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RECOMMENDATION ITU-R BO.1212

Calculation of total interfer ence between
geostationary-satellite networksin the
broadcasting-satellite service

(1995)

The ITU Radiocommunication Assembly,
considering

a) that successful implementation of satellite systems in the World Administrative Radio
Conference for the Planning of the Broadcasting-Satellite Service (Geneva, 1977) (WARC BS-77)
and the First Session of the World Administrative Radio Conference on the Use of the
Geostationary-Satellite Orbit and the Planning of the Space Services Utilizing It (WARC ORB-85)
broadcasting-satellite service (BSS) plans is dependent upon accurate calculation of mutual
interference between satellite networks;

b) that geodtationary-satellite networks in the BSS operate in the same frequency bands;

C) that interference between networks in the BSS contributes to noise in the network;

d) that it is necessary to protect a network in the BSS from interference by other source
networks,

€) that, due to increased orbit occupancy, the detailed estimation of mutual interference

between satellite networks, requires more accurate values of polarization discrimination in order to
take account of the use of different or identical polarizations by wanted and interfering systems,

recommends

1 that to calculate the total interference between two satdllite networks considered, the
method described in Annex 1 should be used.

ANNEX 1

Calculation of total interference

When evaluating the power produced at a given point by a single satellite (downlink) or at a given
satellite location by an earth-station transmitter (uplink) the concept of an equivalent gain for each
partial link may be employed.

* Radiocommunication Study Group 6 made editorial amendments to this Recommendation in 2001 in
accordance with Resolution ITU-R 44.
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There are two antennas involved in each partial link, and these have both co-polar and cross-polar
transmission and reception characteristics. In addition, atmospheric propagation effects, represented
principally by co-polar attenuation and cross-polar discrimination, influence the net signal level.

The equivalent gain (as a power ratio) for one partial link can be represented by the following
approximation:

G=Glcoszﬁ+Gz sinZB
Gy =Gyp Grp A+ Gy Gre A+Gyp Gic AX +Gyc Grp AX (D

2
Gy =\/Gip Gre A+1/Grg Grp A +Gip Grp AX +Grg Gy AX

where;

B: for linear polarization, is the relative alignment angle between the received
signal polarization plane and the plane of polarization of the receive antenng;

for circular polarization, § = 0° is assumed to correspond to co-polar
transmission and reception and 3 = 90° is assumed to correspond to mutually
cross-polarized transmission and reception;

for cases of differing polarizations (e.g. linearly polarized wanted receive
antenna and circularly polarized interfering transmissions, or vice versa),
B =45°

Gtp: co-polar gain characteristic of the transmit antenna expressed as a power ratio
(Recommendation ITU-R BO.652)

Gtc: cross-polar gain characteristic of the transmit antenna expressed as a power
ratio

Grp: co-polar gain characteristic of the receive antenna expressed as a power ratio
(Recommendation ITU-R BO.652)

Grc:  cross-polar gain characteristic of the receive antenna expressed as a power ratio
A: co-polar attenuation on the interfering partial link (as a power ratio < 1)
X: cross-polar discrimination on the interfering partial link (as a power ratio < 1)

X = 10—0.1{30|og f —40log (cos &) — 20l0g (<10log A)] for 5° < ¢ < 60°

where:
f:  frequency (GHz)

€s: satellite elevation angle as seen from the earth station (degrees).

For e5> 60°, use es= 60° in calculating the value of X.

(See Appendix 1 for derivation of the relative alignment angle, f3.)

In the expression for G1, power summation of the terms is assumed throughout. Near the main axis
of the wanted transmission, a voltage addition of the first two terms may be more appropriate due to
phase alignment while away from this axis random effects dictate power addition. However, since
the second term is insignificant near this axis the assumption of power addition does not
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compromise the approximation. Atmospheric depolarization is a random effect thus the last two
terms are power summed.

In the expression for Gy, voltage addition of the first two terms is assumed since, near axis, either
term could be dominant and phase alignment of these terms would dictate voltage addition. Away
from this main axis the third and fourth terms become the dominant contribution; thus, although a
power addition of the first two terms is warranted, in this region as for the Gy discussion, the
validity of the assumed model is not unduly compromised by maintaining voltage addition in all
regions. Since the transition from voltage addition near axis to power addition off-axis is nebulous,
the above expressions, in view of the arguments presented, would appear to be a reasonable
compromise between accuracy and simplicity.

Using the equivalent gain concept, the wanted carrier power, C, or the single-entry interfering
power, |1, on each partial link is simply given by:

C(Or|)=PT—L|:5—LCA+G dBw (2)

where;

Pr: wanted (interfering) transmitting antenna power (dBW)

Lrs: free-space loss on the wanted (interfering) link (dB)

Lca: clear-air absorption on the wanted (interfering) link (dB)

G: equivalent gain on the wanted (interfering) link (dB).

The aggregate interference power is obtained by adding the powers so calculated for all interferers.
The ratio of the desired signal power to the aggregate interference power is the downlink aggregate
carrier-to-interference ratio, C/I. The up-link aggregate interference power and C/I are obtained in a
similar way, and the two aggregate values of C/I are then combined to obtain the tota

aggregate C/I.

