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RECOMMENDATION ITU-R BO.1212*

Calculation of total interference between
geostationary-satellite networks in the

broadcasting-satellite service

(1995)

The ITU Radiocommunication Assembly,

considering

a) that successful implementation of satellite systems in the World Administrative Radio
Conference for the Planning of the Broadcasting-Satellite Service (Geneva, 1977) (WARC BS-77)
and the First Session of the World Administrative Radio Conference on the Use of the
Geostationary-Satellite Orbit and the Planning of the Space Services Utilizing It (WARC ORB-85)
broadcasting-satellite service (BSS) plans is dependent upon accurate calculation of mutual
interference between satellite networks;

b) that geostationary-satellite networks in the BSS operate in the same frequency bands;

c) that interference between networks in the BSS contributes to noise in the network;

d) that it is necessary to protect a network in the BSS from interference by other source
networks;

e) that, due to increased orbit occupancy, the detailed estimation of mutual interference
between satellite networks, requires more accurate values of polarization discrimination in order to
take account of the use of different or identical polarizations by wanted and interfering systems,

recommends

1 that to calculate the total interference between two satellite networks considered, the
method described in Annex 1 should be used.

ANNEX 1

Calculation of total interference

When evaluating the power produced at a given point by a single satellite (downlink) or at a given
satellite location by an earth-station transmitter (uplink) the concept of an equivalent gain for each
partial link may be employed.

____________________

* Radiocommunication Study Group 6 made editorial amendments to this Recommendation in 2001 in
accordance with Resolution ITU-R 44.
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There are two antennas involved in each partial link, and these have both co-polar and cross-polar
transmission and reception characteristics. In addition, atmospheric propagation effects, represented
principally by co-polar attenuation and cross-polar discrimination, influence the net signal level.

The equivalent gain (as a power ratio) for one partial link can be represented by the following
approximation:
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where:

 β: for linear polarization, is the relative alignment angle between the received
signal polarization plane and the plane of polarization of the receive antenna;

for circular polarization, β = 0° is assumed to correspond to co-polar
transmission and reception and β = 90° is assumed to correspond to mutually
cross-polarized transmission and reception;

for cases of differing polarizations (e.g. linearly polarized wanted receive
antenna and circularly polarized interfering transmissions, or vice versa),
β = 45°

Gtp : co-polar gain characteristic of the transmit antenna expressed as a power ratio
(Recommendation ITU-R BO.652)

Gtc : cross-polar gain characteristic of the transmit antenna expressed as a power
ratio

Grp : co-polar gain characteristic of the receive antenna expressed as a power ratio
(Recommendation ITU-R BO.652)

Grc : cross-polar gain characteristic of the receive antenna expressed as a power ratio

A : co-polar attenuation on the interfering partial link (as a power ratio ≤ 1)

X : cross-polar discrimination on the interfering partial link (as a power ratio ≤ 1)

X = [ ] °≤ε≤°ε− 605for10 )log10(–log20–)(coslog40–log301.0
s

Af s

where:

f : frequency (GHz)

 εs : satellite elevation angle as seen from the earth station (degrees).

For εs > 60°, use εs = 60° in calculating the value of X.

(See Appendix 1 for derivation of the relative alignment angle, β.)

In the expression for G1, power summation of the terms is assumed throughout. Near the main axis
of the wanted transmission, a voltage addition of the first two terms may be more appropriate due to
phase alignment while away from this axis random effects dictate power addition. However, since
the second term is insignificant near this axis the assumption of power addition does not
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compromise the approximation. Atmospheric depolarization is a random effect thus the last two
terms are power summed.

In the expression for G2, voltage addition of the first two terms is assumed since, near axis, either
term could be dominant and phase alignment of these terms would dictate voltage addition. Away
from this main axis the third and fourth terms become the dominant contribution; thus, although a
power addition of the first two terms is warranted, in this region as for the G1 discussion, the
validity of the assumed model is not unduly compromised by maintaining voltage addition in all
regions. Since the transition from voltage addition near axis to power addition off-axis is nebulous,
the above expressions, in view of the arguments presented, would appear to be a reasonable
compromise between accuracy and simplicity.

Using the equivalent gain concept, the wanted carrier power, C, or the single-entry interfering
power, I, on each partial link is simply given by:

dBW––)or( GLLPIC CAFST += (2)

where:

PT : wanted (interfering) transmitting antenna power (dBW)

LFS : free-space loss on the wanted (interfering) link (dB)

LCA : clear-air absorption on the wanted (interfering) link (dB)

G : equivalent gain on the wanted (interfering) link (dB).

The aggregate interference power is obtained by adding the powers so calculated for all interferers.
The ratio of the desired signal power to the aggregate interference power is the downlink aggregate
carrier-to-interference ratio, C/I. The up-link aggregate interference power and C/I are obtained in a
similar way, and the two aggregate values of C/I are then combined to obtain the total
aggregate C/I.

