Communications in ITS
for cooperative systems deployment

Orange Labs

Bernadette Villeforceix, Orange Labs Networks and Carriers
Stephane Petti International M2M Center, Orange Business Services
Fully Networked Car Conference
2-3 March 2011 - Geneva
Intelligent Transportation Systems (ITS) background and societal motivations

✦ Reduce road fatalities is the primary public objective
 1. Provide road operators the possibility to warn drivers for route hazard or using communication systems for impact avoidance.
 2. Develop **Road safety service** (eg. emergency call, halt vehicle, vehicle in wrong way, hard braking, speed limits violation, curve speed warning)

✦ More efficient and greener mobility
 1. Transportation and traffic regulation optimized, allowing reduction of petrol consumption and emissions of green house effect gases
 2. **Traffic management service** (ex road information, traffic information and relief routes, weather information, congestion aware navigation systems)
 3. Telematic services for better Electrical Vehicles (EV) management

✦ New market opportunity
 1. Connection to the internet everywhere in a road depending on radio coverage and technology used, providing infotainment services for increasing passengers comfort
 2. Opportunity to develop M2M services between car sensors and a remote server

 Mobility and comfort services for drivers and passengers (ex POI for EV, multimodal Platform, traveler information, M2M services, electronic payment with NFC...)
Connectivity and cooperation
at the heart of ITS

ITS communications are possible in two modes with combination of them:

- **Vehicle to Vehicle communication (V2V)**
 1. specifically with IEEE802.11 radio technology
 2. new amendment 802.11 p designed for MAC and PHY layers
 3. objective to achieve low latency communications in short coverage areas (DSRC)

- **Vehicle to Infrastructure (V2I / I2V / I2I)**
 1. new access technology IEEE 802.11p designed for DSRC
 2. connected to several Radio Access Networks (EDGE,3G/HSPA,Wifi 8021.11a/n, IR, millimetre waves..),
 3. new ones considered (LTE, ...)

[Diagram showing connectivity between vehicles and infrastructure]
Communications Standardization initiatives
at the heart of ITS systems deployment

- Requirement of CE to get harmonization and coordination in worldwide ITS initiatives and developments (Asian, Europe, USA)
- EC mandate 453 to issue a coherent set of standards, specifications and guidelines to support EU wide implementation and deployment of Cooperative ITS systems, ETSI and CEN are involved in EC/M453
- EC directive on ITS (July 2010): 4 priority domains and 6 priority actions: adoption of specifications for priority action(s) by 27/02/2013, 12 months after adoption, EC presents to European Parliament and European Concil a proposal for the deployment of this action
Comparison of technology for cooperative systems

<table>
<thead>
<tr>
<th>Technology</th>
<th>IEEE 802.11n</th>
<th>IEEE 802.11p</th>
<th>3G/HSPA</th>
<th>LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>50-100Mbps (MIMO)</td>
<td>3 to 5 Mbps</td>
<td>14Mbps</td>
<td>100Mbps in 20MHz channel (MIMO)</td>
</tr>
<tr>
<td>Speed</td>
<td>High speed capacity</td>
<td>High speed capacity (doppler spread sensitive)</td>
<td>High speed capacity</td>
<td>High speed capacity</td>
</tr>
<tr>
<td>Coverage distance</td>
<td>A few km in open field</td>
<td>500m</td>
<td>A few km in open field</td>
<td>A few km in open field</td>
</tr>
<tr>
<td>Type of communications</td>
<td>V2I</td>
<td>V2V</td>
<td>V2I</td>
<td>V2I</td>
</tr>
<tr>
<td>QoS</td>
<td>EDCA parameters (802.11 e)</td>
<td>EDCA parameters (802.11 e)</td>
<td>RAB and radio resource allocation</td>
<td>SAE Bearer: GBR, MBR…delay, PER</td>
</tr>
<tr>
<td>security</td>
<td>WPA2</td>
<td>PKI with cryptography</td>
<td>USIM card, authentication, cryptography</td>
<td>USIM card Authentication AKA encryption</td>
</tr>
<tr>
<td>E2E delay</td>
<td><250ms</td>
<td><100ms</td>
<td><a few hundred of ms depending on the cell load</td>
<td>100ms</td>
</tr>
</tbody>
</table>
3 Standardisation bodies:
- **ISO TC 204 WG 16**: Started in 2001, WG16 of the International Technical committee 204 developed architecture **CALM (Communications Access for Land Mobiles)**
- **ETSI ITS TC**: founded in 2007, ETSI involved in EC Mandate M453 to develop a minimum common set of standards for European needs and deployment.
- **IEEE WAVE 1609**: American WG created since 2006 developing **WAVE (Wireless Access in Vehicular Environment)** architecture based exclusively on top of IEEE 802.11p and ASTM1609
ITS G5 profile: The Physical layer for EU V2V