If the ratio of the wanted carrier power to the power of an interfering signal, where both powers are
calculated using equation (2), is to be evaluated for the worst case, such parameters as satellite
station-keeping tolerances, satellite antenna pointing errors, and propagation conditions must be
taken into account. The station-keeping and satellite transmit-antenna beam errors which should be
included are those which result in the lowest receive level of the wanted signal and the highest
receive level of the interfering satellite signal. When the interfering satellite is at a lower elevation
angle than the wanted satellite, worst-case interference conditions usually occur during clear-sky
operation. Conversely, if the interfering satellite is a a higher elevation angle, worst-case
interference usually occurs during heavy rain conditions.
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APPENDIX 1

TO ANNEX 1

Derivation of therelative alignment angle B for linear polarization

This Appendix defines the polarization angle of a linearly polarized radiowave and outlines the
method for calculating polarization angles and relative alignment angles for both the downlink and
feeder link interference cases. Calculation of relative alignment angles are necessary for
determining the equivalent gain as defined by equation (1).

1 Definition of principle and cross-polarized components of a linearly
polarized radiowave

In general, the polarization of a radiated electromagnetic wave in a given direction is defined to be
the curve traced by the instantaneous electric field vector, a a fixed location and at a given
frequency, in a plane perpendicular to the direction of propagation as observed along the direction
of propagation. When the direction is not stated, the polarization is taken to be the polarization in
the direction of maximum gain. In practice, polarization of the radiated energy varies with the
direction from the centre of the antenna, so that different parts of the pattern may have different
polarizations. Polarization may be classified as linear, circular or elliptical. If the vector that
describes the electric field at a point in space as a function of time is always directed along a line,
the field is said to be linearly polarized. In the most general case, the figure that the electric field
tracesis an ellipse, and the field is said to be elliptically polarized. Linear and circular polarizations
are special cases of elliptical when the ellipse becomes a straight line or a circle, respectively. For
the interference calculations, we are interested in the far-field polarization of the antenna where the
E-field component in the direction of propagation is negligible so that the net electric field vector
can be resolved into two (time-varying) orthogonal components that lie in a plane normal to the
outward radial direction of propagation. In the case of linear polarization, the reference directions of
these orthogonal components must first be defined before one can define a polarization angle. One
of these reference directions is designated as the principle or main polarization component direction
while the orthogonal reference direction is designated as the cross-polarization component
direction. Surprisingly, there is no universally accepted definition for these reference directions.
Some alternative definitions of principle and cross-polarization component directions are discussed
in Arthur C. Ludwig’s paper, “The Definition of Cross Polarization”, in the |EEE Transactions on
Antennas and Propagation, January 1973. In his paper, Ludwig derives expressions for the unit
vectors for three different cross-polarization definitions in terms of a spherical antenna pattern
coordinate system, which is the coordinate system usually adopted for antenna measurements. We
briefly describe these three definitions below. In this Appendix the unit vector up represents the
reference direction for the principle polarization component of the electric field vector while uc
represents the direction of the cross-polarized component. It is helpful to first review the
transformation of vectors among rectangular, cylindrical and spherical coordinate systems.
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11 Vector transformation among rectangular, cylindrical and spherical coordinate
systems

Figure 1 shows the three coordinate systems and their associated unit vectors. The transformation
matrix for transforming a vector A in rectangular components (Ax, Ay, Az to cylindrical compo-
nents (Ap, Ag, Az) is.

cosg sne O
Mic=|-sing cos¢ O 3
0 0 1

The transformation matrix for transforming a vector A in cylindrical components (Ap, Ag, A7) t0
spherical components (Ar, Ag, Ag) isgiven by:

sno O cos 0
Mcg=|cos® O —sin6 (4)
0 1 0

The transformation matrix for transforming a vector A in rectangular components (Ax, Ay, Az) to
spherical components (Ar, Ag, Ag) isthen:

snbcose snOsne  cos6O
Mig=McgM;c=|cosbcos¢ cosBsng —sin® 5)
—-sino Cos @ 0

so that, in terms of components:

A snécose sSnoOsng cosO || Ag
Ag |=|cosBcose cosBsing —sinB|| Ay (6)
Ap —-sino Cos @ 0 A,

Because the matrix is orthogonal, the transformation matrix for transforming from spherical (Ar, Ag,
Ag) to rectangular (Ax, Ay, Az) components is simply the transposed matrix:

snbcose cosOcose —sin@
Mg =[sinfsing cosOsing  cos@ @)
cos O —-sin® 0

S0 that:

Ay snbcose cosOcose —sno|| A
Ay |=|sinBsing cosbsne  cose || Ay (8
A, cos6 —-sin6 0 || Ap
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The unit vectors ur, ug, and ug of the spherical coordinate system are in spherical coordinates

1 0
u =0 ug=|1| uyp=|0 9
0 1
sin 6 cos @ cos6 cos@ —-sino
U =|sin@sing | ug=|cosBsing| Uuy=| COS® (10)
cos6 —-sin® 0

in rectangular coordinates.

1.2 Alternative definitions of principal polarization and cross-polarization reference
directions

Ludwig describes three definitions for the cross polarization by deriving unit vector iref and icross
(which we have renamed up and uc) such that the dot product of the electric field vector E (t, 6, ¢)
along some direction (0, ¢) in the far-field antenna pattern with these unit vectors defines the
principal and cross-polarization components, respectively. In the direction specified by the spherical
coordinate angles (6, ¢), the principal and cross-polarization components of the electric field vector
aretherefore given by:

Ep(6,.9 =E-up Ec(6,0)=E-uc (11)

(Notethat, in general, E, up and uc will themselves vary with 6 and ¢.)

