- 2 -

International Telecommunication Union

Open Communication Architecture Forum

OCAF Focus Group
CGOE Components

SIP
Version 1.0

July 2006

Y.cgoe-cmpts-Annex sip
Carrier grade open environment components

ANNEX sip
The SIP protocol CGOE component
Summary

This Annex specifies the SIP protocol CGOE component.

Keywords

<Optional>

1
Scope

This Annex specifies the SIP protocol CGOE component.

2
References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation

Editor’s note: To be completed
3
Definitions

Editor’s note: To be completed

This Recommendation defines the following terms:

3.1
Application: (See Recommendation Y.CGOE)
3.2
Carrier grade: (See Recommendation Y.CGOE)
3.3
CGOE component: (See Recommendation Y.CGOE)
3.4
End-to-End Security: End-to-end security refers to security between two Diameter nodes, possibly communicating through Diameter Agents.

3.5
Functional requirements: (See Recommendation Y.CGOE)
3.6
Middleware: (See Recommendation Y.CGOE)
3.7
Non-functional requirements: (See Recommendation Y.CGOE)
4
Abbreviations

Editor’s note: To be completed
	AAA
	Authentication, Authorization and Accounting

	CGOE
	Carrier Grade Open Environment

5
Conventions

This Recommendation uses the CGOE component diagram conventions detailed in clause 5 of the main body of this Recommendation.
6
The SIP protocol CGOE component

6.1
General

The Session Initiation Protocol (SIP) is an application-layer signaling protocol that allows for the creation, modification, and termination of session between participants. Typical sessions include telephone calls, conferencing, multimedia exchanges, and instant messaging and chat. The SIP protocol defines a clear separation between the control mechanism and the mechanics of the communication. Descriptions of session mechanics are deferred to other protocol standards, such as the Session Description Protocol (SDP). Consequently, SIP can be used as a control protocol for a wide range of applications.

SIP defines a number of SIP elements that can be used for request routing, authentication, and the construction of complex services. SIP contains a notion of device registration, where user devices register their contact specifics, capabilities, and user contact preferences with a SIP registrar under a public address. When setting up calls, a SIP call control application consults the registrar to determine how to connect a call. Additional components such as service brokers may be used to provide additional abstraction and support for complex service logic. Requests are routed to end destination networks based on the domain name in SIP addresses, where an individual SIP address is known as SIP URI. Communication between SIP elements makes use of UDP, TCP, and TLS (via SSL) transports for message exchange.

The SIP protocol stack provides an API for implementing a SIP user agent (UA). Since a SIP UA may sometimes act as client and sometimes as server, a SIP application must be able to handle continuous asynchronous processing of SIP messages throughout the lifetime of a communication session. The protocol stack API should provide some enforcement of proper SIP transactional semantics, keeping the application compliant with the SIP specification. Higher level APIs and SIP services may be offered to the application through a SIP application server, which extends the SIP protocol stack concept to provide an extended runtime environment for SIP application logic.

SIP protocol components must be able to scale according to message traffic and call volumes. SIP protocol stack components should support a horizontal scalability scheme, where incoming calls can be routed to least loaded servers. Implementation of this scheme typically requires a three tier model, where a front IP load balancer distributes load for initial requests to a second tier of SIP stateless proxy components that perform SIP-level load balancing. The SIP stateless proxy components pick a least loaded SIP protocol stack instance and ensure that future messages within that session are routed to the same instance. Note that the notion of a stateless proxy is somewhat confusing: the SIP stateless proxy is stateless relative to SIP state, not any additional state used to guarantee high availability, etc. An illustration of a typical three tier configuration is shown in Figure sip.1/Y.cgoe.cmpts.

[image: image1.emf]IP Load

Balancer

SIP

Stateless

Proxy

SIP

Stack

Instance

SIP

Stack

Instance

SIP

Stateless

Proxy

SIP

Stack

Instance

SIP

Stack

Instance

SIP

Agent

Figure sip.1/Y.cgoe.cmpts – Three tiered SIP load-balancing architecture

6.2
Relationship with other CGOE components

The SIP protocol stack is used to construct higher level application services that can be used to construct service provider applications. Examples of such higher level services include B2BUA functionality that can be used by application logic to establish calls. A SIP protocol stack might integrate with an application server to provide higher level protocol APIs for application logic. Integration with application server middleware provides a common execution runtime and deployment environment for SIP service logic.