If the ratio of the wanted carrier power to the power of an interfering signal, where both powers are
calculated using equation (2), is to be evaluated for the worst case, such parameters as satellite
station-keeping tolerances, satellite antenna pointing errors, and propagation conditions must be
taken into account. The station-keeping and satellite transmit-antenna beam errors which should be
included are those which result in the lowest receive level of the wanted signal and the highest
receive level of the interfering satellite signal. When the interfering satellite is at a lower elevation
angle than the wanted satellite, worst-case interference conditions usually occur during clear-sky
operation. Conversely, if the interfering satellite is at a higher elevation angle, worst-case
interference usually occurs during heavy rain conditions.



4 Rec. ITU-R BO.1212

APPENDIX 1

TO ANNEX 1

Derivation of the relative alignment angle ββββ for linear polarization

This Appendix defines the polarization angle of a linearly polarized radiowave and outlines the
method for calculating polarization angles and relative alignment angles for both the downlink and
feeder link interference cases. Calculation of relative alignment angles are necessary for
determining the equivalent gain as defined by equation (1).

1 Definition of principle and cross-polarized components of a linearly
polarized radiowave

In general, the polarization of a radiated electromagnetic wave in a given direction is defined to be
the curve traced by the instantaneous electric field vector, at a fixed location and at a given
frequency, in a plane perpendicular to the direction of propagation as observed along the direction
of propagation. When the direction is not stated, the polarization is taken to be the polarization in
the direction of maximum gain. In practice, polarization of the radiated energy varies with the
direction from the centre of the antenna, so that different parts of the pattern may have different
polarizations. Polarization may be classified as linear, circular or elliptical. If the vector that
describes the electric field at a point in space as a function of time is always directed along a line,
the field is said to be linearly polarized. In the most general case, the figure that the electric field
traces is an ellipse, and the field is said to be elliptically polarized. Linear and circular polarizations
are special cases of elliptical when the ellipse becomes a straight line or a circle, respectively. For
the interference calculations, we are interested in the far-field polarization of the antenna where the
E-field component in the direction of propagation is negligible so that the net electric field vector
can be resolved into two (time-varying) orthogonal components that lie in a plane normal to the
outward radial direction of propagation. In the case of linear polarization, the reference directions of
these orthogonal components must first be defined before one can define a polarization angle. One
of these reference directions is designated as the principle or main polarization component direction
while the orthogonal reference direction is designated as the cross-polarization component
direction. Surprisingly, there is no universally accepted definition for these reference directions.
Some alternative definitions of principle and cross-polarization component directions are discussed
in Arthur C. Ludwig’s paper, “The Definition of Cross Polarization”, in the IEEE Transactions on
Antennas and Propagation, January 1973. In his paper, Ludwig derives expressions for the unit
vectors for three different cross-polarization definitions in terms of a spherical antenna pattern
coordinate system, which is the coordinate system usually adopted for antenna measurements. We
briefly describe these three definitions below. In this Appendix the unit vector up represents the
reference direction for the principle polarization component of the electric field vector while uc
represents the direction of the cross-polarized component. It is helpful to first review the
transformation of vectors among rectangular, cylindrical and spherical coordinate systems.
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1.1 Vector transformation among rectangular, cylindrical and spherical coordinate
systems

Figure 1 shows the three coordinate systems and their associated unit vectors. The transformation
matrix for transforming a vector A in rectangular components (Ax, Ay, Az) to cylindrical compo-
nents (Ap, Aϕ, Az) is:
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The transformation matrix for transforming a vector A in cylindrical components (Ap, Aϕ, Az) to
spherical components (Ar, Aθ, Aϕ) is given by:
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The transformation matrix for transforming a vector A in rectangular components (Ax, Ay, Az) to
spherical components (Ar, Aθ, Aϕ) is then:

















ϕϕ
θϕθϕθ
θϕθϕθ

==
0cossin–

sin–sincoscoscos

cossinsincossin

rccsrs MMM (5)

so that, in terms of components:
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Because the matrix is orthogonal, the transformation matrix for transforming from spherical (Ar, Aθ,
Aϕ ) to rectangular (Ax, Ay, Az ) components is simply the transposed matrix:
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so that:
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The unit vectors ur, uθ, and uϕ of the spherical coordinate system are in spherical coordinates
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in rectangular coordinates.

1.2 Alternative definitions of principal polarization and cross-polarization reference
directions

Ludwig describes three definitions for the cross polarization by deriving unit vector iref and icross
(which we have renamed up and uc) such that the dot product of the electric field vector E (t, θ, ϕ)
along some direction (θ, ϕ) in the far-field antenna pattern with these unit vectors defines the
principal and cross-polarization components, respectively. In the direction specified by the spherical
coordinate angles (θ, ϕ), the principal and cross-polarization components of the electric field vector
are therefore given by:

cp uu .. ),(),( EE =ϕθ=ϕθ cp EE (11)

(Note that, in general, E , up and uc will themselves vary with θ and ϕ.)

Figure 2 illustrates the polarization patterns corresponding to the three definitions for the case in
which the antenna is transmitting horizontal polarization along its main beam axis.

