): _ 10 ASCII characters containing the time stamp of the quality event from
the start of the file.

 Format: « hh:mm:ss:d »
 Hours hh: 0�23
 Minutes mm: 0�59
 Seconds ss: 0�59
 1/10 s d: 0�9

Event type (E): ASCII string (maximum 16 characters) describing the type of event,

 e.g. �Click�, �AnalogOver�, �Transparency� or

 QualityParameter (defined below) exceeding limits,

 e.g. �QP:Azimuth:L-20.9smp�.

Status (S): ASCII string (maximum 16 characters) containing the processing status of
the event,

 e.g. �unclear�, �checked�, �restored�, �deleted�.

Comment (T): ASCII string containing comments.

30 Rec. ITU-R BR.1352-1

Sample count (SC): Sample address code of the TS point from the start of the file
(hexadecimal ASCII).

 Format: « ########H »

 0H�� FFFFFFFFH (0�� 4.295 × 109)

QualityParameter Quality parameters (QP) describing the sound signal.

P= ASCII string (maximum 256 characters) containing quality parameters.

Parameters (QP): MaxPeak: �xx.x dBFSL;�yy.y dBFSR [�99.9��00.0]

 MeanLevel: �xx.x dBFSL;�yy.y dBFSR [�99.9��00.0]

 Correlation: ±x.x [�1.0�.�+1.0]

 Dynamic: xx.x dBL; yy.y dBR [00.0�.� 99.9]

 (Dynamic range)

 ClippedSamples: xxxx smpL; yyyy smpR [0�..��9999]

 SNR: xx.x dBL; yy.y dBR [00.0�.�.99.9]

 (Signal-to-noise-ratio)

 Bandwidth: xxxxx HzL; yyyyy HzR [0.��...20000]

 Azimuth: L±xx.x smp [�99.9.�+99.9]

 Balance: L±x.x dB [�9.9��.+9.9]

 DC-Offset: x.x %L; y.y %R [0.0���..9.9]

 Speech: xx.x% [0.0���99.9]

 Stereo: xx.x% [0.0���99.9]

 (L = left channel, R = right channel)

Quality factor (QF): Summary quality factor of the sound file [1�� 5 (best), 0 = undefined]

Inspector (IN): ASCII string (maximum 64 characters) containing the name of the person
inspecting the sound file.

File status (FS): ASCII character string describing the status �Ready for transmission?�.

 [Y(es) / N(o) / U: File is ready/not ready/FS is undefined].

OperatorComment Operator comments.

T= ASCII string (maximum 256 characters) containing comments.

EndModulation End of modulation.

EM= 10 ASCII characters containing the end of modulation time of the sound
signal.

 Format: « hh:mm:ss:d »
 Hours hh: 0�23
 Minutes mm: 0�59
 Seconds ss: 0�59
 1/10 s d: 0�9

 Rec. ITU-R BR.1352-1 31

Sample count (SC): Sample address code of the EM point (hexadecimal ASCII).

 Format: « ########H »

 0H��FFFFFFFFH (0��4.295 × 109)

Comment (T): ASCII string containing comments.

CueSheet Cue sheet data

C= ASCII string (maximum 256 characters) containing cue points.

Cue number (N): Number of cue point automatically originated by the system.

 Format: «N###» ###: 001...999

Time stamp (TS): 10 ASCII characters containing the time stamp of the cue point.

 Format: « hh:mm:ss:d »
 Hours hh: 0�23
 Minutes mm: 0�59
 Seconds ss: 0�59
 1/10 s d: 0�9

Text (T): ASCII string containing describing comments of the cue point

 e.g. �Beginning of an aria�.

Sample count (SC): Sample address code of the TS point (hexadecimal ASCII)

 Format: « ########H »

 0H�� FFFFFFFFH (0�4.295 × 109)

5 Examples of capturing reports

5.1 Digitization process of analogue material

(basic information contained in CodingHistory field of the <bext> chunk)

Line

01 A=ANALOGUE, M=stereo, T=Studer A816; SN1007; 38; No./telcom; Agfa PER528
 <CR/LF>

02 A=PCM, F=48000, W=18, M=stereo, T=NVision NV 1000; A/D<CR/LF>

03 A=PCM, F=48000, W=16, M=stereo, T=nodither; DIO<CR/LF>

(QualityReport in the quality chunk)

Line No.