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>channel</th>
<th>service</th>
</tr>
</thead>
<tbody>
<tr>
<td>5875MHz to 5905MHz - G5A</td>
<td>G5CC in G5A / 10MHz</td>
<td>Road safety and traffic efficiency (control channel)</td>
</tr>
<tr>
<td>5855MHz to 5875MHz - G5B</td>
<td>G5SC1 and G5SC2 in G5A / 10MHz</td>
<td>road safety and traffic efficiency (service channel) SA service announcements of services operated on G5SC1 to G5SC5</td>
</tr>
<tr>
<td>5470MHz to 5725MHz - G5C</td>
<td>G5SC3, G5SC4 in G5B and G5SC5 in WLAN</td>
<td>Non safety applications and other ITS applications</td>
</tr>
<tr>
<td>5905 MHz to 5925MHz</td>
<td>5905 MHz to 5925MHz</td>
<td>Future ITS applications</td>
</tr>
</tbody>
</table>
ETSI ITS-G5 : MAC and PHY layer enhancements

PHY:
- OFDM mod of 802.11a
- 10MHz channels, double GI, MCS 2 for G5CC and G5SC1, MCS 4 for other G5SCs

MAC : CSMA/CA MAC + 802.11e QOS
- No more association, authentication, probe request (scan) in Management frames.
- New Timing Advertisement Management frame: (Synchronization using TSF)
- New EDCA 802.11 parameters (QoS) mapped to logical channels: CCH with optimized CW and AIFSN

Control channel
- Broadcast communication
- Dedicated to short, high-priority, data and management frames:
- Safety-critical communication with low latencies
- Initialization of two-way communication on SCH

Service channel
- Two-way communication between RSU and OBU or between OBUs
- For specific applications, e.g. tolling, internet access
- Different kinds of applications can be executed in parallel on different service channels

Table: Data rate in Mb/s

<table>
<thead>
<tr>
<th>Channel type</th>
<th>Center frequency</th>
<th>IEEE [3] channel number</th>
<th>Channel spacing</th>
<th>Default data rate</th>
<th>TX power limit</th>
<th>TX power density limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5CC</td>
<td>5,800 MHz</td>
<td>180</td>
<td>10 MHz</td>
<td>6 Mb/s</td>
<td>33 dBm EIRP</td>
<td>23 dBm/MHz</td>
</tr>
<tr>
<td>G5SC2</td>
<td>5,890 MHz</td>
<td>176</td>
<td>10 MHz</td>
<td>12 Mb/s</td>
<td>29 dBm EIRP</td>
<td>13 dBm/MHz</td>
</tr>
<tr>
<td>G5SC1</td>
<td>5,880 MHz</td>
<td>176</td>
<td>10 MHz</td>
<td>6 Mb/s</td>
<td>39 dBm EIRP</td>
<td>23 dBm/MHz</td>
</tr>
<tr>
<td>G5SC3</td>
<td>5,870 MHz</td>
<td>174</td>
<td>10 MHz</td>
<td>6 Mb/s</td>
<td>29 dBm EIRP</td>
<td>13 dBm/MHz</td>
</tr>
<tr>
<td>G5SC4</td>
<td>5,860 MHz</td>
<td>172</td>
<td>10 MHz</td>
<td>6 Mb/s</td>
<td>0 dBm EIRP</td>
<td>-10 dBm/MHz</td>
</tr>
<tr>
<td>G5SC5</td>
<td>As required in [2] for the band 5,470 MHz to 5,725 MHz</td>
<td>several</td>
<td>dependent on channel spacing</td>
<td>30 dBm EIRP (DFS master)</td>
<td>23 dBm EIRP (DFS slave)</td>
<td>17 dBm/MHz</td>
</tr>
</tbody>
</table>