Figure 2 illustrates the polarization patterns corresponding to the three definitions for the case in
which the antenna is transmitting horizontal polarization along its main beam axis.

In the first definition, the reference unit vector up is simply taken to be one of the rectangular basis
vectors of the antenna pattern coordinate system while uc is another one of the basis unit vectors.
For example, we can define:

Up = Ya Uc = Xa (12)
where y; and x5 are unit vectors in the positive y and x directions.

From the transformation matrices above the spherical coordinate components of these vectors are
given by:

Up =Yg =SiNB-SN@" Uy +COSO"SINQ " Ug +COS P Ug (13)
Uc = Xa =SINO-COSQ " Uy +COSO - COSQ* Ug —SiN ¢ U (14

Ludwig notes that this definition leads to inaccuracies, since in practice, the polarization of the
radiated field does vary with direction from the centre of the antenna and that the far-field of the
antenna is not planar, but tangent to a spherical surface. Ludwig’s second and third definitions of
polarization therefore involve unit vectors which are tangent to a sphere. In his second definition,
the principle polarization direction is chosen to be one of the spherical coordinate unit vectors while
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the cross-polarization direction is chosen to be one of the other spherical unit vectors. For example,
we can choose:

Up = Ug Uc = Ug (25)

In Ludwig’s third definition, the principal and cross-polarization component directions are defined
according to how one usually measures the polarization pattern of an antenna. The standard
measurement method is described in Fig. 3. The probe polarization angle B (angle between ug
and up) is measured from u,, towards ug. In the case where the transmitted field is linear horizontal
polarization (i.e. in the +y direction) along the boresight (6 = 0°), B turns out to be equal to ¢.
Therefore the principal and cross-polarization components in the direction (6,¢) are given by:

Ep(t)=E(t) - up Ec(t)=E(t) - uc (16)
so that the electric field E (t), in that direction can be expressed as:

This is the general expression for an elliptically polarized wave. Note that in order for E (t) to be
linearly polarized the time phase & between the two orthogonal linear components must be zero (or
an integer multiple of w). The amplitudes of the components Epm and Ecm however, need not be

equal.

The principal and cross-polarization unit vectors, up and uc can be expressed in terms of the
spherical coordinate unit vectors, ug and ug, and the angle = ¢ (when the transmitted field is
polarized in the +y direction at 6 = 0°) by:

Up=SiN® " Ug+COSP" Ug (18)
Ug =COSQ " Ug —SiNQ" Uy (29

Finally, by expressing ug and ug in rectangular coordinates as shown above, up and uc can be
expressed in terms of the antenna coordinate system’ s rectangular unit vectors (Xa, Ya, Za) as.

Cos6 cos@ —sin@| |cos6cosgsin@—sin@cose
Up=sing| cos@sing |+cosp| cose (=| cosO sin((p)2 + Cos((p)2 (20)
—-sin® 0 —-sinOsng

=(cosB cos@ sin@—Sin@ cose) - X5 + (CosO sin((p)2 + cos((p)z)-yal —(sin@sing) - z5

cos 6 cos @ —-sing cos 6 cos((p)2 + sin((p)2
Uc = COSQ| cosOsSiN@ |+SiN®| cose |=|CcosO cose Sin @—sin ¢ cos @ (21)
—-sin® 0 —Sin 6 cos

:(cosecos((p)2+sin((p)2)-x + (cosO cos@ sin@—Sing cosy) -y, — (SN0 cosy) - z
a a a
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These are the expressions for the principal and cross-polarization unit vectors for the case of the
satellite antenna transmitting a horizontally linearly polarized field parallel to y; (i.e. a polarization
angle of y = 0°). This means that the principal polarization direction up is in the direction of ya
(which lies in the equatorial plane) on the antenna boresight at 6 = 0° (as can be seen from the
above expression for up with 6 = 0°). Note that for off-axis angles, up is not parallel to y, since their
dot product is not equa to one. For the case when the satellite is not transmitting horizontal
polarization, the principal and cross-polarization directions are, for a transmitted polarization
angley, given by:

Up =sin(e+7Y) - ug +COS((P+Y)'U<p

. . 22
Uc =SiN(@+7) -Ug —sin(@+7) " Uy (22
The Xa, Ya, Za COMponents are thus:
cos6 cos @ —-sing
Up(Y) =sin(¢+7)| cos@sin @ |+cos(p+7v)| Cos
-sing 0 29)
cos 0 cos @ Sin(@+7y)—sin ¢ cos(¢ + )
=|cosOsin ¢sin(@+7y)+cos o cos(Q+7)
—sin@sin(e+Y)
CoS 6 cos@ —-sing
Uc(y) =cos(@+7y)| cosBsing |—sin(@+7)| cCose
—sin6 0 (24)

cos 6O cos @ cos(@+7y)+sin esin(e+7)
=|cos 0 sin ¢ cos(¢+y)—cos e sin(e+7)
—sin 6 cos(e+7)

This last definition for the polarization reference directions will be the one assumed in the analyses
for the reasons cited in Ludwig’s paper.

