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Abstract. In this paper, we provide a substantial case study of developing com-
plex routing protocols, applying SDL-MDD, a model-driven development process with
SDL as modeling language. After a survey of SDL-MDD, we present a generic rout-
ing architecture, which supports several forms of routing protocol composition. This
architecture is then instantiated first with ReBaC2, a novel repair-based clustering
algorithm for ad-hoc networks, and then extended by AodvLight, a reactive routing
protocol for route discovery across clusters. The specified SDL models are the basis
for model-driven implementation and simulation.

1 Introduction

Model-driven development (MDD) [1] is a software engineering approach where the formal
system model guides and directs all development activities, ranging from system design over
code generation and deployment to system maintenance, resulting in quality improvements
and productivity gains. In previous work [12], we have introduced SDL-MDD, a model-
centric, domain-specific development process based on SDL [10], ITU’s Specification and
Description Language. In the early phases, SDL-MDD benefits from structuring and reuse
methods, for instance, SDL design patterns and micro protocols. A particular strength of
SDL-MDD is the availability of a semantically integrated tool suite that covers all aspects
of model-driven development with SDL including model-driven code generation, automatic
environment interfacing, and performance simulation.

In this paper, we report on the application of SDL-MDD to the development of a complex
routing protocol for mobile ad-hoc networks. These networks are formed spontaneously by
nodes within reach that have matching wireless communication facilities. As there is no fixed
infrastructure, these networks are highly dynamic regarding their topology, which poses big
challenges to the development of suitable communication protocols in general, and to routing
protocols in particular. To cope with these difficulties, we have devised a generic clustering
algorithm for ad-hoc networks called Repair-based Clustering (ReBaC2), which establishes
disjoint sets of nodes controlled by a metric that can be tuned to specific network situations.
This clustering is then the basis for a hierarchical routing scheme, using a tree-like structure
within clusters and a simplified version of Ad-hoc On-demand Distance Vector routing called
AodvLight for reactive route discovery across clusters. To cope with system complexity, we
start by specifying micro protocols [7], which are then composed by instantiating a generic
routing architecture [2]. Results show that SDL-MDD with its tool suite, the micro-protocol
approach, and the generic routing architecture form a powerful basis that supports all aspects
of developing complex routing protocols.

The rest of this paper is structured as follows: In Sections 2 and 3, we survey SDL-
MDD and our generic routing architecture, respectively. This architecture is instantiated in
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Section 4, where Repair-based Clustering (ReBaC2) is introduced. In Section 5, ReBa2C is
composed with AodvLight, yielding a hierarchical routing algorithm. Simulation results are
presented in Section 6, and conclusions are drawn in Section 7.

2 Model-driven Development with SDL

SDL-MDD [12] (see Fig. 1) is a model-driven development process [1] that is based on
and extends OMG’s MDA [13], with SDL [10] as modeling language. The computation-
independent model (CIM) is expressed by message scenarios, specified with MSC [9], and
informal text. For the formal specification of the platform-independent and platform-specific
models (PIM and PSM), we use SDL [10], ITU’s Specification and Design Language for
distributed systems and communication protocols. The process steps from CIM over PIM to
PSM are supported by several structuring and reuse methods, in particular transformation
heuristics [12], SDL design patterns [6], SDL components [3], and micro protocols [7].

SDL components [3] are ready-to-use, self-contained design solutions, supporting both
structuring of complex systems and reuse of well-proven solutions. In [7], we have extended
this concept to distributed components providing a single functionality, called micro proto-
cols. A micro protocol is instantiated by creating a set of protocol entities that interact to
provide a distributed functionality. By composing micro protocols, more complex protocols
and protocol stacks can be obtained.

Figure 1: SDL-MDD – Model-driven development with SDL

The platform-specific SDL model (PSM) is the starting point for model-driven implemen-
tation. From SDL specifications, it is possible to generate code in two steps. In the first step,
intermediate code in languages such as C or C++ is compiled. This code can be executed
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in different runtime-environments and is therefore referred to as Runtime-Independent Code
(RIC ) in Fig. 1. To generate intermediate code, commercial tools provided, for instance, by
PragmaDev and Telelogic, are available. In our work, we have developed the SDL-to-C++
transpiler ConTraST [5], which in addition automatically generates the documentation of
micro protocols [4].

