

Model-driven Development of Complex Routing Protocols with SDL-MDD

Alexander Geraldy, <u>Reinhard Gotzhein</u>, and Christoph Heidinger

Networked Systems Research Group

University of Kaiserslautern, Germany

A. Geraldy, R. Gotzhein, and C. Heidinger, University of Kaiserslautern, Germany

1

Context

- A generic routing protocol framework
- Design of ReBaC2/AodvLight
- Simulation results
- Conclusions

- Model-driven development (MDD)
 - engineering approach where the formal model guides and directs all development activities
 - MDD activities range from system design over code generation and deployment to system maintenance.
 - MDD is a key approach to improving quality and productivity of system development.

• SDL-MDD

- model-driven development with SDL as design language
- addresses all phases of system development
- supported by a semantically integrated and complete tool chain

- Complexity of routing protocols
 - different routing requirements (e.g., BE/QoS, proactive/reactive, ...)
 - variety of address types (e.g., unicast, multicast, concast, anycast, broadcast, geocast, n-hop cast, ...)
 - large variety of routing algorithms for each address type
 - different network types (e.g., wired/wireless, infrastructure-based/ ad-hoc, stationary/mobile, WAN/LAN, high-speed/field bus, dense/sparse, ...)
 - optimization potential (e.g., hierarchical routing, adaptive routing, nested routing, ...)

→ Composition of self-contained, elementary routing protocols

Context

> A generic routing protocol framework

- Design of ReBaC2/AodvLight
- Simulation results
- Conclusions

A generic routing protocol framework

A generic routing protocol framework

A generic routing protocol framework

- Context
- A generic routing protocol framework

- Simulation results
- Conclusions

Clustering of mobile ad-hoc networks

- subdivide the network into sets of nodes called *clusters*
- nodes of a cluster are *cluster members*; there may be a distinguished *cluster head*

- types of clusters
 - nodes with common parameters (e.g. small topological/geographical distance)
 - nodes with different capabilities (e.g. coordinator role, device role)
- hierarchical network topology \rightarrow reduction of network complexity
- useful for efficient network management, hierarchical routing etc.

Repair-based Clustering (ReBaC2)

- dynamic, self-organizing process for network partitioning
- identical rules for cluster initialization and maintenance
 → graceful dynamic adaptation to topological changes
- modular clustering metrics (e.g. lower/upper bounds for cluster size, bounded cluster diameter, lower bound for link quality)
 - ightarrow adaptation to specific network situations
- support for routing (logical tree structure of cluster members rooted at the cluster head, gateway nodes to neighboring clusters)

 \rightarrow proactive collection of network status information during clustering

Ad-hoc On-demand Distance Vector Routing Light (AodvLight)

- reactive discovery of unidirectional routes (on demand)
- search by flooding of RREQ messages
- unidirectional response by RREPs

ReBaC2/AodvLight

- adaptive cluster establishment and maintenance
- proactive route discovery within clusters, based on tree structure
- reactive route discovery across clusters, by flooding RREQs to cluster heads

SendData

1(1)

RouteReq

↑[RecvData]

√[Register]

SendData,Register

RouteResp

- Context
- A generic routing protocol framework
- Design of ReBaC2/AodvLight
- Simulation results
- Conclusions

Simulation results

- 56 nodes, randomly placed
- 400x400m, tx range 73m
- cluster heads
- cluster links
- gateway links
- 8 clusters (size 3..13)
- max path length: 5 hops
- → physical links
- → overlay links

- Context
- A generic routing protocol framework
- Design of ReBaC2/AodvLight
- Simulation results
- Conclusions

- Model-driven development with SDL-MDD
 - applicable to complex routing protocols
 - tool chain fully operational and usable
- SDL sufficiently expressive, though not always elegant
 - self-contained and reusable micro protocol designs and components
 - complex routing architectures
 - "glue" for routing protocol composition
 - SDL representation of micro protocols depends on the intended composition
 - difficulties to find an adequate data representation for the generic addressing scheme (still SDL-96, due to available tool support)