
Model-driven Development of a MAC Layer for Ad-hoc

Networks with SDL

Dennis Christmann, Philipp Becker, Reinhard Gotzhein, Thomas Kuhn

Computer Science Department, University of Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany
{christma,pbecker,gotzhein,kuhn}@cs.uni-kl.de

Abstract. This paper outlines the specification and evaluation of a MAC layer for
wireless ad-hoc networks in the context of SDL Model-Driven Development (SDL-
MDD), a model-driven approach that utilizes SDL as modelling language. The MDD
process leads through the complete development of networked systems in a holistic
model-driven way with an extensive support for reuse in form of SDL patterns and
SDL components, especially micro protocols. We show the incremental steps that
transfer our case study, the development of the MAC layer MacZ, from a solution-
independent model into a platform-specific model with focus on the combination of
SDL-MDD with micro protocols. Furthermore, we highlight the advantages of SDL-
MDD regarding the fast evaluation of the specified system.

1 Introduction

In recent years, several approaches have been proposed in model-driven development of
communication protocols. Their objective is the maintenance of models as central artifacts
in every development stage and to define processes transforming these models towards the
final model that is used for deployment of the system to concrete hardware. The main
advantage of model-driven development is the ability to specify the artifacts of the system
in a more platform-independent way. This allows a strict separation from hardware-specific
details and makes a fast deployment to different hardware platforms possible [16].

Model-driven approaches also provide support for extensive utilization of reuse methods
and can – in combination with supporting tools – improve quality and increase productivity.
Concretely, SDL-MDD, our model-driven development process that is based on the ITU-T
Specification and Description Language (SDL) [14], allows the integration of both generic
and ready-to-use design solutions in recommended stages. E.g., SDL patterns are generic
solutions to design problems and can be selected, adapted and composed in the models
defined by SDL-MDD. On the other hand, SDL components are examples for concrete,
ready-to-use design solutions and can also be applied to the artifacts of SDL-MDD [9].

In this paper, we present the development of MacZ in the course of restructuring a
complex MAC layer [1, 2, 4]. MacZ is a MAC layer for mobile ad-hoc networks, e.g., as a basis
for ambient intelligence systems. The development of MacZ was guided by SDL-MDD. Here,
we focus on the combination of SDL-MDD with the idea of micro protocols. Micro protocols
can be understood as a special form of SDL components; they represent self-contained, ready-
to-use solutions for a specific design problem. They differ in the granularity and the type
of the offered functionality from components in general, because micro protocols contain
exactly one protocol functionality [10]. More specifically, micro protocols are distributed
components providing an elementary protocol functionality that is not decomposable further
[9]. To obtain systems with several functionalities, it is often necessary to compose micro

Workshop on ITU System Design Languages, Geneva, Switzerland, Sep 15-16, 2008



protocols to larger components. This results in so-called macro protocols, aggregations of
micro protocols with additional, necessary glue components that connect the single micro
protocols with each other.

The remaining part of this paper is structured as follows: In Section 2 we survey SDL
Model-Driven Development (SDL-MDD) [9], our holistic model-driven approach for gener-
ating networked systems with SDL. Section 3 introduces the MAC layer MacZ [2], and a
selection of micro protocols that were developed and applied during the MDD process [4]
to specify MacZ with SDL. In Section 4, we show results of performance simulations of
MacZ with PartsSim [3], one of the tools that support SDL-MDD. In Section 5, we draw
conclusions and point out further developments.

2 SDL-MDD

The SDL Model-Driven Development (SDL-MDD) [16] represents a holistic, domain-specific
process for developing communication systems. It consists of several process steps that are
based on models as central artifacts. SDL-MDD makes use of the ITU’s Specification and
Description Language (SDL) [14], which comes with a formal semantic and a graphical
and textual notation. SDL allows to specify both structure and behavior of a networked
system in a platform-independent way, with the possibility to integrate platform-specific
code directly into the model [16]. It is supported by several commercial tool suites that
offer, e.g., graphical editors for SDL or SDL-to-C compilers. With the latter, the SDL model
can be used to automatically generate platform-specific code that is compiled into binaries.
For the case study presented in this paper, we have used the Telelogic Tau tool suite [17],
which provides these features.

The complete SDL-MDD process is illustrated in Fig. 1 [9]. It shows six stages that bring
the system step-by-step from the functional requirements to the executable platform-specific
system. These six stages can be grouped into to 2 major phases:

– The specification phase (CIM, PIM, PSM) covers the building of the model contain-
ing the complete behavior. It starts with the Computation-Independent Model (CIM),
which is specified with Message Sequence Charts (MSCs) [13]. In the second stage, the
Platform-Independent Model (PIM) is developed. Here, SDL [14] is used to structure
the system and to specify the abstract behavior. The model is independent of a concrete
hardware platform to allow a fast migration to different platforms. Nevertheless, it al-
ready represents a functionally complete SDL model that can be analyzed and whose
behavior can be validated [16]. Platform-specific details are added in a further trans-
formation step to the Platform-Specific Model (PSM). The PSM extends the PIM with
behavior and definitions specific to a concrete purpose (e.g., for the deployment on spe-
cial hardware platforms). In other words, the PIM is completely included in the SDL
specification of the PSM.