To be executed on a specific target system, the RIC is compiled to machine code referred
to as Runtime-Specific Code (RSC ) (see Fig. 1), using a platform-specific compiler. To
execute the RSC, an SDL engine for the target system is required in addition. This SDL
engine comprises all functionality to initialize and execute the SDL system, e.g., to build
up the system structure, to select, schedule, and execute fireable transitions, and to transfer
signals between SDL processes.

To implement open SDL systems, i.e. systems interacting with their environment, one
or more interfaces satisfying the semantics of the SDL signaling mechanism, in particular,
the type of interaction and the interaction formats, are needed. For this purpose, we have
developed a generic, specification-independent library of interfacing routines, called SDL
Environment Framework (SEnF ). Based on configuration information supplied by the SDL
compiler, interfacing routines for different combinations of operating systems, communica-
tion technologies, and IO devices are automatically determined and added to the generated
code.

In our work [11], we have shown that the platform-specific SDL model can also be used
as starting point for model-driven performance simulations. In Fig. 1, the corresponding
process steps are shown. As in case of implementing SDL systems, runtime-specific code
(RSC in Fig. 1) is generated. For functional and performance simulations, this code is then
executed under the control of a simulator. A simulator that can run code generated from
SDL models is ns+SDL [11]. The advantage of generating both production and simulation
code from the same SDL model with the same compiler is that performance simulations
more faithfully reflect the performance of the deployed system.

3 A generic routing protocol architecture

In computer networks, different routing algorithms may be needed for different purposes.
For instance, specialized routing algorithms may be used for unicast, multicast, and broad-
cast communication. Also, flat/hierarchical, global/aggregated, and proactive/reactive algo-
rithms may be applied, depending on network size and frequency of route requests. The choice
of routing algorithms is further constrained by node mobility and corresponding topology
changes.

To satisfy these diverse needs, we have devised a generic routing protocol architecture
(see also [2]), which provides a design framework for the development of specialized,
complex routing protocols. Fig. 2 shows the abstract architecture, consisting of network
layer and adjacent protocol layers, with the network layer being refined into components
PacketForwarder, RouteDiscoverer, and DeMux. For interaction between and within layers,
several channels and messages sent along these channels are specified. The basic routing
functionality of the network layer is as follows:

– PacketForwarder accepts messages from TransportLayer (SendData). Apart from the
data to be sent, TransportLayer passes the destination address, from which the type of
communication (unicast, multicast, broadcast) is derived.
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Figure 2: Generic routing protocol architecture (level 1)

– Upon acceptance of a message from TransportLayer, PacketForwarder consults with
RouteDiscoverer to determine a set of feasible routes (RouteReq). When this set (
RouteResp, consisting, e.g., of complete routes or next hop addresses) is returned, the
message is sent via DeMux.

– When a packet is received from LinkLayer (RecvData), DeMux determines the local
component to process the packet. If the packet has reached its final destination node,
it is forwarded to TransportLayer. If it is to be sent to another node, it is given to
PacketForwarder.

– Upon reception of a packet from DeMux, PacketForwarder checks whether the packet
carries sufficient routing information. If this is the case (e.g., if source routing is per-
formed), it processes the packet and sends it via DeMux. Otherwise, it first consults with
RouteDiscoverer to determine a feasible set of routes (see above).

In order to incorporate the collection of network state information, the basic routing
functionality is extended:

– RouteDiscoverer sends management packets in order to acquire information about the
network state. To reduce interdependencies of routing protocols, these packets are sent
via PacketForwarder, where they are treated like all other packets. This means that
if the packet carries sufficient routing information, it is sent via DeMux. Otherwise,
PacketForwarder consults with RouteDiscoverer to determine a set of feasible routes
before sending the packet.

– The functionality of DeMux is extended such that arriving packets with destination
RouteDiscoverer are delivered accordingly.

Please note that this generic routing protocol architecture is extremely flexible, it
may host, for instance, proactive/reactive, flat/hierarchical, source/distributed, and uni-
cast/multicast/broadcast route discovery algorithms. For this purpose, RouteDiscoverer is
decomposed as shown in Fig. 3. Here, R1, R2, ... Rn denote components realizing a specific
route discovery algorithm, which are composed in parallel. Two glue components are added:
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Figure 3: Generic routing protocol architecture (levels 2..n): RouteDiscoverer

– RoutingManager interacts with PacketForwarder, receiving RouteReq and returning
RouteResp signals. Based on the type of route request (e.g., unicast, multicast) and
the available routing algorithms, one or more route discovery components are selected
and scheduled.