2 Coor dinate system descriptions and transfor mation matrices

In performing polarization angle calculations, four types of Cartesian orthonormal coordinate
systems will be considered. These are shown in Fig. 4. They are the boresight point coordinate
system (denoted Rp), the earth station coordinate system (Rp), the satellite antenna coordinate
system (Ra), and the Earth-centred coordinate system (Rg). For purposes of interference
calculations, we can think of systems Ry, Rp, and R together as comprising the “wanted” satellite
system. In asimilar way, if an “interfering” satellite system is present, it will have its own satellite
(Ra2) earth station (Rp2) and boresight point (Rp2), So that the systems Rp2, Rp2, and Ra2 together
comprise the “interfering” satellite system. The Earth-centred system Rg serves as an intermediate
system for transforming between any pair of previous systems. In this section, we therefore develop
the transformation matrices for transforming a vector from the Earth-centred system R to each of
these other systems. Determining these transformation matrices is fundamental to the calculations,
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since once they are obtained, computation of the polarization angles and relative alignment angles
becomes atrivial matter. To aid in understanding the method, an example calculation is performed.

2.1 Symbol notation

Symbol definitions and arbitrarily chosen values for the example calculation are as follows:

GSO radius (earth radii): k = 6.61072
Wanted earth station latitude (degrees): yp =20
Wanted earth station longitude (degrees): Ap =-80
Wanted satellite boresight point latitude (degrees): yp =10
Wanted satellite boresight point longitude (degrees): A =-90
Wanted satellite longitude (degrees): Aa =-100
Interfering earth station latitude (degrees): Yp2 =45
Interfering earth station longitude (degrees): Ap2 =-115
Interfering satellite boresight point latitude (degrees): Yp2 =35

Interfering satellite boresight point longitude (degrees): Ap2 = —85
Interfering satellite longitude (degrees): Aa2 =-110

For notational clarity, unit vectors will be bolded in italics, vectors with magnitudes other than one
will be bolded and underlined, coordinate vectors which represent the coordinates of a point in
3-D space will be simply underlined, and transformation matrices for transforming between
coordinate systems will be CAPITALIZED AND BOLDED. The unit of distance is assumed to
be one earth radius (6378.153 km).

NOTE —In order to render the symbolic notation clearer, specific characters have, exceptionally, been used
and it is possible that, depending upon the computer hardware and software used, these same characters may
be different to those which appear in the printed text.

22  TheEarth-centred system Rg

The Earth-centred system has its origin at the Earth’s centre, +z-axis pointed north, +x-axis pointed
toward the satellite, and +y-axis pointed 90° east of the +x-axis. Its unit vectors in Rg components
are therefore simply:

1 0
0 1

where zg X Xg denotes the vector cross product. Note that both xg and yg lie in the equatorial plane.
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23  Thewanted earth station system Rp

Recall that the local vertical at a given point on Earth is defined by the vector from the Earth’'s
centre to the given Earth point. The unit vector along the local vertical at the earth station P
therefore has Earth-centre components:

cos yp CoS(Ap —Ag)
Iv=| cosyp sin(Ap —As) (26)

sinyp

The Earth-centre coordinates of the Earth point P, boresight point B, and satellite S, are:

cosyp cos(Ap —Asg) COS Y COS(Ap —Ag) k
P=| cosyp sin(hp —Asg) B=| cosyp sin(Ap —Ag) S=|0 (27)
sinyp sinyp 0

The Earth-centre components of the position vector PS from the earth station P to the satellite S are
then:

5.728
PS=S-P  PS=|-0.321 (28)
~0.342

The earth-station coordinate system is defined to have its origin at the earth station with its +z-axis
directed toward the satellite. The unit vector along its+z-axis is therefore:

0.997
PS
— —-0.06

Its x-axis unit vector is directed to the left of an observer who is located at the earth station and is
facing the satellite (i.e. its direction is given by the vector cross-product of the local vertical Iv with
the z, unit vector)

0
v z
‘vaz ‘
P —-0.685

(Note that xp cannot be determined by the above equation for the special case in which the earth
point is located at the subsatellite point since Iv and z, are co-linear. For this special case, we just
choose xp to be equal to yg.)

Finally, the unit vector in the positive y-direction to complete the right-handed system is found by
taking the cross product:

0.082

0.726
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We can verify that these unit vectors form a Cartesian right-handed system by checking their dot
products (i.e. two vectors are perpendicular to each other only if their dot product is zero)

It should also be noted that, in general, yp is not in the same direction as the local vertical Iv. In fact,
in this case, the angle between the two is found from the definition of the dot product to be:

acos(lvx yp) =57.325° (33)

We can now determine the transformation matrix M for transforming a vector from the
Earth-centred system Rg to the earth station system Rp. The rows of the matrix are the x, y, and z
components of the earth station system’ s unit vectors. Thus we have:

Xpl Xp2 Xp3 0 0.729 -0.685
Zpl Zp2 Zp3 0997 -0056 -0.06

where xp2 for example, is the y-component of unit vector xp,.

