Assessment of Hands-Free Outbound Texting and Navigation Destination Entry User Interface

Arnaud de Meulemeester

Managing Director ATX International

- This research had two fundamental objectives
 - To assess task performance using an ATX developed speech-based interface
 - Texting tasks relative to manual equivalent and baseline
 - Destination entry relative to baseline
 - Assess learning required to use the speech-based interface
 - Examine and analyze naïve interaction
- Today's Presentation Focuses on Objective #1

Learning Assessment

- Provide a brief introduction to the system
 - What it can be used for
 - How to engage the system (Bluetooth)
- Ask participant to complete 3 separate tasks
 - Texting & Destination entry
 - No further introduction or interaction by experimenter
- Examine...
 - Success rate
 - Common errors
 - Sources of confusion
 - Time for users to be 'comfortable'

On-road Assessment

- Participants perform 2 iterations of 10 tasks
 - Baseline (maintaining 45 mph)
 - Manual (Handheld) texting
 - Short, Medium, Long
 - Speech-based texting (identical to manual tasks)
 - Short, Medium, Long
 - Speech-based destination entry

• Examine...

- Task Outcomes (i.e., successful) and Durations
- Vehicle measures (i.e., speed & lane maintenance)
- Eye glance analysis
- Workload Ratings (mental demand, frustration, awareness)

Participant Demographics

- 24 participants recruited from Southwest Virginia
 - New River Valley, Roanoke/Salem
- Two age groups, balanced by gender
 - 18-30 (younger); 45-55 (middle)
- Screening criteria
 - Must text weekly and own a smart phone; comfortable with touch screen keyboard
 - Have not participated in similar studies
 - Pass general health criteria

		N	Average	Std. Dev	Min	Max
Female	Younger	6	23.7	3.7	20	28
	Older	6	50.8	3.1	47	54
	Overall	12	37.3	14.6	20	54
Male	Younger	6	25.0	3.8	20	29
	Older	6	47.5	2.0	45	51
	Overall	12	36.3	12.1	20	51

- Baseline
- Handheld (manual) tasks
 - Texting
 - Short: "Testing 1 2 3" to Luke
 - Medium: "Have a nice day" to Dad
 - Long: "I'm driving to the grocery store" to Mary
- o ATX (speech) tasks
 - Texting
 - Short: "Testing 1 2 3" to Luke
 - Medium: "Have a nice day" to Dad
 - Long: "I'm driving to the grocery store" to Mary
 - Destination
 - Address: 100 Clay Street, Blacksburg, VA
 - POI: Starbucks (closest location)
 - POI Category: Search for Gas Stations, choose Campus Exxon from the list

The Fully Networked Car Geneva, 2-3 March 2011

For task duration ...

- Frame by Frame eye glance reduction, including...
 - Forward
 - Instrument cluster (speedometer)
 - Mirror & shoulder checks (outside mirrors, rearview, OTS)
 - Center stack (Bluetooth module) Source of Interest for speech-based tasks
 - Cell phone Source of Interest for manual texting tasks

Analysis

- In the weeds...
 - Glance frequency by location
 - Glance duration by location
 - Sum of glance durations by location
- What's important...
 - Percentage Eyes Off Road Time (%EORT)
 - %EORT = (Sum[all glances] Sum[forward glances]) / (Sum[all glances])

Cumulative Frequency Distribution of Glance Durations to System of Interest Across Task Type

[System of Interest: Cell Phone for Handheld Tasks; Center Stack for ATX Tasks]

Average Percentage of Eyes Off Road Time across All Participants and Trials

Geneva, 2-3 March 2011

- Workload Ratings were asked following completion of 2nd trial of each task
 - Mental Demand "...was task easy or demanding, simple, or complex?"
 - -1 (Easy) through 100 (Hard)
 - Frustration Level "How ... stressed, annoyed, versus ... relaxed and complacent did you feel during the task?"
 - 1 (Low) through 100 (High)
 - Situation Awareness "How aware were you of surrounding traffic when you were performing the task?..."
 - 1 (Low) through 100 (High)

For driving safely and performing the task, what would be your rating for Mental Demand (N=24)

For driving safely and performing the task, what would be your rating for Frustration Level (N=24)

For driving safely and performing the task, what would be your rating for Situation Awareness (N=24)