NOTE: With respect to emission limits (power limit / power density limit), the more stringent requirement applies.
C2C–CC architecture : outcomes integrated in ETSI ITS

- **C2C Network Layer**
 - Wireless multi hop communications based on geographical addressing and routing protocol
 - Location table, beaconing, location service, geographical addressing, forwarding algorithms

- **congestion control**
 - Priority handling, load indication from wireless channel, transmit power control, packet discard mechanisms, data and packet rate control

- **CAM messages in facilities layer**
 - (Cooperative Awareness Messages (CAMs) distributed within the ITS-G5 (802.11p) network
 - Information of presence, positions, status of communicating ITS stations to neighboring ITS stations located within a single hop distance.
Network complementarity and mobility management

- IPv6 stack implemented in mobile router
- Mobile IPv6 (tunneling)
- NEMO (network mobility management)
- Multi Care of address (simultaneous access networks) multihoming
- QoS for traffic prioritization
LTE and cooperative systems

- V2V communications between OBU and RSU in 802.11p access (geonetworking forwarding)
- V2I communications between OBU and internet / NOC in LTE and 802.11p (IPv6 over geonetworking routing)
- NEMO for mobility management
- Traffic efficiency and mobility/comfort services broadcasted to several ITS stations in a eMBMS service area
Stakes on actual standards

- **Congestion control** of access networks, contention in the CCH in 802.11p technology can be easily achieved, DCC (Decentralized Congestion Control) mechanism proposed by ETSI is a complex architecture.

- **QoS policy at level 3** (IP level) applied to control the bandwidth occupation and enable congestion avoidance.
 - QoS policy implementation enables bandwidth estimation with flow priority according to traffic classes by applying queuing disciplines to guarantee urgent flow transmission.

- **Security issues** protection against malicious manipulations and masquerade of message information (ex road safety messages).
 - Flat PKI (Public Key Infrastructure) infrastructure (public +private keys distributed by a CA (Certificate Authority), Share of security with emission of the certificate by the CA and registration of the vehicle by the RA (Registration Authority). Long term certificates and pseudonym certificates to guarantee anonymity for authentication, integrity and confidentiality.

- **Privacy** respect of private information owned and transmitted by the vehicle (ex vehicle tracking), NLOS (Non Line Of Sight) communications in V2I and V2V involve frequent advertising of position in safety beacons (CCH) → broadcast of certificates (beacons/warnings and periodic messages).
 - Privacy in case of CA: Centralized organization, Multiplication of CA or same CA sent multiple times, change of signed key, need of computation capacity.
 - Privacy in case of non CA: To keep high level of privacy, efficient revocation to react to untrustworthy way detection (Revocation Certificate List - RCL), Impact of large number of users : key collision, collapse, poor revocation capacity.
Conclusions

Challenges

- A lot of stakes concerning security, QoS and cross layer management remain
- 3GPP proposal for other network cooperation, use of ANDSF (Access Network Discovery Service Function) server to spread information on the access network topology and mobility rules
- The CI/ITS application mapping engine inside the ITS station can benefit from these advanced features to efficiently manage the ITS communication profiles
- Will it still make sense in 2017?

Benefits

- Increased capacity and coverage
- Enabler to provide full fledge of connected services from safety and warning towards connected navigation & infotainment
- Cost efficient enabling sustainable business models

Operators contributions

- Telecommunication operators have a complete role to play, to manage complementarity of operator networks with ITS networks in an efficient way to support V2V and V2I communications in cooperative networks