SIP elements sit in the core of service provider infrastructure and thus have strict requirements regarding reliability and scalability. While lower level SIP protocol stacks focus solely on provided SIP protocol functionality and delegate implementation of high availability function to other areas of the application, the complexities in providing high availability for SIP session information and associated application state strongly support integration of high availability services with the SIP protocol stack. This integration is often achieved when providing higher level SIP API services via a SIP application server.

The relationship between the SIP protocol stack component and other CGOE components is depicted in Figure sip.2/Y.cgoe.cmpts.

[image: image2.png][e<Category>>
protocol Services

Stateless
SIP Proxy

- - O D - - - - = - = = =
[c<categorg>> T [<<category>>
signaling Prdcocol stacks s8R /Web services midaleware

SIP Protocol Application

Server

|
[e<Categoryot '
[Forkload Mankgement services|

1
[e<Category>> '
!

¥ L'

|
'
I [systen Model services|
'
'

Performance Overload i sw Lifecycle
Monitoring Control Upgrade Management.

Figure sip.2/Y.cgoe.cmpts - Relationship of the SIP Protocol Stack Component with the CGOE

6.3
Internal functional properties

SIP Protocol Communication

The base SIP protocol defines an extensible framework for application-level control of sessions. The SIP specification clearly defines points of extensibility for the protocol. Consequently, many SIP extensions have been proposed as additional standards. Several of these come to be seen by the industry as essential extensions to be supported by SIP protocol stacks. These essential extensions include an additional primitive for relaying out of band application-level information during a session, a set of event subscription and notification primitives that can be used for relaying user presence, additional primitives for instant messaging, and some additional support for reliable provisional messages that support interoperability with the PSTN.

COTS component providers should clearly illustrate the SIP specifications that are directly supported by the protocol stack APIs and what facilities exist within the API for handling SIP protocol extensions.

Role of Standards:

· RFC2327 – SDP: Session Description Protocol

· Describes the characteristics of a multimedia session. Contains sufficient information to describe how media entities should connect to each other, supported CODECs, bandwidth capabilities, etc.

· RFC2543 – SIP: Session Initiation Protocol

· The initial version of the SIP protocol specification. SIP protocol stacks need only ensure backwards compatibility with RFC2543 elements. Points of RFC2543 interoperability are emphasized within RFC3261. A SIP protocol stack COTS component should provide support for these points.

· RFC3261 – SIP: Session Initiation Protocol

· The core specification of the SIP protocol. Details proper behavior of user agents, as well as the mechanisms by which sessions are established.

· RFC3262 – Reliability of Provisional Responses in the Session Initiation Protocol

· Describes an extension to SIP (the 100rel extension) that adds a new primitive to allow reliable transmissions of provisional responses. This is required to ensure interoperability with the PSTN.

· RFC3265 – Session Initiation Protocol (SIP): Specific Event Notification

· Describes the SIP primitives that can be used to signal call and presence state change information. This specification describes how to create event packages, which are notification and presence packages that build on top of these additional primitives.

· RFC2976 – Session Initiation Protocol (SIP): The SIP INFO method

· Describes an additional SIP primitive for sending application layer information between end points during a session.

· RFC3263 – Session Initiation Protocol (SIP): Locating SIP Servers

· Describes the infrastructure means for locating SIP clients, proxies, and servers within the network. This method describes the role of DNS in providing this sort of information.

6.4
Non-functional properties

Live Upgrade

Higher level SIP protocol stack APIs are provided in the form of SIP application servers. The application server provides a well defined deployment model for SIP application logic. These application servers should support operation within a highly available configuration for use within a service provider’s environment. To maximize reliability and reduce application downtime, SIP application servers may support a live upgrade feature. This allow for an upgraded application to execute in conjunction with the previous application version during the upgrade. All new requests are routed to the upgraded versions while existing sessions are allowed to interact with the older application instance. This upgrade functionality differs from other CGOE upgrade functionality in that it must be aware of the dynamics of existing calls and how to preserve those calls throughout the upgrade process. Once the older application instance has finished serving its calls, it can then be safely removed from the system.

Serviceability

As SIP applications provide crucial control functionality at the core of the network, operations must have the ability to remove a SIP node for maintenance without disrupting delivery of application service. This is usually accomplished by having SIP applications operate in a clustered environment and providing a means for indicating to the application runtime that a node should be remove for serviceability.

