ITU-T Workshop on Bridging the Standardization Gap and Interactive Training Session

(Nadi, Fiji, 4 – 6 July 2011)

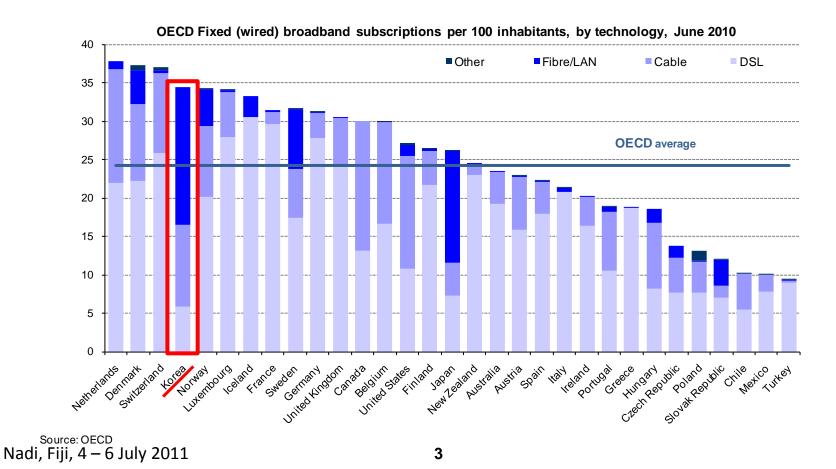
NGN Deployment and Its Experience

Hosong Lee Manager / KT

Nadi, Fiji, 4 – 6 July 2011

Introduction

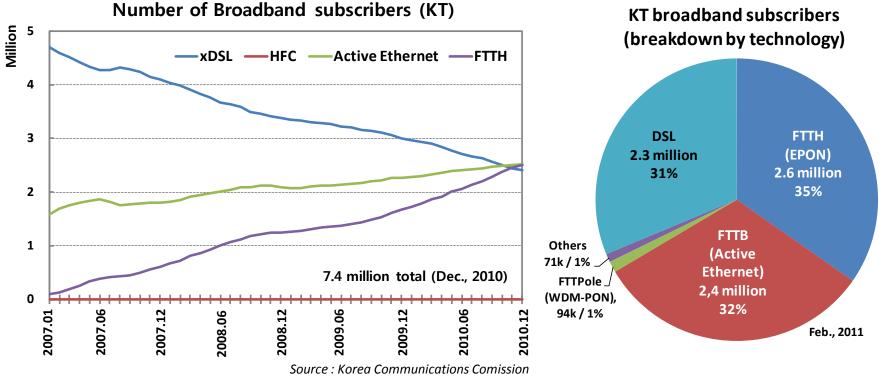
- **KT NGN Architectures**
- **KT NGN Services**
- **Considerations of NGN Deployment**


Broadband status update : Korea

Korea, "Broadband wonderland"

34.4 broadband subscription per 100 inhabitants (OECD, June 2010)

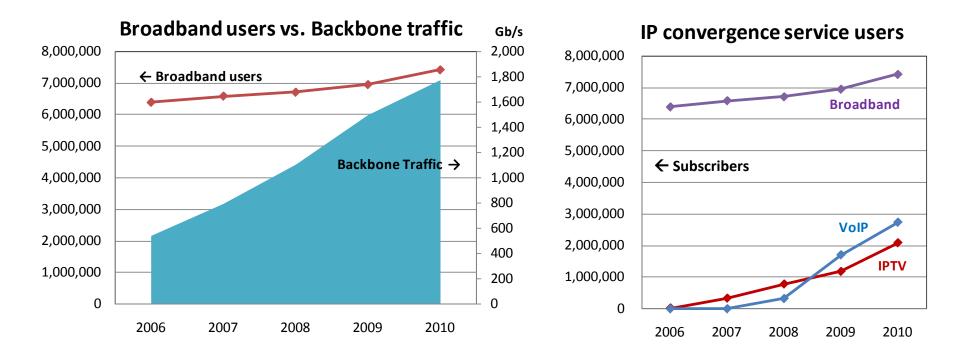
O Household penetration exceeded 100% in late 2010 (17.2M subscribers / 17.1M households)