Remember that a coordinate transformation does not change a vector’s magnitude direction, or
what it represents — it merely changes the basis of a vector. Expressing a vector in coordinates of a
particular system does not imply that the vector has itstail at the origin of that system. To express a
vector’ s components in the earth-station system when it is specified in the Earth-centred system we
use the matrix equation:

Vy, =M

p p- Vg (35)

where Vg is the vector in Earth-centred Rg components and Vp is the vector in earth station Rp
components. To perform the inverse transformation — from the Rp system to the Ry system — we
need to find the inverse of matrix M E. Thus, the inverse transformation is simply:

E:ME-VL (36)

Note that if we want to find the coordinates of a point W’ (X', Y/, Z) in the earth station system
when it is specified as W (X, y, ) in the Earth-centred system we use:

W =Mp-(W-P) (37)

where P is the Earth-centred coordinates of the earth station found in equation (27).

24 Theinterfering earth station system Rp2

We go through the same procedure as that above to find the transformation matrix for transforming
from the Earth-centred system Rq to the interfering earth station system Rpo.
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The unit vector along the local Iv2 at the interfering earth station P2 has Earth-centre Rg
components:

COSYpp COS(App —Asg) 0.683
Ivp =| cosypp sin(kpp —As) lvo =| —0.183 (38)

(Note that we use Ag above and not A2 since the reference x-axis for system Rg is towards the
“wanted” satellite S.)

The Earth-centre coordinates of the interfering Earth point P, interfering satellite boresight
point By, and interfering satellite Sp are:

COS Yo COS(Apo —As) oS Yho CoS(Ap2 —Asg)
Py =| cosypasin(pz —As) | Bz =| cosyp2 sin(Ap2 —As) (39)

kcos(hsp 1)
0

g
I

The Earth-centre components of the position vector P,S, from the earth station Po to the satel-
lite S are:
5827

P2Sp =Sy - P P,S, =| —0,965 \stz\ =5,949 (40)
0,707

The interfering earth-station coordinate system is defined to have its origin at the earth station P2
with its +z-axis directed toward the satellite Sp. The unit vector aong its +z-axis is therefore:

P,S, 0.98
Zp2 = W Zp2 = — 0162 (41)
E— 0.119

Its x-axis unit vector is directed to the left of an observer who is located at the earth station and is
facing the satellite (i.e. its direction is given by the vector cross-product of the local vertical Ivo with
the zpp unit vector):

0.173
|V2><Zp2
Xpp =—————  Xpp =| 0.981 (42)
Pe voxzgp | 7P
0.087

Finally, the unit vector in the positive y-direction to complete the right-handed system is found by
taking the cross product:

0.103

0.989
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We can now determine the transformation matrix Mp2 for transforming a vector from the
Earth-centred system Rg to the interfering earth station system Rp2:

X p2; X P2, X p23 0.173 0.981 0.087
Zp2, Zp2, Zp2s 098 -0.162 —0.119

2.5 The wanted satellite antenna coordinate system Ry
The position vector from the boresight point B to the satellite S has Earth-centre components:

5.641
BS=S-B BS=| -0.171 IBY =5.646 (45)
~0.174

The unit vector along this position vector therefore has Earth-centre components:

0.999
BS
7 = — ~| —0.03 46
b=1Bs] Zy (46)
= ~0.031

The satellite antenna coordinate system Ry has its origin at the satellite, +z-axis pointed along the
antenna boresight towards point B, and +y-axis directed to the east in the equatorial plane (see
Fig. 4). Thusthe unit vector along the +z-axis is simply:

—0.999
Zg=-7, zgz=| 003 (47)
0.031

The unit vector aong the +y-axis, ya, is now perpendicular to zy and also perpendicular to zy in
order to lie in the equatorial plane. Thus, by using the vector cross-product, we have:

. 0.0303
Vg = Zaxzg Yo =| 0.99954 lya|=1 (48)
‘zax zg‘ o

And to complete the right-handed Cartesian system we have:

0.031
1

As a check to see that we have a right-handed system and that y5 is in the equatorial plane we
compute the dot products:
Xg XY =0
Xa X2y =0 Ya X Zg (50)
YaxZa =0
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Transformation from the Earth-centred system Rg to the wanted satellite antenna system Rj is then
done using:

Xal Xa2 Xa3 0031 932x107% 1
MA =|Yal Ya2 Ya3| Ma=| 003 1 0 (51)
Zal Za2 Za3 ~0999 003 0031

2.6 Theinterfering satellite antenna coor dinate system Ry2
To derive the transformation matrix, we follow the same procedure asin § 2.5.

The position vector from the boresight point B, to the interfering satellite Sy has Earth-centre
components:

5.719
ByS;=Sy-B,  BySp,=| -1.36 [B2S| =5.906 (52)
~0.574

The unit vector along this position vector therefore has Earth-centre components:

0.968
B2S2
Zpo = Zpp =| —0.23 |Zb2| =1 (53
|B2S |
— -0.097

The interfering satellite antenna coordinate system Rg2 has its origin at the satellite Sp, +z-axis
pointed along the antenna boresight towards By, and +y-axis directed to the east in the equatorial
plane. Thusthe unit vector aong the +z-axis is simply:

—0.968
Zg2 =—ZpD Zgp =| 0.23 |Zaz| =1 (54)
0.097

The unit vector along the +y-axis, yaz, is now perpendicular to za2 and also perpendicular to zg in
order to lie in the equatorial plane. Thus, by using the vector cross-product, we have:

o 0.231
Va2 _a2ncg ya2 =| 0.973 |Va2| =1 (55)
‘Zazng‘ 0

And to complete the right-handed Cartesian system we have:

0.094

Xa2 = Ya2 X Zg2 Xa2 =| —0.022 |Xaz| =1 (56)
0.995
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Transformation from the Earth-centred system Rg to the interfering satellite antenna system Ra2 is
then done using:

Xaz1 X322 Xaz3 0.094 —-0.022 0.995
Mao = Ya2; Ya2, Ya2, Mao =| 0.231 0.973 0 (57)
Za2, Za2, Za2, -0968 0.23 0.097

We now have all the necessary transformation matrices.