True

False

POST DRIVE QUESTIONNAIRE

- o Following On-Road assessment ...
 - Participants were asked to complete a Post Drive Questionnaire
- Target Questions
 - Background info (prior experience with VR)
 - Ease of learning/use
 - Impact on safety
 - Appropriate conditions for use
 - Most beneficial; biggest concern; things to change
 - Sources of confusion
 - Desirability on personal vehicle

- o Background...
 - 75% of participants noted some general experience with VR systems
 - 29% had in personal vehicle (i.e., OnStar, Bluetooth)
- Overall, participants...
 - found both systems intuitive and easy to learn
 - 96% for texting; 92% for destination entry
 - believe neither system distracts them from paying attention to the driving task
 - 88% for texting; 79% for destination entry
 - overwhelmingly liked both systems
 - 96% for texting; 92% for destination entry
 - felt both systems performed well
 - 92% for texting; 92% for destination entry

- Open Ended question summary on Texting interface (most frequently observed responses)...
 - What is the most beneficial feature(s) ...?
 - 50% (12/24) answered that it allows you to keep eyes on the road while texting
 - 29% (7/12) also stated that it allows you to keep hands on the wheel while texting
 - 29% (7/24) felt it generally increased safety
 - What is your biggest concern...?
 - 58% (14/24) indicated accurate Voice Recognition
 - If you were designing this... how would you change it?
 - 38% (9/24) had no suggested changes
 - What do you feel is the most confusing aspect...?
 - 42% (10/24) stated that nothing about the interface was confusing
 - 25% (6/24) didn't always understand why system didn't work or recognize what they were saying

- Open Ended question summary on Destination interface (most frequently observed responses)...
 - What is the most beneficial feature …?
 - 25% (6/24) answered that feature allows user to keep hands on wheel
 - 25% (6/24) answered that feature allows user to keep eyes on road
 - 17% (4/24) indicated convenience the interface allows
 - What is your biggest concern...?
 - 29% (7/24) indicated no concerns
 - 25% (6/24) again were primarily concerned with VR accuracy
 - 21% (5/24) concerned about accuracy of database (receiving incorrect info)
 - If you were designing this... how would you change it?
 - 58% (14/24) had no suggested changes
 - 13% (3/24) thought users should be able to interject or skip (during lists)
 - What do you feel is the most confusing aspect...?
 - 54% (13/24) found nothing confusing

- Summary of infrequently made comments of interest (paraphrased)...
 - Texting Interface:
 - Hard to understand prompts
 - Would prefer to confirm contact before sending
 - If texting a lot may grow tired of hearing the formal prompts and revert back to manual texting
 - Could create a false illusion of total safety
 - Ask if message is correct before continuing
 - Destination entry:
 - Hard to understand prompts/options listed
 - Long list of options presented verbally (POI Category); Remembering list is ordered starting with nearest first
 - System should allow user to interject or skip when they know destination is not what they are looking for
 - Allow adding city to POI search criteria

This speech-based interface allows me to without compromising safety while driving.

I would want to have this speech-based feature on my next vehicle.

Under what environments and conditions would you feel comfortable...

■ using this Speech-based texting interface (N=24)
■ sending text messages manually (N=24)

Under what environments and conditions would you feel comfortable...

- using this Speech-based destination downloading interface (N=24)
- performing manual destination entry tasks (N=24)

Summary

- Clear results found related to both objectives
- Learning Assessment (Objective #2)
 - High overall task success rate during 1st attempts with minimal confusion
 If confused, typically cleared up by end of task
- o On-Road Assessment (Objective #1)
 - High success rates across all tasks; Manual (Handheld) vs. Speech-based (ATX)
 - No clear differences across vehicle network measures (speed, steering, etc.)
 - Lane deviations and eye glance analysis show significant advantages of speech-based tasks over manual [pending completed lane deviation reduction]
 - Subjective workload ratings favored ATX
- Post-Drive Questionnaire
 - Favorable; high desirability expressed across most questions

Both objectives were achieved

- Learning Assessment identified system ease of use by naïve users with no instruction
- On-Road Assessment quantified anticipated advantages of speech-based tasks over their manual counterparts
 - -Subjectively, high desirability of this interface, given a lack of training and exposure, coupled with most participants experiencing at least some voice recognition issues, is very positive

Arnaud de Meulemeester

Managing Director
ATX International
ameulemeester@atxg.com

Dr. Tom Schalk
Vice President of Voice Technology
ATX Group
tschalk@atxg.com