55% of broadband users are enjoying super-speed FTTH or active Ethernet services

Broadband status update : KT

In late 2010, FTTH became the major technology of KT's broadband network

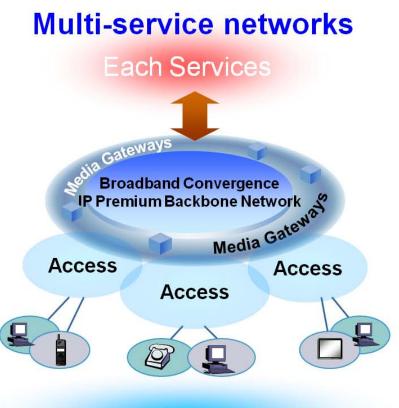
- DSL lines are being faded out, rapidly replaced by FTTH and FTTB
- FTTH for SFU(single family unit) area : IEEE 1G-EPON
- FTTB for MDU(multi dwelling unit) area : Active Ethernet
- 100Mb/s service coverage : 90.1% (Estimated, Dec. 2010)




```
Nadi, Fiji, 4 – 6 July 2011
```

Traffic growth

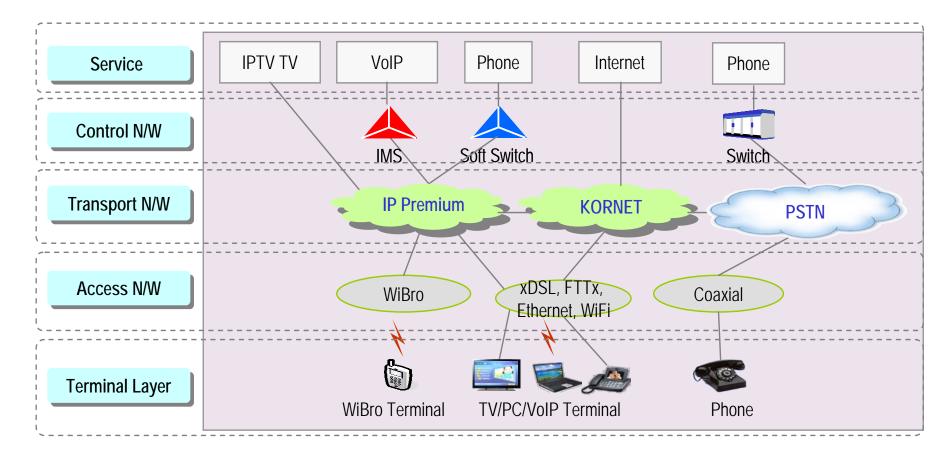

Backbone traffic has increased **3.3 times** during the past 5 years


- For the same period, our broadband customers increased only by 16%
 - ightarrow Dilemma of a decoupling in revenue and traffic
- Spreads of new IP-based convergence services
 - Customer bases of IPTV and VoIP are constantly growing

NGN concept

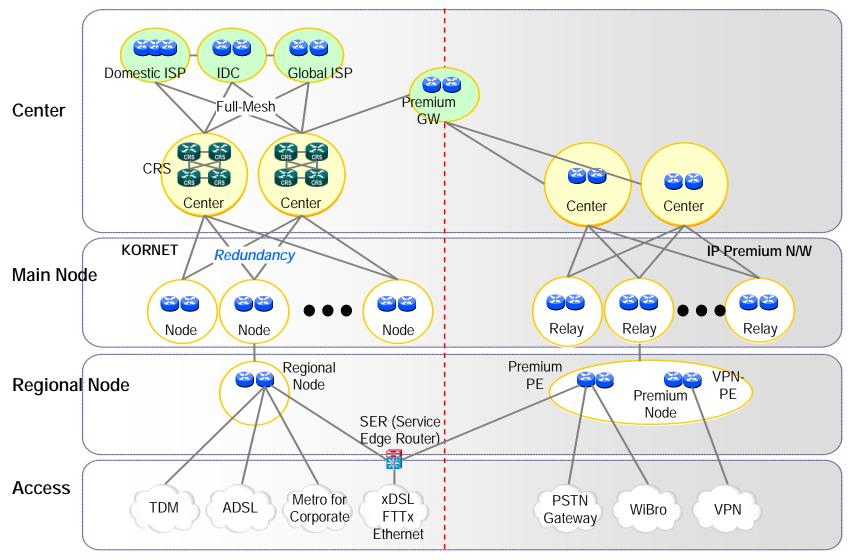
IP Network which can provide various emerging services including voice, data and multimedia services over a single network.