– RoutingAdapter encapsulates outgoing route management packets, and demultiplexes
incoming packets containing network state information.

The architecture shown in Fig. 3 can also be used to refine R1, R2, ... Rn, yielding a
hierarchical composition of route discovery algorithms.

4 ReBaC2: A novel dynamic clustering approach

In this section, we apply SDL-MDD to the design of Repair-based Clustering (ReBaC2),
a novel dynamic clustering approach for ad-hoc networks, instantiating the generic routing
architecture presented in Section 3. Mobile ad hoc networks with large numbers of nodes and
high node density entail considerable topological complexity. If flat and proactive routing
schemes are used, this leads to large routing tables, long status messages, and thus to very
high routing overhead. Approaches to reduce routing overhead are to build up hierarchies to
establish abstract views of the real network topology, and to apply reactive routing schemes.
Dynamic clustering is an approach to set up a hierarchical structure in a network.

Clustering is a self-organizing process during which network nodes group themselves into
logical units called clusters. The whole network is subdivided into such clusters, which may,
but need not be disjoint. A cluster is usually a set of nodes sharing common parameters. For
example, the nodes of a cluster may be topologically close to each other. Being topologically
close, the nodes of a common cluster can communicate more easily with each other than
with arbitrarily chosen nodes of the complete network.

ReBaC2 was developed with several special design goals in mind: Firstly, there shall be no
separation between the setup phase and the maintenance phase, which could have different
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rules and behavior. In other words, there is only one phase, called repair phase, with one
unique set of clustering rules. This has the advantage that when the network topology is
changed due to new nodes or node movements, the logical structure needs to be repaired
only, but not be set up from scratch. Secondly, the clustering protocol shall have a modular
metric, which can be defined separately from the clustering rules, and can therefore be
replaced easily. Thus, the clustering protocol can be adapted to specific network situations.
Thirdly, while clusters are formed, status information for routing among cluster members
shall be collected proactively.

With ReBaC2 [8], a cluster is a set of network nodes that are close to each other according
to a given metric, with a distinguished node called cluster head. Cluster nodes except the
cluster head are called cluster members. All clusters in the network are disjoint, i.e. at every
time each network node belongs to exactly one cluster. The nodes of a cluster form a logical
tree rooted at the cluster head. Some of the cluster nodes may be gateway nodes, i.e. nodes
offering a direct link to gateway nodes of other clusters.

Figure 4: Routing middleware

For routing between nodes belonging to the same cluster, the logical tree structure es-
tablished during cluster formation is exploited. Here, the cluster head has global status
information, i.e. it knows all cluster members and paths along the logical tree. Cluster mem-
bers have limited status information, knowing their cluster head and the next hop towards it
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only. In addition, cluster heads know the cluster heads of neighboring clusters, and gateway
nodes to these clusters. This knowledge forms the basis for the discovery of routes between
nodes that belong to different clusters.

In summary, apart from being a clustering approach, ReBaC2 classifies as a proactive
routing protocol. Consequently, we have instantiated the generic routing architecture pre-
sented in Section 3, using SDL as design language. The top level of the concrete architecture
is shown in Fig. 4, where the SDL block ReBaC2 replaces the generic component RouteDis-
coverer. Furthermore, components for fragmentation and defragmentation, and for renaming
have been added, to cope with the constraints of real wireless LANs.

In Fig. 5, the block ReBaC2 representing the generic component RouteDiscoverer is re-
fined, instantiating level 2 of the generic routing architecture. More specifically, the generic
glue components RoutingManager and RoutingAdapter (see Fig. 3) are instantiated by spe-
cific ReBaC2 protocol components. These glue components encapsulate the actual protocol
behavior of the blocks AliveSender and AliveReceiver, which handle the periodic data ex-
change of ReBaC2, and of the block Control that coordinates this data exchange.