01 <FileSecurityReport>

02 <FileSecurityWave>

03 B=CS=QUADRIGA2.0; SN10012, OP=name of operator<CR/LF>

04 B=AN=archive number, TT=title of sound<CR/LF>

32 Rec. ITU-R BR.1352-1

05 B=DD= yyyy:mm:dd, TD=hh:mm:ss:d<CR/LF>

06 SM=00:00:04:5, T=tape noise changing to ambience, SC=34BC0H<CR/LF>

07 Q=A001, PRI=2, TS=00:01:04:0, E=Click, S=unclear, SC=2EE000H<CR/LF>

08 Q=A002, PRI=3, TS=00:12:10:3, E=DropOut, S=checked, SC=216E340H<CR/LF>

09 Q=A003, PRI=4, TS=00:14:23:0, E=Transparency, S=checked, SC=2781480H<CR/LF>

10 Q=M004, PRI=1, TS=00:18:23:1, E=PrintThrough, S=checked, SC=327EF40H<CR/LF>

11 Q=A005, PRIG, TS=00:20:01:6, E=Click0n, S=unclear, T=needs restoration,
 SC=3701400H<CR/LF>

12 Q=A006, PRI=5, TS=00:21:20:3, E=QP:Azimuth:L=�20.9smp, S=unclear,
 SC=3A9B840H<CR/LF>

13 Q=A007, PRI=3, TS=00:21:44:7, E=AnalogOver, S=checked, SC=3BB9740H<CR/LF>

14 Q=A008, TS=00:22:11:7, E=C1ickOff, SC=3BB9740H<CR/LF>

15 Q=A009, PRI=1, TS=00:28:04:0, E=DropOut, S=deleted, SC=4D16600H<CR/LF>

16 EM=00:39:01:5, T=fade-out of applause, SC=6B2F740H<CR/LF>

17 P=QP:MaxPeak:�2. 1dBFSL;�2.8dBFSR<CR/LF>

18 P=QP:MeanLevel:�11.5dBFSL; 8.3dBFSR<CR/LF>

19 P=QP:Correlation:+0.8<CR/LF>

20 P=QP:Dynamic:51.4dBL;49.6dBR<CR/LF>

21 PAP:ClippedSamples:OsmpL;OsmpR<CR/LF>

22 P=QP:SNR:32.3dBL;35.1dBR<CR/LF>

23 P=QP:Bandwidth:8687HzL;7943HzR<CR/LF>

24 P=QP:Azimuth:L�6.2smp<CR/LF>

25 P=QP:Balance L:+2.1dB<CR/LF>

26 P=QP:DC-Offset:0.0%L;0.0%R<CR/LF>

27 P=QP:Speech:64.2%<CR/LF>

28 P=QP:Stereo:89.3%<CR/LF>

29 P=QF=2<CR/LF>

30 P=IN=name of inspector<CR/LF>

31 P=FS=N<CR/LF>

(CueSheet in the quality chunk)

Line No.

32 C=N001, TS=00:17:02:5, T=beginning of speech, SC=2ECE6C0 H<CR/LF>

33 C=N002, TS=00:33:19:2, T=start of aria, SC=5B84200H<CR/LF>

 Rec. ITU-R BR.1352-1 33

Interpretation of Example 1

(basic information in the CodingHistory)

Line 1: The analogue magnetic tape type Agfa PER528 is played back on a tape recorder
 Stude A816 with serial No. 1007 using a telcom expander:

 Tape speed: 38 cm/s
 Mode: stereo

Line 2: For the digitization an A/D converter type NVision NV 1000 is used with:

 Sampling frequency: 48 kHz
 Coding resolution: 18 bits per sample
 Mode: stereo

Line 3: The original file is recorded as a linear BWF file with PCM coding using the digital
 input of the re-recording station without dithering:

 Sampling frequency: 48 kHz
 Coding resolution: 16 bits per sample
 Mode: stereo

(QualityReport in the quality chunk)

Line 1 to 2: File security codes of quality chunk and wave data.

Line 3 to 5: Re-recording station QUADRIGA2.0 with serial No. 10012 is used by the
 operator

 (OP). The tape has the archive number (AN) and the title (TT) and was digitized
 on date.

 (DD). The duration of the sound signal in the BWF is (TD).

Line 6: Start of modulation (SM) at time stamp (TS) and sample count (SC) with
 comment (T).

Line 7 to 15: Events (E) recognized by operator (M) and/or system control (A) with priority
 (PRI) and at time stamp (TS). The event status (S) and comments (T) give further
 information. The sample count (SC) gives the precise time stamp.

Line 16: End of modulation (EM) at time stamp and sample count (SC) with comment (T).

Line 17 to 28: Quality parameters (QP) of the complete sound signal in the wave data chunk.

Line 29 to 31: Summary quality factor (QF) given by the automatic system control and the name
 of the inspector (IN), and the decision (FS) whether the quality of the sound file is
 �ready for transmission�.

(CueSheet in the quality chunk)

Line 32 to 33: Cue points mark the beginning of a speech and the starting point of an aria.

34 Rec. ITU-R BR.1352-1

5.2 Capturing process of a compact disc

(basic information in CodingHistory field of the <bext> chunk)

Line No.

01 A=PCM, F=44100, W=16, M=stereo, T=SonyCDP-D500; SN2172;
Mitsui CD-R74<CR/LF>

02 A=PCM, F=48000, W=24, M=stereo, T=DCS972; D/D<CR/LF>

03 A=PCM, F=48000, W=24, M=stereo, T=nodither;DIO<CR/LF>

(QualityReport in the quality chunk)

Line No.