In the first definition, the reference unit vector up is simply taken to be one of the rectangular basis
vectors of the antenna pattern coordinate system while uc is another one of the basis unit vectors.
For example, we can define:

acap xuyu == (12)

where ya and xa are unit vectors in the positive y and x directions.

From the transformation matrices above the spherical coordinate components of these vectors are
given by:

ϕθ ϕ+ϕθ+ϕθ== uuuyu rap
.cos.sin.cos.sin.sin (13)

ϕθ ϕ−ϕθ+ϕθ== uuuxu rac
.sin.cos.cos.cos.sin (14)

Ludwig notes that this definition leads to inaccuracies, since in practice, the polarization of the
radiated field does vary with direction from the centre of the antenna and that the far-field of the
antenna is not planar, but tangent to a spherical surface. Ludwig’s second and third definitions of
polarization therefore involve unit vectors which are tangent to a sphere. In his second definition,
the principle polarization direction is chosen to be one of the spherical coordinate unit vectors while
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the cross-polarization direction is chosen to be one of the other spherical unit vectors. For example,
we can choose:

θϕ == uuuu cp (15)

In Ludwig’s third definition, the principal and cross-polarization component directions are defined
according to how one usually measures the polarization pattern of an antenna. The standard
measurement method is described in Fig. 3. The probe polarization angle β (angle between uϕ
and up) is measured from uϕ towards uθ. In the case where the transmitted field is linear horizontal
polarization (i.e. in the +y direction) along the boresight (θ = 0°), β turns out to be equal to ϕ.
Therefore the principal and cross-polarization components in the direction (θ,ϕ) are given by:

cp uu .. )()()()( ttEttE cp EE == (16)

so that the electric field E (t ), in that direction can be expressed as:

cpcp uuuu .)cos(..)(cos..)()()( . δ+ω+ω=+= tEtEtEtEt mcpmcpE (17)

This is the general expression for an elliptically polarized wave. Note that in order for E (t ) to be
linearly polarized the time phase δ between the two orthogonal linear components must be zero (or
an integer multiple of π). The amplitudes of the components Epm and Ecm however, need not be
equal.

The principal and cross-polarization unit vectors, up and uc can be expressed in terms of the
spherical coordinate unit vectors, uθ and uϕ, and the angle β = ϕ (when the transmitted field is
polarized in the +y direction at θ = 0°) by:

ϕθ ϕ+ϕ= uuup
.cossin . (18)

ϕθ ϕ−ϕ= uuuc
.sincos . (19)

Finally, by expressing uθ and uϕ in rectangular coordinates as shown above, up and uc can be
expressed in terms of the antenna coordinate system’s rectangular unit vectors (xa, ya, za) as:
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These are the expressions for the principal and cross-polarization unit vectors for the case of the
satellite antenna transmitting a horizontally linearly polarized field parallel to ya (i.e. a polarization
angle of γ = 0°). This means that the principal polarization direction up is in the direction of ya
(which lies in the equatorial plane) on the antenna boresight at θ = 0° (as can be seen from the
above expression for up with θ = 0°). Note that for off-axis angles, up is not parallel to ya since their
dot product is not equal to one. For the case when the satellite is not transmitting horizontal
polarization, the principal and cross-polarization directions are, for a transmitted polarization
angle γ, given by:
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The xa, ya, za components are thus:
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This last definition for the polarization reference directions will be the one assumed in the analyses
for the reasons cited in Ludwig’s paper.

2 Coordinate system descriptions and transformation matrices

In performing polarization angle calculations, four types of Cartesian orthonormal coordinate
systems will be considered. These are shown in Fig. 4. They are the boresight point coordinate
system (denoted Rb), the earth station coordinate system (Rp), the satellite antenna coordinate
system (Ra), and the Earth-centred coordinate system (Rg). For purposes of interference
calculations, we can think of systems Rb, Rp, and Ra together as comprising the “wanted” satellite
system. In a similar way, if an “interfering” satellite system is present, it will have its own satellite
(Ra2) earth station (Rp2) and boresight point (Rb2), so that the systems Rb2, Rp2, and Ra2 together
comprise the “interfering” satellite system. The Earth-centred system Rg serves as an intermediate
system for transforming between any pair of previous systems. In this section, we therefore develop
the transformation matrices for transforming a vector from the Earth-centred system Rg to each of
these other systems. Determining these transformation matrices is fundamental to the calculations,
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since once they are obtained, computation of the polarization angles and relative alignment angles
becomes a trivial matter. To aid in understanding the method, an example calculation is performed.

2.1 Symbol notation

Symbol definitions and arbitrarily chosen values for the example calculation are as follows:

GSO radius (earth radii): k = 6.61072

Wanted earth station latitude (degrees): ψp = 20

Wanted earth station longitude (degrees): λp = –80

Wanted satellite boresight point latitude (degrees): ψb = 10

Wanted satellite boresight point longitude (degrees): λb = –90

Wanted satellite longitude (degrees): λa = –100

Interfering earth station latitude (degrees): ψp2 = 45

Interfering earth station longitude (degrees): λp2 = –115

Interfering satellite boresight point latitude (degrees): ψb2 = 35

Interfering satellite boresight point longitude (degrees): λb2 = –85

Interfering satellite longitude (degrees): λa2 = –110

For notational clarity, unit vectors will be bolded in italics, vectors with magnitudes other than one
will be bolded and underlined, coordinate vectors which represent the coordinates of a point in
3-D space will be simply underlined, and transformation matrices for transforming between
coordinate systems will be CAPITALIZED AND BOLDED. The unit of distance is assumed to
be one earth radius (6378.153 km).