3 Calculation of polarization angles and relative alignment angles

Using the above transformation matrices, we can now determine the relative alignment angles Bq
and By, for the downlink and uplink interference cases, respectively.

3.1 Calculation of relative alignment angle Bq for the downlink case

In this case we need to determine the alignment angle between linearly polarized signals at the
“wanted” earth station P being transmitted from the “wanted” satellite S and an interfering satellite
Sp. We assume the wanted earth station P is pointed at its own satellite S. The problem can be
broken down into three steps:

Sep 1 calculate the polarization angle eq1 of the wave received from the wanted satellite S by
transforming the transmitted principle polarization vector up — defined in the wanted
satellite’'s Ra antenna coordinate system—to coordinate system Rp of the wanted earth
station;

Sep 2 calculate the polarization angle gq2 of the wave received from the interfering satellite Sy by
transforming polarization vector up2 — defined in the interfering satellite’'s Ra2 coordinate
system — to coordinate system Ry, of the wanted earth station; and

Sep 3 take the difference between eq1 and eg2 to find the alignment angle Bg. Refer again
to Fig. 4.

The polarization angle y of a wave received from a satellite is specified in a plane which is normal
to the antenna boresight axis (i.e. normal to zz). Within this plane it is measured positive counter-
clockwise from the +y-axis defined by ya when looking in the direction of z;. An angle y=0°,
therefore represents a polarization vector which lies in the equatorial plane. Remember that the
polarization orientation will vary with angular direction so that the reference polarization of the
antenna is defined to be the polarization of the E -field on the boresight axis (i.e. a 6 = 0° off-axis
angle). At an angular position (0,¢) in the far-field pattern, the principal (main) and
cross-polarization components of the E -field are defined to lie along the orthogonal unit vectors up
and uc which are tangent to a sphere at the point (6,¢). Therefore, in computing €q1 and eq2, we
need to determine up (and up2 for the interfering satellite) in the angular direction of the receiving
earth station P. Refer to the detailed diagram of the satellite antenna coordinate system shown in
Fig. 4. The angular position of the earth station P in the satellite antenna system is defined by the
angles 0 and @a. The angle 05 is the off-axis angle of —z, which points toward the earth station P
from the zy axis (which is the satellite antenna boresight axis). The angle @4 is the earth station
orientation angle or azimuth angle. It isthe angle measured in the plane normal to the boresight axis
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(i.e. the xa, —ya plane) between the x5 axis and the projection of —z, onto the Xa, —ya plane. @4 is
measured positive clockwise from the x5 axis when looking in the direction of zy. These angles are
found by first transforming unit vector —z, to the Ra system to get its (Xa, Ya, Za) COmponents:

Xa
Ya |[=Ma - (—Zp) (58)

Z3

The off-axis and orientation angles are then:

Ya
0, =acos =atan| ==
a Za ®a ( X j (59)
0, =2.212° 0, =41.747°

From equation (23), the principle polarization unit vector up in terms of Xa, Ya, Za components
for y=0°isthen:

COS05 COS P4 —sin Qg
Up =Sin (pa+7) | cOSB, SN | +Cos (pa +7)| COSQ,
(60)
~37013x 1074
up=| 09997 |up|=1
—-0.0257

The principal polarization vector up above is expressed in antenna system Ra components. To
determine the polarization angle of the principal component at the receiving earth station, we need
to transform up to earth station Rp components. We do this by first transforming from antenna
system R, components to Earth-centre Rg components and then transforming from Rg components
to the earth station Rp components. This is done through the matrix equation:

0.728
0

The received polarization angle (measured from xp) is then from the x and y components of upp:

Upp2
ggr=atan €q1 = 43.248° (62)
Upp1

Now we follow a similar procedure to find eq2. To find the angular position of the wanted receiving
earth station P with respect to the interfering satellite antenna system Rgp, we find the unit vector
which points from the interfering satellite Sy to the earth station P.
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The Earth-centre components of the position vector PS; from the earth station P to the satellite Sp
are:

5.627
PS;=S;-P  PSp=|-1.469 \@\ =5.826 (63)
-0.342
The unit vector along this direction is therefore:
PS, 0.966
— —0.059

The unit vector which points from the interfering satellite to the earth station is then simply —zp».
We now follow (58-62) above to compute the polarization angle eqo received from the interfering
satellite.