01 <FileSecurityReport>

02 <FileSecurityWave>

etc: similar to the example in § 5.1 above.

(CueSheet in the quality chunk)

similar to the example in § 5.1 above.

Interpretation of Example 2

(basic information in the CodingHistory)

Line 1: A CD recordable type Mitsui CD-R74 is played back on a CD player Sony
CDP-D500 with serial No. 2172:

 Sampling frequency: 44.1 kHz
 Coding resolution: 16 bits per sample
 Mode: stereo

Line 2: A sample rate converter type DCS972 is used with:
 Sampling frequency: 48 kHz (from 44.1 kHz)
 Coding resolution: 24 bits per sample
 Mode: stereo

Line 3: The original file is recorded as a linear BWF file with PCM coding using the digital
input of the re-recording station without dithering:

 Sampling frequency: 48 kHz
 Coding resolution: 24 bits per sample
 Mode: stereo

(QualityReport in the quality chunk)

Line 1 to 2: File security codes of quality chunk and wave data.

The other data are used according to the CD capturing process similar to Example 1 in § 5.1 above.

(CueSheet in the quality chunk)

The cue sheet data are used according to the compact disc capturing process similar to Example 1
in § 5.1 above.

 Rec. ITU-R BR.1352-1 35

5.3 Capturing process of a DAT cassette

(basic information in CodingHistory field of the <bext> chunk)
Line No.

01 A=PCM, F=48000, W=16, M=stereo, T=SonyPCM-8500; SN1037; TDKDA-R120
<CR/LF>

02 A=PCM, F=48000, W=16, M=stereo, T=no dither; DIO<CR/LF>

(QualityReport in the quality chunk)
Line No.

01 <FileSecurityReport>

02 <FileSecurityWave>

etc: similar to the example in § 5.1 above.

(CueSheet in the quality chunk)
similar to the example in § 5.1 above.

Interpretation of Example 3

(basic information in the CodingHistory)
Line 1: A DAT cassette type TDK DA-8120 is played back on a DAT recorder Sony
 PCM-8500 with serial No. 1037:

 Sampling frequency: 48 kHz
 Coding resolution: 16 bits per sample
 Mode: stereo

Line 2: The original file is recorded as a linear BWF file with PCM coding using the
 digital input of the re-recording station without dithering:

 Sampling frequency: 48 kHz
 Coding resolution: 16 bits per sample
 Mode: stereo

(QualityReport in the quality chunk)
Line 1 to 2: File security codes of quality chunk and wave data.

The other data are used according to the DAT cassette capturing process similar to Example 1
in § 5.1 above.

(CueSheet in the quality chunk)
The cue sheet data are used according to the DAT cassette capturing process similar to Example 1
in § 5.1 above.

Reference
ISO/IEC 646:1991: Information technology � ISO 7-bit coded character set for information interchange

(available in English only).

	RECOMMENDATION ITU-R BR.1352-1 - File format for the exchange of audio programme materials with metadata ...
	ANNEX 1 - Specification of the broadcast wave format - A format for audio data files in broadcasting
	1 Introduction
	2 Broadcast wave format file
	2.1 Contents of a broadcast wave format file
	2.2 Existing chunks defined as part of the RIFF standard
	2.3 Broadcast audio extension chunk
	2.4 Other information specific to applications

	APPENDIX 1 TO ANNEX 1 - RIFF WAVE (.WAV) file format
	1 Waveform audio file format (WAVE)
	1.1 WAVE format chunk
	1.2 WAVE format categories

	2 PCM format
	2.1 Data packing for PCM WAVE files
	2.2 Data format of the samples
	2.3 Examples of PCM WAVE files
	2.4 Storage of WAVE data
	2.5 Fact chunk
	2.6 Other optional chunks

	3 Other WAVE types
	3.1 General information
	3.2 Fact chunk

	APPENDIX 2 TO ANNEX 1 - Specification of the format for <CodingHistory> field
	ANNEX 2 - Specification of the broadcast wave format with MPEG-1 audio
	1 Introduction
	2 MPEG audio
	2.1 MPEG audio extension chunk

	APPENDIX 1 TO ANNEX 2 - RIFF WAVE (.WAV) file format
	1 MPEG-1 audio (audio-only)
	1.1 Fact chunk
	1.2 WAVE format header
	1.3 Flags used in data fields
	1.4 Audio data in MPEG files
	1.5 Ancillary data

	References
	ANNEX 3 - Specification of the BWF - A format for audio data files in broadcasting
	1 Introduction
	2 Capturing report
	2.1 Syntax of the capturing report

	3 CodingHistory field in the <bext> chunk
	4 Quality Chunk
	4.1 Elements of the Quality Chunk

	5 Examples of capturing reports
	5.1 Digitization process of analogue material
	5.2 Capturing process of a compact disc
	5.3 Capturing process of a DAT cassette

	Reference