NOTE – In order to render the symbolic notation clearer, specific characters have, exceptionally, been used
and it is possible that, depending upon the computer hardware and software used, these same characters may
be different to those which appear in the printed text.

2.2 The Earth-centred system Rg

The Earth-centred system has its origin at the Earth’s centre, +z-axis pointed north, +x-axis pointed
toward the satellite, and +y-axis pointed 90° east of the +x-axis. Its unit vectors in Rg components
are therefore simply:
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where zg × xg denotes the vector cross product. Note that both xg and yg lie in the equatorial plane.
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2.3 The wanted earth station system Rp

Recall that the local vertical at a given point on Earth is defined by the vector from the Earth’s
centre to the given Earth point. The unit vector along the local vertical at the earth station P
therefore has Earth-centre components:
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The Earth-centre coordinates of the Earth point P, boresight point B, and satellite S, are:
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The Earth-centre components of the position vector PS from the earth station P to the satellite S are

then:
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The earth-station coordinate system is defined to have its origin at the earth station with its +z-axis
directed toward the satellite. The unit vector along its +z-axis is therefore:
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Its x-axis unit vector is directed to the left of an observer who is located at the earth station and is
facing the satellite (i.e. its direction is given by the vector cross-product of the local vertical lv with
the zp unit vector)
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(Note that xp cannot be determined by the above equation for the special case in which the earth
point is located at the subsatellite point since lv and zp are co-linear. For this special case, we just
choose xp to be equal to yg.)

Finally, the unit vector in the positive y-direction to complete the right-handed system is found by
taking the cross product:

















=×=
726.0

683.0

082.0

pppp yxzy (31)



Rec. ITU-R BO.1212 11

We can verify that these unit vectors form a Cartesian right-handed system by checking their dot
products (i.e. two vectors are perpendicular to each other only if their dot product is zero)

000 =×=×=× pppppp zyzxyx (32)

It should also be noted that, in general, yp is not in the same direction as the local vertical lv. In fact,
in this case, the angle between the two is found from the definition of the dot product to be:

°=× 325.57)cos( pylva (33)

We can now determine the transformation matrix Mp for transforming a vector from the
Earth-centred system Rg to the earth station system Rp. The rows of the matrix are the x, y, and z
components of the earth station system’s unit vectors. Thus we have:

















−−

−
=

















=
06.0056.0997.0

726.0683.0082.0

685.0729.00

pp MM

p3p2p1

p3p2p1

p3p2p1

zzz

yyy

xxx

(34)

where xp2 for example, is the y-component of unit vector xp.

Remember that a coordinate transformation does not change a vector’s magnitude direction, or
what it represents – it merely changes the basis of a vector. Expressing a vector in coordinates of a
particular system does not imply that the vector has its tail at the origin of that system. To express a
vector’s components in the earth-station system when it is specified in the Earth-centred system we
use the matrix equation:

gpp V.MV = (35)

where Vg is the vector in Earth-centred Rg components and Vp is the vector in earth station Rp
components. To perform the inverse transformation – from the Rp system to the Rg system – we
need to find the inverse of matrix M T

p. Thus, the inverse transformation is simply:

p.T
pg VV M= (36)

Note that if we want to find the coordinates of a point W′ (x′, y′, z′) in the earth station system
when it is specified as W (x, y, z) in the Earth-centred system we use:

)PW(W −= .MP' (37)

where P is the Earth-centred coordinates of the earth station found in equation (27).

2.4 The interfering earth station system Rp2

We go through the same procedure as that above to find the transformation matrix for transforming
from the Earth-centred system Rg to the interfering earth station system Rp2.
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The unit vector along the local lv2 at the interfering earth station P2 has Earth-centre Rg
components:

















−=



















ψ
λ−λψ
λ−λψ

=
707.0

183.0

683.0

sin

)sin(cos

)cos(cos

2

22

22

22 lvlv

p

spp

spp

(38)

(Note that we use λg above and not λa2 since the reference x-axis for system Rg is towards the
“wanted” satellite S.)

