VOLKSWAGEN AKTIENGESELLSCHAFT

Intelligent, Connected Cars — Volkswagen's Vision of the Future

Dr. Markus Lienkamp – Electronics and Vehicle Research

Global trends

Motivation for integrating communication into vehicles

Improving road safety

Improving traffic efficiency

Providing up-to-date information services

Road safety

Driving experience should remain being joyful!

"Fahrvergnügen"

Increasing need for security:

EU goal "-50% fatalities"

Road safety: The driver as element of uncertainty

Causes of fatal accidents

Source: GdV, VW Unfallforschung

Road safety potential

Road safety: Guardian angel

Handling like a skilled driver

Seeing like an alert human

Driving like a trained driver

Acting like an experienced human

and everything safely

Actuators: Handling like a skilled driver

DSG transmission

Sensors: Seeing like an alert human

Sensors: Seeing like an alert human

Intelligence: Acting like an experienced human

Technology box: Components enabling safety

Driving at the limit

- Positioning
- Speed-optimised trajectory

Driving in unknown territory

- Environment sensing
- Positioning
- Path planning

Driving according to traffic rules

- Detection of situations
- Driving strategy
- Safety
- Environment sensing
- Positioning
- Path planning

And everything safely: Automatic driving functionalities in iCar

Lane keeping

Clear drive and tracking

Driving in traffic congestion (stop & go)

Lange changing and overtaking manoeuvre (driver approved)

Which systems does Volkswagen offer today?

An example:

Car-to-car communication: Extension of vehicle sensors

- Extension of driver horizon by radio communication
- Short latency in information dissemination
- Reduced driver response time in dangerous situations

Increasing the effective range: "Car-to-X"

Improving traffic safety: Warnings and driver assistance

Information from an ambulance

Bad visibility

Warning of disregarded traffic signs

Road works

Motivation for integrating communication into vehicles

Improving road safety

Improving traffic efficiency

Providing up-to-date information services

Challenges for society: Traffic volume increases substantially

Slide 22

Traffic congestion: time and desire for in-vehicle entertainment grows

Scenario VW 2002-2020

Passenger transportation: + 20%

Freight transportation: + 34 %

Navigation systems today and tomorrow

Current features of RNS 510:

- Reliable and efficient guidance to every destination
- Touch screen
- Up-to-date traffic information via RDS / TMC
- Import of music from PC via SD card
- Sophisticated help system with avatar "Carla"
- Wireless operation of mobile

Future connected navigation systems:

- Receive information from many cars out of the vicinity to avoid and prevent traffic congestion
- Improve routing by highly dynamic and detailed traffic information
- Combine navigation with POIs and events dynamically from the Internet
- Act also as up-to-date travel guide and shopping assistant
- Provide a ubiquitous help system with connection to VW and the Internet

Increase of traffic efficiency: Example traffic light assistant

- Car-to-traffic-light communication to inform drivers
- Optimal speed to encounter phased traffic lights
- Phase optimization of traffic lights by car information

Increase of traffic efficiency: Example Traffic Guard

Traffic Guard: Information processing Vehicle at end of section Data analysis in outflow-RSU Recording of Communication outflow-RSU own sensor data TCP/IP **Evaluation of** - road path (GPS) - number of lanes (GPS) - traffic situation (speed) Vehicle tour through road works **RSU** connection Vehicle at start of section **Pre-adjustment of** Inflow-RSU Communication inflow-RSU traffic-optimised ACC **Broadcast Aggregated Display of precise** information information to driver

Traffic Guard: Information usage in the vehicle

A) Traffic-optimised driving behaviour

- Driving recommendation for driver or
- Modification of ACC

B) Driver information

Displaying road geometry and traffic speed

3 Summary

Avoidance of congestion by car-to-x communication

Traffic Guard: Impact on traffic efficiency

Empirical data (30.10.07)

Traffic congestion

Reproduction in simulation

- Same traffic patterns
- Penetration rate:
 - 0 % Traffic Guard

Simulation of traffic guard

- Same traffic patterns
- · Penetration rate:

10 % Traffic Guard

Significant reduction of traffic congestion!

Motivation for integrating communication into vehicles

Improving road safety

Improving traffic efficiency

Providing up-to-date information services

Integration of online Internet services

Traffic information

Fuel prices

Restaurants and hotels

Tourist information

Current events

"auto@web"

Drivers of an "auto@web" car can use their navigation system to ...

- explore the map for interesting locations regarding travel, city life and leisure
- search the Internet for destinations
- retrieve highly current information about event venues and free park spaces
- listen to and rate online music and podcasts from the portal

Standardization is the enabler of cooperation

- The minimum penetration rate for most safety applications is not achievable even for a large volume manufacturer
- •The quality of car-to-car applications increases with higher penetration rate
 - Cooperating vehicles must communicate in the same "language"
- Freight is global, people are global, Volkswagen is global
 - Proliferation of different standards increases time-to-market and costs.

Let's produce global ITS standards for a global world!

Harmonization of world-wide ITS standards

ITS Station Reference Architecture: "Alphabet" for a common ITS language

Thank you!