All traffic will be Packetized in IP


NGN goals

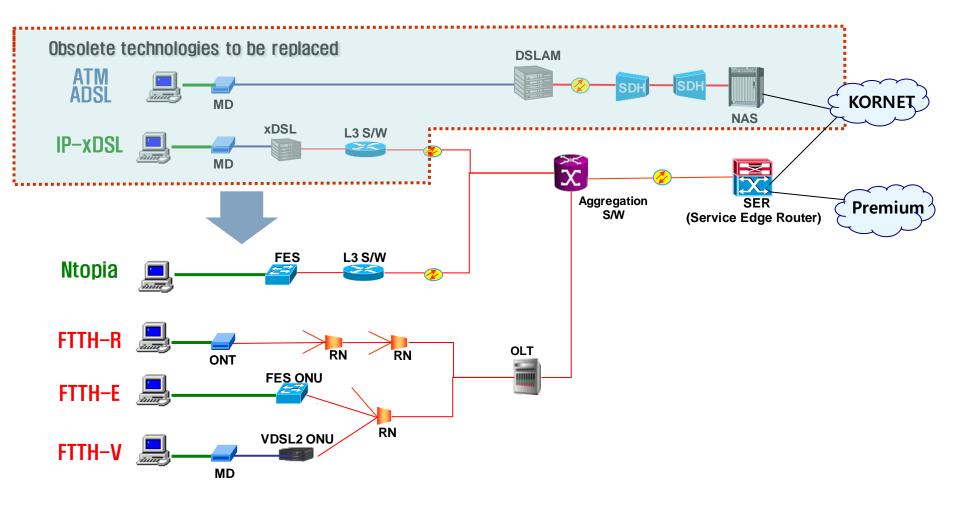
- New service infrastructure for more profit
- Integrated IP network architecture which will offer voice, data or multimedia broadcasting over a single network
- From voice-oriented service to high-quality multimedia services including highquality voice, video, broadcasting and the like.
- Long-term cost-savings by introducing cost-effective hardware and developing in-house technological leverage

Architecture of KT-NGN


- Divided into the IP Premium network and the KORNET network
- IP Premium network is a new backbone network for KT NGN

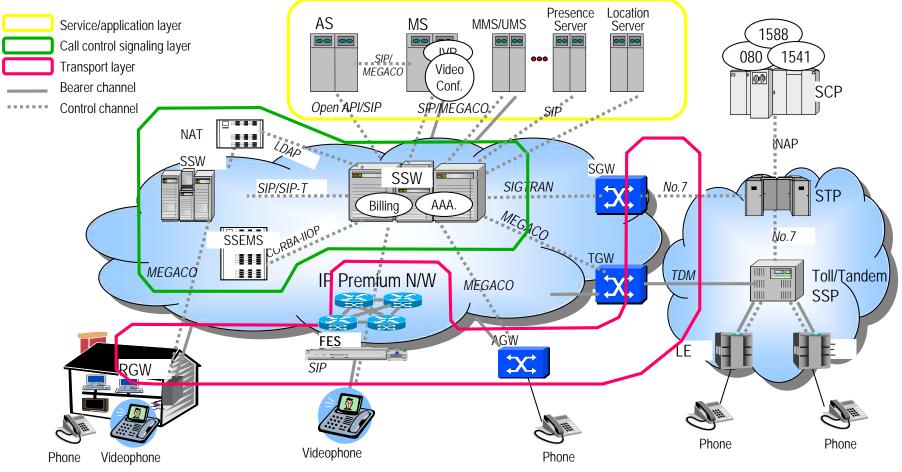
IP/MPLS, QoS(Diffserv), Multicast(PIM-SM), High-availability

