Joint ITU-T/IEEE Workshop on the Future of Ethernet Transport

Transport of Time over PONs

Frank Effenberger, Director, FTTx ATD Huawei Technologies

Geneva 28 May 2010

Introduction

- PON characteristics
- Time over G-PON
- Time over EPON
- Accuracy estimates
- Open items
 - Sync messaging
 - Multiple time domains

Geneva 28 May 2010

PON characteristics

- The medium is fine for timing
 - All PONs use bidirectional transmission on single mode fiber
 - Delay is nearly symmetrical and constant
- The MAC presents a problem
 - Downstream has only incidental queuing delays
 - Upstream has significant TDMA allocation delays
 - This results in asymmetry in both delay and jitter
- Attempting to operate a packet-based scheme "over-the-top" of PON is facing a big problem
 - The basic assumption of all packet schemes is symmetric delay

Geneva 28 May 2010

TDMA system holds the key

- All TDMA PON systems actually measure the PON time-of-flight
 - This is necessary to operate the TDMA system efficiently
 - The measurement is quite good (~10's of ns)
- The solution is to use the PON TDMA timing system to handle the PON link, and interface this to the packet-based solutions at either side
 - OLT gets the time from the network
 - OLT sends the time to the ONUs
 - ONUs can send the time downstream

Geneva 28 May 2010

GPON Time reference

- G-PON uses periodic framing, with a superframe counter
 - This structure repeats approximately every 37 hours, providing an easy timing reference
- During activation, the ONU's transmission delay is measured, and an equalization delay is sent to the ONU
 - This delay is updated continuously for delay variations
- In this way, the ONU knows how far it is from the maximum PON distance

ToD over G-PON

- OLT computes the ToD corresponding to a certain frame occurrence arriving at the maximum range
 - It sends this relationship to all the ONUs using the OMCI channel
- ONUs can then compute the time at their particular location

EPON time reference

- EPON uses timestamps in MPCP packets
 - This running counter rolls over every 68 seconds, also an easy timing reference
- During activation, OLT measures ONU RTT, but only uses it internally to pre-delay grant times

Destination address		
Source address	rtes	
Length/type	64 by	
Opcode		
Timestamp (32 bits) <		C32 C30 C2 C1
(other info, Pad/reserved)		EPON local counter
Frame check sequence		
EPON MPCP message		
uture of Ethernet Transport		

Geneva 28 May 2010

ToD over EPON

- EPON ONU's don't know their position, only the OLT knows
- The OLT has to pre-calculate what the ToD will be when a selected MPCP timestamp would arrive at a particular ONU
 - The OLT sends this to the ONU via the slow protocol channel
- The ONU then sets its own time according to the value received

Accuracy estimate

- There are several sources of error in the time transport over PON systems
 - Clock quantization error
 - TDMA drift error
 - Fiber asymmetry
- Clock quantization error is small
 - G-PON measures time in bits ($\sim \pm 1$ ns)
 - EPON measures time in time quanta ($\sim \pm 8$ ns)
- TDMA drift is larger
 - G-PON allows ± 4 bits of drift (~ ± 4 ns)
 - EPON allows for ± 12 TQ's of timing tolerance (~ ± 96 ns)

Geneva 28 May 2010

Fiber Asymmetry

- Different wavelengths are used in each direction
- The index of refraction is slightly different
- The effect can be characterized by the dispersion of the fiber
- There are uncontrolled
 - Variations of the fiber
 - Variations of the wavelength
- Combined, these would produce an error of ±5 ns

Future of Ethernet Transport

Geneva 28 May 2010

Open items

- Sync messaging
 - How can the ONU know how good the clock is?
- Multiple time domains
 - If we want, can we provide multiple clocks over the common PON link?

Sync messaging

- Various synchronous timing systems have a method to indicate the clock quality
 - SSM in SDH
 - Announce messages in P1588
- How to pass this information across the PON?
 - Directly (in-band) using packet formats
 - Via a specialized PON channel (e.g., OMCI)
- The OLT would be involved either way
 - To receive the sync info from the network, and multicast it to all the ONUs it serves
- The ONU could remain transparent in the in-band method

Geneva 28 May 2010

Multiple time domains

- It is yet to be established if multiple time domains in a carrier network is a real requirement
 - If you have a true ToD, why would customers insist upon their own? (Are they from Mars?)
 - If you are a carrier, do you really want to support yet another unbundling requirement?
- Hypothetically, if there is such a requirement, how can we support it using the PON schemes presented?
 - P1588 has the transparent clock correction scheme, and this might be used to advantage

End-to-end transparent clock

Conclusions

- Precision time over PONs is ready
 - G.984.3 Am 2 for G-PON
 - G.987.3 for XG-PON
 - P802.1AS for EPON and 10GEPON
- Solution has good precision
 - Errors $< \pm 100$ ns
 - Well below the 1 μ s network requirement
- Solution is extendable
 - Sync messaging and multiple domains have solutions right at hand

Geneva 28 May 2010

Thank you!

Geneva 28 May 2010