The Earth-centre coordinates of the interfering Earth point P2, interfering satellite boresight
point B2, and interfering satellite S2 are:

















ψ
λ−λψ
λ−λψ

=



















ψ
λ−λψ
λ−λψ

=

2

22

22

2

2

22

22

2

sin

)sin(cos

)cos(cos

B

sin

)sin(cos

)cos(cos

P

b

sbb

sbb

p

spp

spp

(39)

















λ−λ
λ−λ

=
0

)sin(

)cos(

S 2

2

2 ss

ss

k

k

The Earth-centre components of the position vector P2S2 from the earth station P2 to the satel-
lite S2 are:

949,5SP

707,0

965,0

827,5

SP 2222 =
















−
−=−= 2222 PSSP (40)

The interfering earth-station coordinate system is defined to have its origin at the earth station P2
with its +z-axis directed toward the satellite S2. The unit vector along its +z-axis is therefore:

















−==
119.0

162.0

98.0

|SP| 22
p2p2 zz

22SP
(41)

Its x-axis unit vector is directed to the left of an observer who is located at the earth station and is
facing the satellite (i.e. its direction is given by the vector cross-product of the local vertical lv2 with
the zp2 unit vector):

















=
×
×

=
087.0

981.0

173.0

|| p2
p22

p22
p2 x

zlv

zlv
x (42)

Finally, the unit vector in the positive y-direction to complete the right-handed system is found by
taking the cross product:

















−=×=
989.0

106.0

103.0

p2p2p2p2 yxzy (43)
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We can now determine the transformation matrix Mp2 for transforming a vector from the
Earth-centred system Rg to the interfering earth station system Rp2:

















−−
−=



















=
119.0162.098.0

989.0106.0103.0

087.0981.0173.0

p2p2 MM

321

321

321

p2p2p2

p2p2p2

p2p2p2

zzz

yyy

xxx

(44)

2.5 The wanted satellite antenna coordinate system Ra

The position vector from the boresight point B to the satellite S has Earth-centre components:

646.5BS

174.0

171.0

641.5

BS =
















−
−=−= BSBS (45)

The unit vector along this position vector therefore has Earth-centre components:

















−
−==

031.0

03.0

999.0

|BS| bb zz
BS

(46)

The satellite antenna coordinate system Ra has its origin at the satellite, +z-axis pointed along the
antenna boresight towards point B, and +y-axis directed to the east in the equatorial plane (see
Fig. 4). Thus the unit vector along the +z-axis is simply:















−
=−=

031.0

03.0

999.0

aba zzz (47)

The unit vector along the +y-axis, ya, is now perpendicular to za and also perpendicular to zg in
order to lie in the equatorial plane. Thus, by using the vector cross-product, we have:

1

0

99954.0

0303.0

=
















=
×

×
= aa

ga

ga
a yy

zz

zz
y (48)

And to complete the right-handed Cartesian system we have:

1

1

32.9

031.0

=
















10×−=×= 4−
aaaaa xxzyx (49)

As a check to see that we have a right-handed system and that ya is in the equatorial plane we
compute the dot products:

ga

aa

aa

aa

zy

zy

zx

yx

×
=×
=×
=×

0

0

0

(50)
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Transformation from the Earth-centred system Rg to the wanted satellite antenna system Ra is then
done using:



















−

10×
=

















=

4−

031.003.0999.0

0103.0

132.9031.0

AA MM

a32aa1

a3a2a1

a3a2a1

zzz

yyy

xxx

(51)

2.6 The interfering satellite antenna coordinate system Ra2

To derive the transformation matrix, we follow the same procedure as in § 2.5.

The position vector from the boresight point B2 to the interfering satellite S2 has Earth-centre
components:

906.5SB

574.0

36.1

719.5

SB 2222 =
















−
−=−= 2222 BSSB (52)

The unit vector along this position vector therefore has Earth-centre components:

1

097.0

23.0

968.0

|SB| 22
=

















−
−== b2b2b2 zzz

22SB
(53)

The interfering satellite antenna coordinate system Ra2 has its origin at the satellite S2, +z-axis
pointed along the antenna boresight towards B2, and +y-axis directed to the east in the equatorial
plane. Thus the unit vector along the +z-axis is simply:

1

097.0

23.0

968.0

=














−
=−= a2a2b2a2 zzzz (54)

The unit vector along the +y-axis, ya2, is now perpendicular to za2 and also perpendicular to zg in
order to lie in the equatorial plane. Thus, by using the vector cross-product, we have:

1

0

973.0

231.0

=
















=
×

×
= a2a2

ga2

ga2
a2 yy

zz

zz
y (55)

And to complete the right-handed Cartesian system we have:

1

995.0

022.0

094.0

=
















−=×= a2a2a2a2a2 xxzyx (56)
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Transformation from the Earth-centred system Rg to the interfering satellite antenna system Ra2 is
then done using:

















−

−
=



















=
097.023.0968.0

0973.0231.0

995.0022.0094.0

A2A2 MM

321

321

321

a2a2a2

a2a2a2

a2a2a2

zzz

yyy

xxx

(57)

We now have all the necessary transformation matrices.

3 Calculation of polarization angles and relative alignment angles

Using the above transformation matrices, we can now determine the relative alignment angles βd
and βu, for the downlink and uplink interference cases, respectively.