Architecture of KT-NGN Backbone Network

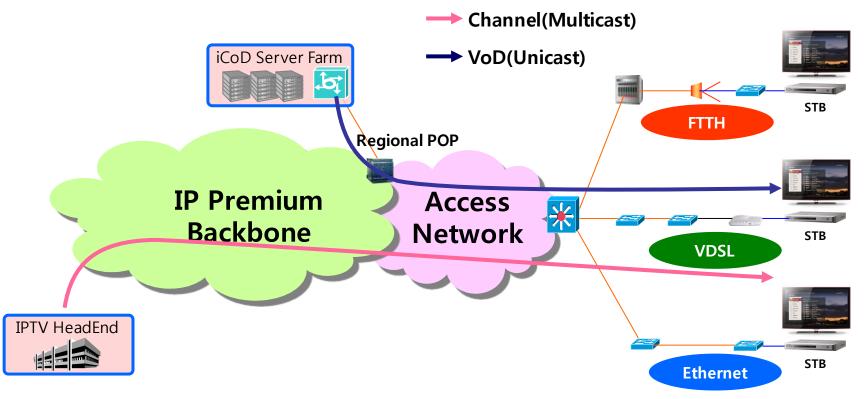

Star topology with two distinct centers in Seoul

Nadi, Fiji, 4 – 6 July 2011

Architecture of KT Access Network

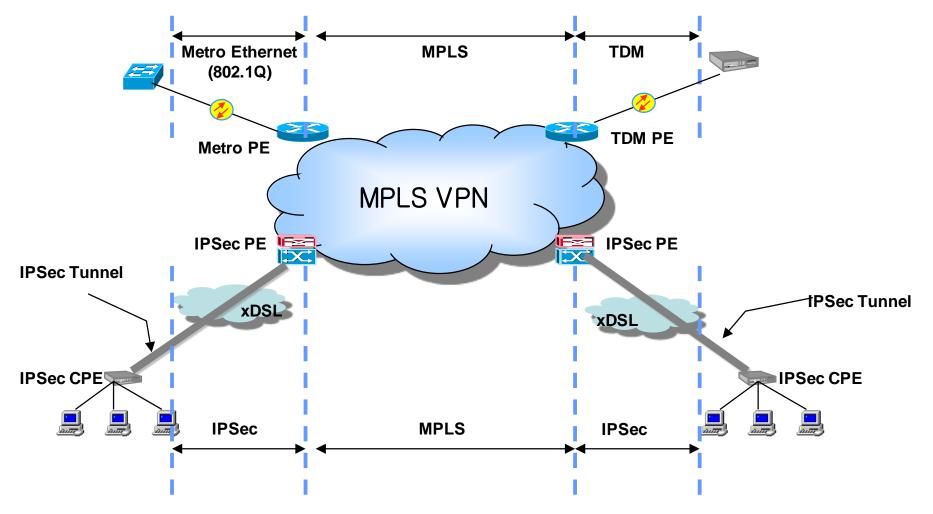

- **DSL demands are becoming saturated**
- **Currently, FTTH has become a great part of KT access network**

KT-NGN Service Architecture : Voice Call


PSTN voice traffic is transferred over the NGN.

 VoIP service offers diverse value-added services including video telephony, Internet fax and SMS

KT-NGN Service Architecture : IP-TV


- New service that merged the strengths of TV and high-speed internet
- Provide IP-TV services under the brand name of "Olleh TV"
 - Live channels : 300+
 - ✤ VoDs : 90,000+
 - Interactivities : information, entertainment, T-Commerce etc.