Xa2
Yaz [=Ma2 . (-Zp2) (65)
Za2
The off-axis and orientation angles are:
052 =acos zyo Pa2 =atan Ya2
040 = 2.538° 942 =150.35°

Then unit vector up2 which defines the principle polarization direction in this part of the pattern in
terms of Ra2 components is, for y2 = 0°, given by:

C0S 052 COS P42 —Sin g2
Up2 =SiN (pa2 +72)| €0SBa2 SN @a2 | +00 (9a2 +72)| COSQa2
(67)
4219%107%

= 1
-0.022

Again, the principal polarization vector up2 above is expressed in antenna system Ra2 components.
To determine the polarization angle £q2 at the receiving earth station, we need to transform up> to
earth station Rp components. We do this first by transforming from antenna system Rgo
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components to Earth-centre Rg components and then transforming from Rg components to the earth
station Rp components. This is done by the matrix equation:

0.706
Upzp=Mp (M1, Ug)  Upyp=| 068 (up2 in Ry components) (68)
0.198
The received polarization angle is then:
Up2p,
g€gz2 =atan €q2 =43.904° (69)
Up2p,
The relative alignment angle Bq is then simply:
Bg = ‘adl —Sdz‘ By =0.655° (70)

32 Calculation of relative alignment angle B, for the up link case

In this case we need to determine the alignment angle between linearly polarized signals at a
“wanted” satellite S being transmitted from a “wanted” earth station P and an interfering earth
station P,. Note that the interfering earth station P2 is assumed to be pointed at its own satellite,
which is satellite Sp. The problem involves three steps:

Sep 1. calculate the polarization angle ey of the wave received from the “wanted” earth station P
by transforming the transmitted polarization vector up — defined in the wanted earth
station’s Rp coordinate system — to antenna coordinate system Ry of the wanted satellite;

Sep 2: calculate the polarization angle g2 of the wave received from the interfering earth station
P2 by transforming polarization vector upz — defined in the interfering earth station’s Rp2
coordinate system — to antenna coordinate system R5 of the wanted satellite; and

Step 3:  take the difference between €1 and g2 to find the alignment angle By.

In determining the polarization vectors of the signals transmitted from the wanted and interfering
earth stations to their respective satellites, it is assumed that they are matched (i.e. aligned) to the
off-axis receive polarizations of their respective satellite antennas. By definition, the receive
polarization of an antenna in a certain direction is the polarization of the signal transmitted by the
antenna in that direction. Accordingly, to find the matching polarization vectors transmitted from
the earth stations, it is first necessary to find the polarization vectors of the signals transmitted from
the satellites in the direction of their respective earth stations. This is described below, first for the
wanted system, then the interfering system.

We first determine the transmitted polarization vector up from the wanted earth station P to the
wanted satellite S. As discussed above, it is assumed to be matched to the receiving polarization of
the antenna a S in the direction of P. This, in turn, is just the polarization of the signal transmitted
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from S towards P, which has already been computed in equation (61) of the downlink calculations.
Hence, the matching polarization vector transmitted from earth station P on the uplink to S is
from (61):

0.728

Up=Upp  Up=|0.685 (up inRp components) (71)
0

As acheck, we can transform this vector to antenna system R4 of the wanted satellite to obtain:

~3.7013x 10~%
Upa =M (M E, “Up) Upa = 0.9997 (Up in R4 components) (72)
-0.0257

Note that this vector matches that transmitted from the satellite on the downlink as shown in
equation (60). Since the polarization angle in system R is defined to be measured positive counter-
clockwise from the +y, axis when looking in the direction of z,, the received polarization angle €1
at the wanted satellite Sis:

u
gy =atan [ P3y J g1 =—0.021° (73)
Upa,

(Notethat due to the way polarization angle is defined, the ratio is the x-component divided by the
y-component.)

To find polarization vector up2 transmitted from the interfering earth station P> in the direction of
wanted satellite Siit is first necessary to find the polarization vector that earth station P, transmitsto
its own satellite Sp. It is again assumed that this vector is matched to the receive polarization of Sp
in the direction of earth station P».

Recall that the Earth centre coordinates of earth station P> and satellite Sp are:

0.683 6.51
P,=|-0183| Sp=|-1148 (74)
0.707 0

The position vector from the interfering earth station to the interfering satellite is then:

5.827
P>S; = 2 —@ P>S; =| —0.965 (75)
—-0.707

and the unit vector from the interfering earth station to the interfering satellite is then:

0.98
Zpos2 = P2S2 Zp2sp = -0.162 (76)

P2S, ~0.119
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The unit vector from satellite Sp to earth station P then is simply:

—-0.98
—Zp2s2 = 0.162 (77)
0.119

Transforming this vector to the antenna coordinate system Ry2 of interfering satellite Sp we have:

Xa2 Xa2 0.022
Ya2 | =M a2 - (-Zp2s2) | Ya2 |=| —0.069 (78)
Za2 Za2 0.997

The off-axis and orientation angles of the earth station P as measured with respect to the antenna
boresight of satellite Sp (which is directed towards the boresight point By) are then:

Oa2=ac0szgr (@go=atan (yi)
Xa2
(79)

00 =4.145°  (gp =—72185°

From equation (23) the principal polarization unit vector upps that satellite Sy transmits towards
earth station P, assuming that Sp is transmitting horizontal polarization (i.e. y= 0°) on its antenna
boresight axis isthen:

v=0
COS 052 COS Q52 —sin g2
Up2s2 =SiN(@g2 +7)| CoSOs2 SINPg2 |+ COS(Pa2 + )| COSPa2
(80)
7.6183x 10°%
= 0.9976
0.0688