3.1 Calculation of relative alignment angle ββββd for the downlink case

In this case we need to determine the alignment angle between linearly polarized signals at the
“wanted” earth station P being transmitted from the “wanted” satellite S and an interfering satellite
S2. We assume the wanted earth station P is pointed at its own satellite S. The problem can be
broken down into three steps:

Step 1 calculate the polarization angle εd1 of the wave received from the wanted satellite S by
transforming the transmitted principle polarization vector up – defined in the wanted
satellite’s Ra antenna coordinate system – to coordinate system Rp of the wanted earth
station;

Step 2 calculate the polarization angle εd2 of the wave received from the interfering satellite S2 by
transforming polarization vector up2 – defined in the interfering satellite’s Ra2 coordinate
system – to coordinate system Rp of the wanted earth station; and

Step 3 take the difference between εd1 and εd2 to find the alignment angle βd. Refer again
to Fig. 4.

The polarization angle γ of a wave received from a satellite is specified in a plane which is normal
to the antenna boresight axis (i.e. normal to za). Within this plane it is measured positive counter-
clockwise from the +y-axis defined by ya when looking in the direction of za. An angle γ = 0°,
therefore represents a polarization vector which lies in the equatorial plane. Remember that the
polarization orientation will vary with angular direction so that the reference polarization of the
antenna is defined to be the polarization of the E -field on the boresight axis (i.e. at θ = 0° off-axis
angle). At an angular position (θ,ϕ) in the far-field pattern, the principal (main) and
cross-polarization components of the E -field are defined to lie along the orthogonal unit vectors up
and uc which are tangent to a sphere at the point (θ,ϕ). Therefore, in computing εd1 and εd2, we
need to determine up (and up2 for the interfering satellite) in the angular direction of the receiving
earth station P. Refer to the detailed diagram of the satellite antenna coordinate system shown in
Fig. 4. The angular position of the earth station P in the satellite antenna system is defined by the
angles θa and ϕa. The angle θa is the off-axis angle of –zp which points toward the earth station P
from the za axis (which is the satellite antenna boresight axis). The angle ϕa is the earth station
orientation angle or azimuth angle. It is the angle measured in the plane normal to the boresight axis
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(i.e. the xa, –ya plane) between the xa axis and the projection of –zp onto the xa, –ya plane. ϕa is
measured positive clockwise from the xa axis when looking in the direction of za. These angles are
found by first transforming unit vector –zp to the Ra system to get its (xa, ya, za) components:

)( p

a

a

a

z

z

y

x

−=
















.AM (58)

The off-axis and orientation angles are then:

°=ϕ°=θ









=ϕ=θ

747.41212.2

antcos

aa

aa aa
a

a
a x

y
z

(59)

From equation (23), the principle polarization unit vector up in terms of xa, ya, za components
for γ = 0° is then:

( ) ( )
















ϕ
ϕ−

γ+ϕ+
















θ−
ϕθ
ϕθ

γ+ϕ=
0

cos

sin

cos

sin

sincos

coscos

sin a

a

a

a

aa

aa

apu

(60)

1

7013.3

=


















0257.0−
9997.0

10×−
=

4−

pp uu

The principal polarization vector up above is expressed in antenna system Ra components. To
determine the polarization angle of the principal component at the receiving earth station, we need
to transform up to earth station Rp components. We do this by first transforming from antenna
system Ra components to Earth-centre Rg components and then transforming from Rg components
to the earth station Rp components. This is done through the matrix equation:

)componentsin(

0

685.0

728.0

)( pA
T.p R.MM pppppp uuuu

















== (61)

The received polarization angle (measured from xp) is then from the x and y components of upp:

º248.43tan 11 =ε













=ε dd a

1

2

pp

pp

u

u
(62)

Now we follow a similar procedure to find εd2. To find the angular position of the wanted receiving
earth station P with respect to the interfering satellite antenna system Ra2, we find the unit vector
which points from the interfering satellite S2 to the earth station P.
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The Earth-centre components of the position vector PS2 from the earth station P to the satellite S2
are:

826.5PS

342.0

469.1

627.5

2 =
















−
−=−= 222 PSPSPS (63)

The unit vector along this direction is therefore:

1

059.0

252.0

966.0

|PS| 2
=

















−
−== p2p2p2 zzz

2PS
(64)

The unit vector which points from the interfering satellite to the earth station is then simply –zp2.
We now follow (58-62) above to compute the polarization angle εd2 received from the interfering
satellite.

)( p2

a2

a2

a2

z

z

y

x

−=
















.MA2 (65)

The off-axis and orientation angles are:

º35.150º538.2

tancos

22

22

=ϕ=θ









=ϕ=θ

aa

aa aa
a2

a2
a2 x

y
z (66)

Then unit vector up2 which defines the principle polarization direction in this part of the pattern in
terms of Ra2 components is, for γ2 = 0°, given by:

( ) ( )
















ϕ
ϕ−

γ+ϕ+
















θ−
ϕθ
ϕθ

γ+ϕ=
0

cos

sin

cos

sin

sincos

coscos

sin 2

2

22

2

22

22

22 a

a

a

a

aa

aa

ap2u

(67)



