Nadi, Fiji, 4 – 6 July 2011

KT-NGN Service Architecture : VPN

- Provide MPLS VPN and IPSec VPN services for enterprise
- In addition, Multicast VPN and L2VPN(VPLS, VPWS) services were added in 2009

KT-NGN Service Architecture : Wibro

Wibro service developed for high-speed mobile internet

- High-speed upload : average 1.2Mbps
- High-speed download : average 3Mbps
- Internet Support various type of devices Laptop, USB Dongles, dedicated Wibro handsets etc. Premium WiBro WiBro Backbone Device Aggregation Repeater ACR RAS S/W WiMAX as a Wi-Fi backhaul Mobile data offloading egg through mobile Wi-Fi hotspots WiMAX egg : WiMAX-WiFi gateway

Mobile Wi-Fi hotspot

Considerations for NGN Backbone

Guarantee of reliability and stability of existing services

How to deploy NGN without legacy services interruption

Meeting of new service requirements

Mobile Internet, PSTN transformation, multimedia service

Consideration of the future evolution

Should be considered service and network development strategies

CAPEX

How to minimize the investment

OPEX

How to minimize complexities in operation and management

NGN service requirements

Service	Requirements for Each Service	Network Requirements
Voice Service	 Guarantee PSTN-level QoS (e.g., less than DTD 600ms) PSTN-level reliability Guarantee differentiated transport based on priority Security on signaling traffic 	 Survivability QoS MPLS/VPN Multicast IPv6 Service control O&M Security
IP-TV	 Multicasting (real-time broadcasting traffic transport) Real-time transport / differentiated transport based on priority Stability as a broadcasting station Scalability to accommodate hundreds of channels 	
Mobile WiMAX	 IPv6 and Mobile IP QoS and strengthened network security 	
VPN	MPLS VPN and end-to-end QoSReliability of VPN service	

*DTD : Dial Tone Delay

QoS profile for KT NGN

Class	Code Number (IP ToS, MPLS EXP)	Serve For	Queuing Policy
GOLD	7	Reserved	Priority Queuing
	6	Routing protocol packet Voice traffic	
SILVER	5	Reserved	50% of remaining BW RED (Random Early Detection)
	4	IPTV-Multicast traffic	
BRONZE	3	IPTV-Unicast traffic	30% of remaining BW
	2	data traffic	RED (Random Early Detection)
BEST- EFFORT	1	Reserved	20% of remaining BW
	0	Others	RED (Random Early Detection)

Multicast address allocation

- For interoperable multicast channels, Should use 'GLOP' address(defined RFC 3180)
- GLOP address space : 233/8

Example

○ KT KORNET ASN = 4766 = <u>00010010</u> <u>10011110</u>

18 158 → 233.18.158.0/24

Multicast high-availability

Static Join

- Static IGMP Join on the edge routers
- Provide a sub-second channel zapping time

Fast Convergence

- deploy IGP fast convergence for Multicast fast convergence
- Tuning various timer settings : Carrier-delay, LSA delay, SPF delay, Mcast RPF update timer etc.

Multicast security

- Sroup range filtering : filtering improper multicast group except approved GLOP addr.
- PIM register filtering : only approved source can register to RP
- MSDP SA filtering : limitation for SA information
- Multicast Route limit : limitation of maximum multicast route entry
- BSR message filtering

Optimal RP positioning

In KT practice , <u>RP == HE Router</u>

RP redundancy

Dynamic RP vs. <u>Anycast RP</u>

Multicast traffic load balancing issue

Based on source IP and Multicast group address

Other considerations

Routing policy

Consider routing policy to maximize the operational convenience

○ BGP(Route Reflector), IGP(OSPF), MPLS(LDP)

Service migration to NGN

How to transform PSTN to NGN without any interruption

Network scalability/stability

- How to eliminate single point of failure
- How to deploy fast convergence to minimize routing failure time

Operation

- Standardization of operating process
- Extensive training and education programs
- Troubleshooting guidelines

Security

How to prevent massive malicious traffic attacks

Nadi, Fiji, 4 – 6 July 2011

Thank You

E-mail <u>hosonglee@kt.com</u>
Fixed +82-42-870-8607
Mobile +82-10-7345-0580