Figure 5: Block type ReBaC2

When ReBaC2 is started in a network node, it initializes this node as the head of a cluster
without any members. This immediately leads to a consistent yet probably suboptimal state
of the clustering structure. After this, the so-called repair phase continuously attempts to
improve the clustering, e.g. by joining another cluster if this increases the metric value of the
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own cluster. For this purpose, the node sends a join-request to neighboring clusters, which
determine if the join would violate the local metric constraints, e.g. if the resulting cluster
would show too many hops or too many member nodes. Neighboring clusters that do not
detect any violation respond by sending a join-accept signal, offering membership. The head
of the cluster requesting membership then decides which neighboring cluster to join.

For the repair decision of the own cluster and for the admittance test of neighboring
clusters, the same set of mathematical rules is used. We have extracted these rules into an
SDL data type, which may be replaced to change the desired cluster sizes and clustering
metric, e.g. hop count, member count, link quality, and battery power. Therefore, ReBaC2
can be adapted to satisfy special requirements, and is therefore a generic clustering approach.
More details on ReBaC2 can be found in [8].

5 ReBaC2/AodvLight

In this section, we extend the routing middleware presented in Section 4 by a protocol
for reactive route discovery between nodes that belong to different clusters. This protocol
exploits the abstract view and gateway links established by ReBaC2 without actually being
aware of its existence, which is clearly in line with our design goal of defining self-contained
micro protocols and composing them into complex protocols by instantiating our generic
routing protocol framework.

More specifically, we extend ReBaC2 with simplified version of Ad-hoc On-Demand Dis-
tance Vector routing [14] called AodvLight [2]. In AodvLight, unidirectional routes are dis-
covered on demand, by flooding a RREQ message starting with the source node. As soon as
a node - possibly the destination node - knows a feasible path, it returns a unicast RREP
message, which takes the backward path recorded in the intermediate nodes to inform the
source node.

When composed with ReBaC2, AodvLight operates on the upper hieararchy, exploit-
ing the overlay network structure formed by all cluster heads. To discover routes between
nodes belonging to different clusters, only this overlay network is searched. For this purpose,
RREQ messages are flooded among all cluster heads. Since cluster heads have global status
information of their cluster, they know whether the destination node belongs to their clus-
ter. If so, a route has been established, and a RREP message is returned. If not, the RREQ
message is forwarded to the cluster heads of all neighboring clusters.

It should be pointed out that flooding a message among cluster heads requires that
unicast routing between cluster nodes is performed, using the logical tree structure of clusters
and the gateways to neighboring clusters. Thus, flooding a RREQ message in fact means
sending unicast messages to the heads of neighboring clusters on unicast paths that have
already been established proactively. Again, we emphasize that this is accomplished by
separating concerns in our generic routing framework, and not by modifying AodvLight
before composing it with ReBaC2.

Adding AodvLight to the routing middleware of Section 4 is achieved by reinstantiating
the generic routing architecture in Figs. 2 and 3. Here, RouteDiscoverer is now instantiated
by the SDL block ReBaC2Aodv (see Fig. 6), which is in turn decomposed into glue compo-
nents ReBaC2AodvManager and ReBaC2AodvAdapter, encapsulating the routing protocols
ReBaC2 and AodvLight.

Fig. 7 shows an excerpt of the SDL specification of the ReBaC2AodvManager. For each
route request asking for a set of destination nodes, a manager instance is created. After the
start transition, the incoming RouteReq is answered in three steps:
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Figure 6: Block type ReBaC2Aodv

1. The RouteReq is forwarded to ReBaC2. ReBaC2 uses its local knowledge of the cluster to
resolve some of the destination nodes, as far as they are cluster members or neighboring
cluster heads.

2. When ReBaC2 answers with a RouteResp, some or all of the destination nodes may still
be unresolved. Therefore, the partly handled request is forwarded to AodvLight.

3. AodvLight will send back a RouteResp, which potentially contains next hop nodes that
are only next hop in the AodvLight overlay network. All next hop nodes are marked as
unresolved and are checked and resolved using the local knowledge of ReBaC2 again.

4. The resulting RouteResp of ReBaC2 is returned to the invoking process, and the Re-
BaC2AodvManager terminates.

It should be pointed out that in order to compose ReBaC2 and AodvLight, no mod-
ifications of their SDL designs had to be made. This provides evidence that the previous
designs were indeed self-contained and conceptually sound. It also shows that the generic
routing architecture in Section 3 is a suitable basis for the development of complex routing
protocols.