0.022−
1

10×
=

4−219.4

Again, the principal polarization vector up2 above is expressed in antenna system Ra2 components.
To determine the polarization angle εd2 at the receiving earth station, we need to transform up2 to
earth station Rp components. We do this first by transforming from antenna system Ra2
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components to Earth-centre Rg components and then transforming from Rg components to the earth
station Rp components. This is done by the matrix equation:

)componentsin(

198.0

68.0

706.0

)( pA2
T.p R.MM p2p2pp2p2p uuuu

















== (68)

The received polarization angle is then:

°=ε













=ε 904.43tan 22 dd a

1

2

p2p

p2p

u

u
(69)

The relative alignment angle βd is then simply:

°=βε−ε=β 655.0
21 dddd (70)

3.2 Calculation of relative alignment angle ββββu for the up link case

In this case we need to determine the alignment angle between linearly polarized signals at a
“wanted” satellite S being transmitted from a “wanted” earth station P and an interfering earth
station P2. Note that the interfering earth station P2 is assumed to be pointed at its own satellite,
which is satellite S2. The problem involves three steps:

Step 1: calculate the polarization angle εu1 of the wave received from the “wanted” earth station P
by transforming the transmitted polarization vector up – defined in the wanted earth
station’s Rp coordinate system – to antenna coordinate system Ra of the wanted satellite;

Step 2: calculate the polarization angle εu2 of the wave received from the interfering earth station
P2 by transforming polarization vector up2 – defined in the interfering earth station’s Rp2
coordinate system – to antenna coordinate system Ra of the wanted satellite; and

Step 3: take the difference between εu1 and εu2 to find the alignment angle βu.

In determining the polarization vectors of the signals transmitted from the wanted and interfering
earth stations to their respective satellites, it is assumed that they are matched (i.e. aligned) to the
off-axis receive polarizations of their respective satellite antennas. By definition, the receive
polarization of an antenna in a certain direction is the polarization of the signal transmitted by the
antenna in that direction. Accordingly, to find the matching polarization vectors transmitted from
the earth stations, it is first necessary to find the polarization vectors of the signals transmitted from
the satellites in the direction of their respective earth stations. This is described below, first for the
wanted system, then the interfering system.

We first determine the transmitted polarization vector up from the wanted earth station P to the
wanted satellite S. As discussed above, it is assumed to be matched to the receiving polarization of
the antenna at S in the direction of P. This, in turn, is just the polarization of the signal transmitted
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from S towards P, which has already been computed in equation (61) of the downlink calculations.
Hence, the matching polarization vector transmitted from earth station P on the uplink to S is
from (61):

)ntsnecompoin(

0

685.0

728.0

pRppppp uuuu
















== (71)

As a check, we can transform this vector to antenna system Ra of the wanted satellite to obtain:

)in(

0257.0

9997.0

107013.3

) components

4

( aP
T

A RMM . ppappa uuuu



















−

×−
==

−

(72)

Note that this vector matches that transmitted from the satellite on the downlink as shown in
equation (60). Since the polarization angle in system Ra is defined to be measured positive counter-
clockwise from the +ya axis when looking in the direction of za, the received polarization angle εu1
at the wanted satellite S is:

º021.0tan 11 −=ε













=ε uu a

2

1

pa

pa

u

u
(73)

(Note that due to the way polarization angle is defined, the ratio is the x-component divided by the
y-component.)

To find polarization vector up2 transmitted from the interfering earth station P2 in the direction of
wanted satellite S it is first necessary to find the polarization vector that earth station P2 transmits to
its own satellite S2. It is again assumed that this vector is matched to the receive polarization of S2
in the direction of earth station P2.

Recall that the Earth centre coordinates of earth station P2 and satellite S2 are:

















−=
















−=
0

148.1

51.6

707.0

183.0

683.0

22 SP (74)

The position vector from the interfering earth station to the interfering satellite is then:

















−
−=−=

707.0

965.0

827.5

22SP2222 PSSP (75)

and the unit vector from the interfering earth station to the interfering satellite is then:

















−
−==

119.0

162.0

98.0

SP 22
p2s2p2s2 zz 22SP

(76)
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The unit vector from satellite S2 to earth station P2 then is simply:










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





=
−

−
119.0

162.0
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Transforming this vector to the antenna coordinate system Ra2 of interfering satellite S2 we have:
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The off-axis and orientation angles of the earth station P2 as measured with respect to the antenna
boresight of satellite S2 (which is directed towards the boresight point B2) are then:
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From equation (23) the principal polarization unit vector up2s2 that satellite S2 transmits towards
earth station P2, assuming that S2 is transmitting horizontal polarization (i.e. γ = 0°) on its antenna
boresight axis is then:

















ϕ
ϕ−

γ+ϕ+



















0.0688
0.9976

10×
=

















θ−
ϕθ
ϕθ

γ+ϕ=

=γ

4−

0

cos

sin

)cos(

6183.7

sin

sincos

coscos

)sin(

0

2

2

2

2

22

22

2 a

a

a

a

as

aa

ap2s2u

(80)