For SIP application servers, this sort of functionality can be offered in a variety of ways. Quiesce functionality can be provided that enables graceful shutdown of an application server once all outstanding calls have terminated. During the quiesce period, all new requests are routed to the remaining nodes in the cluster. Operators may optionally specify a timeout period, where all outstanding SIP sessions that are not gracefully terminated within the specified time period are forcibly terminated. Alternatively, serviceability of application servers may make use of fail-over functionality, simply removing an application server from a cluster at will and letting the fail-over mechanism migrate the session data accordingly.
SIP Performance

COTS components should describe the performance characteristics of the SIP protocol stack in terms of user call volumes, call length, SIP traffic characteristics, and throughput in messages per unit time. Call volumes are often expressed in terms of busy-hour call attempts (BHCA), which express the number of calls initiated by end users in a given hour during peak load. Call length is used to scope memory utilization, since SIP session information must be kept in memory for the duration of the call. Traffic characteristics describe the expected characteristics during session setup and usually involve a discussion of the number of messages processed during call establishment, use of redirection servers, etc. Throughput in messages per unit time are useful in determine burst capabilities of the protocol stack.

Effective application performance sizing needs to draw on these factors and then incorporate overhead due to application logic execution, authentication, and high availability overhead. Building block implementers can use these characteristics to match SIP protocol stack capabilities with service requirements.

State Replication

SIP protocol stacks must be able to operate in a highly available environment. This often requires support for application clustering at the application level or at the middleware level. For higher level SIP protocol stack APIs that are integrated into J2EE middleware environments, such stacks need support clustered operations and failover schemes.

Non-functional requirements in this area should focus on descriptions of state replication, session migration, redistribution of load upon failure, failover detection time, failover recovery time. Timers and other persistent notification mechanisms must also be restarted after state migration. For clusters of SIP applications, it is useful to discuss worst case message processing throughput in the advent of failure. This provides an understanding of how load will be redistributed throughout the cluster in the advent of failure. Support for these requirements may be implemented via inter-stack communication schemes or in conjunction with stateless proxies when using the tiered deployment model. A discussion of the expected downtime for the SIP protocol stack is also appropriate.
6.5
Interfaces

6.5.1
SIP-IF-01 <Lower Level SIP Protocol APIs>
Lower level APIs provide a means of creating SIP user agents for integration with applications. These APIs provide barebones protocol support for the creation of SIP messages and SIP transactions. Applications must implement behavior consistent with the descriptions in the RFC3261 SIP protocol specification.

Role of Standards:

· JSR32 – JAIN SIP API Specification

· Lower level API for creating SIP user agents from within Java applications
6.5.2
SIP-IF-02 <Servlet Support>
Higher level APIs and services may be provided in the form of a SIP application server. A SIP application server makes uses the notion of Servlets as a unit of application logic. A Servlet is a piece of code that implements a well defined interface that can be invoked by the SIP application server appropriately to process SIP requests. The application server also provides higher level services to the application, handling redundant or lower level logic on behalf of the application, such as message retransmission and association of application state with SIP sessions. Additionally, the application server provides a well defined management and deployment model for SIP application logic.

Role of Standards:

· JSR116 – SIP Servlet API

· Defines a high-level extensions API for SIP protocol stacks. Enables SIP application logic to be deployed using the Servlet model. This often results in integration with J2EE application servers
6.5.3
SIP-IF-03 <Converged Application Support>
Converged applications refer to applications that provide services across protocol boundaries. These applications exploit the different characteristics of the various protocols to interact with different elements in the service provider and IT enterprise infrastructure. Currently, converged HTTP/SIP applications have been described within SIP Servlet specifications. The description of converged application semantics describe how HTTP and SIP sessions correlate, as well as a model for implementing cross-protocol application logic.

Role of Standards:

· JSR116 – SIP Servlet API

· Describes converged HTTP/SIP application semantics and how such services can be provided within the application server environment
7
Security

Editor’s note: To be added

Bibliography

Editor’s note: To be added

[image: image3]
[image: image4]
CGOE SIP Version 1.0

[image: image3][image: image4][image: image5.png]Open
Communication
Architecture
Forum

[image: image6.png]

_1176562162.vsd