6 Simulation

In Fig. 8, results of a model-driven simulation run are shown. The system under simulation
has been obtained by compiling the SDL model with the SDL-to-C++ transpiler ConTraST
[5], yielding the RIC (see Fig. 1). The RIC is then compiled into runtime-specific machine
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Figure 7: SDL Process ReBaC2AodvManager

code, which is augmented by an SDL Engine and environment interfacing routines. This
code is then executed under the control of ns+SDL [11], our network simulator for SDL
systems.

In the simulation, 56 nodes have been randomly placed on an area of 400x400 metres,
transmission range is 73 meters. ReBaC2 has been configured to a minimum cluster size of
4 nodes, including the cluster head. In the figure, network nodes are depicted as plus signs,
cluster heads as red squares, and the cluster structure is drawn with black solid lines. In
total, ReBaC2 forms 8 clusters, with cluster sizes ranging from 3 to 13, and path lengths
from leaf nodes to cluster heads of up to 5 hops. The reason why the small cluster has a size
below the configured minimum size of 4 nodes is that the cluster head is not in direct range
of nodes belonging to another cluster, and can therefore not perform a join.

In addition to the cluster structure, ReBaC2 determines gateway nodes to other clusters.
Green dotted lines indicate links between gateways. This overlay structure is used by Aodv-
Light to determine end-to-end paths between nodes belonging to different clusters. One such
example is the overlay path given by the sequence of orange arrows. From the source node,
packets travel to its cluster head, along further cluster heads towards the cluster head of the
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Figure 8: Simulation results of ReBaC2/AodvLight

destination, and finally to the destination. The low level links of this path are depicted as
blue arrows.

Because of the overlay structure, ReBaC2Aodv does not always find shortest paths, but
sometimes returns detours, e.g. as depicted by the dashed blue line in Fig. 8. At this point,
optimizations should be taken into account to shorten the paths from source to destination.

7 Conclusions

In this paper, we have shown how to develop complex routing protocols for ad-hoc networks
using SDL-MDD, a model-driven development process with SDL as modeling language. We
have presented a generic routing framework, which supports composition and reuse of ele-
mentary routing protocols specified in SDL, and their model-driven development. Then, we
have applied SDL-MDD and the generic routing framework to the micro protocol based de-
velopment of a new clustering approach for mobile wireless ad hoc networks, called ReBaC2.
ReBaC2 benefits from its single phase and single metrics solution and offers possibilites for
adaptation to specific application requirements. We have further shown how to compose
ReBaC2 with the reactive routing protocol AodvLight to get a sophisticated hierarchical
routing protocol for mobile ad-hoc networks. Results of model-driven simulations provide
evidence for the functional correctness of the design model.

The experience of this major case study shows that SDL-MDD combined with micro
protocol based design and a generic routing framework is fully capable of handling the
development of complex routing protocols, thereby mastering system complexity and saving
development time. Keys to this success have been the identification of self-contained routing
protocols and their composition, and the support by the integrated tool chain of SDL-MDD.
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By reuse and composition, we have been able to avoid many of the usual design errors of
protocol development, and have gained early feedback. Additionally, the SDL-MDD process
and tools support the automatic generation of simulation and production code. Since code
generation relies on the same SDL model, it can be expected that the simulation faithfully
reflects the behaviour of the system in execution.

Of particular value has been the strict application of the generic routing architecture,
which forces the developer to adopt the important engineering principle of separation of
concerns. As a reward, we have obtained a highly modular design of a complex system and
conceptual clarity, fostering maintainability and extensibility.

A key to the instantiation of the generic routing framework has been the definition of
a general address type that can be used by various routing algorithms. This type has to
support different addressing schemes (e.g., unicast, multicast, broadcast, n-hop cast) and
routing schemes (e.g., next hop routing, source routing. Given the data type definition
facilities of SDL, which are not very ”‘user-friendly”’, it took us quite a while to find an
adequate representation.

Our clustering protocol ReBaC2 offers some potential for improvements. The possibility
to identify and to split existing suboptimal clusters has yet to be studied. By splitting existing
clusters and joining their parts with other clusters, the overall quality of the clustering could
be improved. Also, the logic tree structure of clusters can be improved to support shortest
paths between cluster members and cluster head. Finally, the collection of cluster metrics
can be extended to offer further possible applications of the clustering protocol. Once these
improvements have been made, extensive performance simulations to compare ReBaC2 with
other clustering protocols can be performed.
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