The principal polarization vector above is expressed in antenna system Ra2 components. To
determine the polarization angle of the principal component at the receiving earth station P2, we
need to transform it to earth station Rp2 components. We do this by first transforming from antenna
system Ra2 components to Earth-centre Rg components and then transforming from Rg components
to the earth station Rp2 components. This is done through the matrix equation:
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We now have the (xp2, yp2, zp2) components of the polarization vector received at earth station P2
from its satellite S2 from which we can find the polarization angle. At this point, it is important to
keep in mind the definition of polarization angle and the reference directions that are used to define
it. Recall that in the satellite antenna coordinate systems, polarization angle is the angle between
the +y-axis (which lies in the equatorial plane) and the projection of the polarization vector on the
x-y plane (which is normal to the antenna boresight) measured positive CCW (counter clockwise)
while looking along the +z-axis (which is the antenna boresight axis). Hence, in the satellite antenna
coordinate systems, a polarization vector which is parallel to the equatorial plane has a polarization
angle of 0° while one that lies along the +x-axis has a polarization angle of 90°. To be consistent,
we will define the polarization angle in the earth station coordinate systems to be the same, even
though their axes are oriented differently. Hence, polarization vectors that are oriented along the
local vertical will have polarization angles close to 0° while those that are oriented along the local
horizontal will have polarization angles close to 90°. The received polarization angle
(measured + CCW from the yp2 axis while looking along the zp2 axis) is then from the x and y
components of upp,
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(Note that the ratio is the x-component over the y-component and that the proper quadrant is
accounted for in the arctangent operation.)

Assuming the signal transmitted from earth station P2 is polarization matched to the receive
polarization of satellite S2, this is therefore also the polarization angle of the wave transmitted on
the uplink towards satellite S2. What we need, however, is the polarization vector of the signal
transmitted in the direction of the wanted satellite S. To find this vector, it is necessary to find the
angular position of S in the system Rp2 of earth station P2. Given the Earth-centre coordinates of
the interfering earth station P2 in (39) and wanted satellite S in (27), the position vector P2S from
the interfering earth station to the wanted satellite has Earth-centre Rg components:
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The unit vector along this position vector is then simply:
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Now, we transform from Rg components to Rp2 components using matrix Mp2:
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The off-axis and orientation angles of S with respect to the Rp2 system are then:

°−=°=θ














=ϕ=θ

541.5091.11

antcos

22

22

spsp

spsp aa
p2s

p2s
p2s x

y
z

(86)

We now again use equation (23) (Ludwig’s third definition) to find the transmitted polarization
vector in the angular direction (θp2s ϕp2s) of the wanted satellite S, given the polarization angle on
the interfering earth station’s antenna boresight (which is the angle ε computed above). Hence, the
polarization vector up2 is:
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Finally, to find the received polarization angle at the satellite S of the wave transmitted from the
interfering earth station P2, we transform vector up2 from system Rp2 to system Ra of the wanted
satellite using the matrix equation:
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The received polarization angle εu2 is then:
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Finally, the alignment angle βu between the linearly polarized signal received from the wanted earth
station and the linearly polarized signal received from the interfering earth station is:

°=βε−ε=β 668.121 uuuu (90)
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FIGURE 1

Rectangular, cylindrical and spherical coordinate systems
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1212-02

up = ya up = uϕ = – sin ϕ · xa + cos ϕ · ya

up = [cos ϕ sin ϕ (cos θ – 1)] xa + [cos θ sin2 ϕ + cos2 ϕ] ya – [sin θ sin ϕ] za

FIGURE 2

Alternate definitions of polarization
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1212-03
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FIGURE 3

Definition of principal and cross-polarization from
the antenna pattern measurement method

Probe antenna

Pattern cut
at ϕ = 0°

Pattern cut
at ϕ = 45°

Antenna under test

ûθ and ûϕ are spherical coordinate unit vectors
ûp defines the principal polarization direction at a point (θ, ϕ)
ûc defines the cross-polarization direction at a point (θ, ϕ)

The principal and cross-polarization directions as defined by the antenna pattern measurement method. The antenna under test is
mounted at the origin of a spherical coordinate system. A probe antenna which is linearly polarized is used to determine the polarization
pattern of the test antenna by making pattern cuts at various azimuth angles ϕ. Each pattern cut begins at θ = 0° (on the z-axis) where
the probe is rotated about its axis in order to align its polarization with that of the test antenna. The orientation of the polarization
at θ = 0° defines the basic polarization direction of the test antenna. For a given ϕ, a pattern cut is then taken by varying θ by moving the
probe along a great circle arc as shown. The probe remains fixed about its axis so it retains the same orientation with respect to the unit
vectors ûθ and ûϕ and the same polarization angle β. The orthogonal unit vectors ûp and ûc (which are also tangent to the sphere
at a point (θ, ϕ)) are then defined to be the principal and cross-polarization directions, respectively.



26 Rec. ITU-R BO.1212

P

S

lvb

yp

xp
zp

yg

zg

xa za

ya

zb

yb
B

xb

θa

γ

ϕa
xa

za

ya

xg

lv

– zp

– zp

FIGURE 4

Illustration of the various coordinate systems
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