The principal polarization vector above is expressed in antenna system Rg> components. To
determine the polarization angle of the principal component at the receiving earth station Py, we
need to transform it to earth station Rp2 components. We do this by first transforming from antenna
system Ra2 components to Earth-centre Rg components and then transforming from Rg components
to the earth station Rp2 components. This is done through the matrix equation:

0.997
0
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We now have the (Xp2, Yp2, Zp2) components of the polarization vector received at earth station P2
from its satellite Sy from which we can find the polarization angle. At this point, it is important to
keep in mind the definition of polarization angle and the reference directions that are used to define
it. Recall that in the satellite antenna coordinate systems, polarization angle is the angle between
the +y-axis (which lies in the equatorial plane) and the projection of the polarization vector on the
x-y plane (which is normal to the antenna boresight) measured positive CCW (counter clockwise)
while looking along the +z-axis (which is the antenna boresight axis). Hence, in the satellite antenna
coordinate systems, a polarization vector which is parallel to the equatorial plane has a polarization
angle of 0° while one that lies along the +x-axis has a polarization angle of 90°. To be consistent,
we will define the polarization angle in the earth station coordinate systems to be the same, even
though their axes are oriented differently. Hence, polarization vectors that are oriented along the
local vertical will have polarization angles close to 0° while those that are oriented along the local
horizontal will have polarization angles close to 90°. The received polarization angle
(measured + CCW from the yp2 axis while looking along the zp> axis) is then from the x and y
components of upp,

u
g=atan [ﬂJ £ =94.587° (82)
Upp,

(Note that the ratio is the x-component over the y-component and that the proper quadrant is
accounted for in the arctangent operation.)

Assuming the signal transmitted from earth station P2 is polarization matched to the receive
polarization of satellite Sp, this is therefore also the polarization angle of the wave transmitted on
the uplink towards satellite Sp. What we need, however, is the polarization vector of the signal
transmitted in the direction of the wanted satellite S. To find this vector, it is necessary to find the
angular position of S in the system Rp2 of earth station P». Given the Earth-centre coordinates of
the interfering earth station P2 in (39) and wanted satellite S in (27), the position vector P2S from
the interfering earth station to the wanted satellite has Earth-centre Rg components:

5.928
P,S=S-P, P,S=| 0.183 \ PLS{ =5.973 (83)
~0.707

The unit vector along this position vector is then simply:

0.992
-0.118
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Now, we transform from Rg components to Rp2 components using matrix M p2:

Yp2s | =Mp2 - (=Zp2s) Yp2s |=|—0.019 (85)

The off-axis and orientation angles of S with respect to the Rp2 system are then:

Yp2s
Bp2s =acos zppg Pp2s=atan &
Xp2s

(86)

We now again use equation (23) (Ludwig’'s third definition) to find the transmitted polarization
vector in the angular direction (Bp2s ¢p2s) of the wanted satellite S, given the polarization angle on
the interfering earth station’s antenna boresight (which is the angle e computed above). Hence, the
polarization vector up is:

Y2 =€ Y2 =94.587°

€0s 6 p2 COS P2 —SiN Pp2s &)
Up2 =SiN(Qp2s+72) | COSOp2s SIN Ppog |+ COS(Pp2s +7¥2) | COSPp2s
—sinBp2s 0
0.978
=| -0.078
-0.192

Finally, to find the received polarization angle at the satellite S of the wave transmitted from the
interfering earth station P2, we transform vector upz from system Rp2 to system R, of the wanted
satellite using the matrix equation:

0.029
Upza =M A (M 52 "Up2) Uppa=|0.998| (upz in Ry components ) (88)
0.058
The received polarization angle g2 is then:
Up2ay
Up2a,

Finally, the alignment angle 3, between the linearly polarized signal received from the wanted earth
station and the linearly polarized signal received from the interfering earth station is:

Bu = |3u1—3u2| By =1.668° (90)
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FIGURE 1
Rectangular, cylindrical and spherical coordinate systems
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FIGURE 2
Alter nate definitions of polarization
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FIGURE 3

Definition of principal and cross-polarization from
the antenna pattern measur ement method
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Pattern cut
at ¢ = 45°

Theprincipal and cross-polarization directions as defined by the antenna pattern measurement method. The antenna under test is
mounted at the origin of a spherical coordinate system. A probe antennawhich islinearly polarized is used to determine the polarization
pattern of the test antenna by making pattern cuts at various azimuth angles ¢. Each pattern cut beginsat 6 = 0° (on the z-axis) where
the probeisrotated about its axisin order to align its polarization with that of the test antenna. The orientation of the polarization

at 6 = 0° defines the basic polarization direction of the test antenna. For agiven ¢, a pattern cut is then taken by varying 6 by moving the
probe dong a great circle arc as shown. The probe remains fixed about its axis so it retains the same orientation with respect to the unit
vectors (i, and (0, and the same polarization angle 3. The orthogonal unit vectors @, and (0, (which are also tangent to the sphere

at apoint (6, ¢)) are then defined to be the principal and cross-polarization directions, respectively.
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HGURE 4
Illustration of the various coordinate systems
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