– The implementation phase (RIC, RSC, system in execution and system under simula-
tion respectively) contains the conversion of the SDL model into an executable binary.
Starting point of the transformation is the PSM, the result of the specification phase.
The Runtime-Independent Code (RIC) is obtained with a code generator that brings
the SDL model to a representation in a programming language. E.g., Cmicro, which is
part of the commercial Telelogic Tau suite, transforms the SDL notation into C-code.
The RIC is further processed with a platform-specific compiler into machine instructions
called Runtime-Specific Code (RSC). The SDL Engine represents the runtime environ-
ment of the SDL system and is, among other things, responsible for the selection and

2



Fig. 1. The model-driven development process SDL-MDD [9, 16].

firing of transitions. The SDL Engine is provided by Telelogic Tau and is composed
with the code that is generated out of the model. To interface the open SDL system
with its environment, e.g., a concrete hardware platform, operating system, or simula-
tor, the RSC is combined with the SDL Environment Framework (SEnF ) [9]. Unlike
the Telelogic TAU tool chain, which only generates skeletons of environment functions,
this step allows for a completely automatic tailoring for a specific platform. In Fig. 1,
we consider this tailoring by distinguishing between the system in execution, which goes
live on hardware, and the system under simulation, which is loaded and evaluated by a
simulator like PartsSim.

The presented MacZ case study focuses first on the specification of the PIM. Here, we
use the concept of micro protocols to decompose the requirements of the MAC layer into
functional units, which classify as micro protocols. These requirements were determined in
the CIM in a more informal way before.

Our second focus is on the model-driven performance simulation of the SDL specification
of MacZ with PartsSim [3] that utilizes the well-known ns-2 network simulator [18]. For
that purpose, we automatically generate the executable system, starting with the PSM and
using the code generator Cmicro [17]. Furthermore, we use SEnF to add code to the Cmicro

generated code. So, the resulting binary includes the required code for the usage in PartsSim,
and the system can be loaded and evaluated without manual coding steps [9].

3



3 Platform-Independent Model of MacZ

In this section, we describe the creation of the PIM based on the requirements that were
determined in the CIM. I.e., the task is to transform the behavior of the less formal require-
ments into a strong formal specification with SDL and abstract of the hardware platform
initially.

3.1 MacZ – An Overview

Before we present selected aspects of the SDL specification, we outline the functionality
of MacZ [1, 2, 11]. MacZ is a medium access control (MAC) protocol for wireless ad-hoc
networks that provides different quality of service mechanisms for the transmission of frames.
Beside contention-based transmissions with priorities, MacZ offers to transmit frames in a
contention-free mode. This requires, because of the incompatibility of both transmission
modes, the partitioning of the medium into time slots called virtual slot regions. In turn,
this requires network-wide tick synchronization, so every node is aware of the current slot
region.

Fig. 2 shows an example partitioning of the medium. Beside contention-free and
contention-based virtual slot regions, additional idle regions for energy saving purposes are
shown. They can be used to switch off the transceiver, which is very important in embedded
systems, where small nodes with limited power supply are commonly used. The partitioning
into slot regions is based on the slotting into smaller sections with a fixed length called micro

slots. I.e., a slot region is an aggregation of micro slots; its duration depends on the duration
of a single micro slot and the number of micro slots it consists of. Micro slots are numbered
consecutively relatively to their synchronization interval [11], so e.g., a contention-based slot
region may be present from micro slots numbered 1 to 10.

...

synchronization

reservation-based slot regioncontention-based slot region

idle

...

macro slot

micro slots
...

Fig. 2. Partitioning of the medium into virtual slot regions [1, 2, 11].

In contention-based medium access mode, MacZ can transmit single frames or frames
with preceding RTS/CTS sequence. With RTS/CTS frames, MacZ reduces collisions due to
hidden station scenarios [15]. To reduce collisions in general, an arbitration of the medium
based on CSMA-CA is done with the determination of a backoff interval within a contention
window. This is similar to mechanisms used in popular (wireless) MAC protocols like IEEE
802.11e [12]. MacZ uses priorities that allow the determination of the lower and upper bound
of a contention window. This enables the strict preference of frames by the assignment of
priorities that leads to non-overlapping contention windows [2].

4



Fig. 3. Overall architecture of MacZ [1, 4].

In contention-free mode, MacZ does not address the reservation of time slots. Instead, it
requires that a reservation is done prior to the transmission by the network layer. Reserva-
tions can comprise a single micro slot or a sequence of successive micro slots. The numbers
of these reserved slots are provided by the network layer with each transmission request and
determine the point of time when MacZ transmits the corresponding frame.

3.2 Building up the Architecture

We have analyzed the requirements at our MAC layer to obtain a set of micro protocol
definitions. We note that some of these components provide local functionality and therefore
may not classify as micro protocols in a strict sense. However, they can be seen as SDL com-
ponents, i.e. self-contained, ready-to-use building blocks that can be composed and reused.
In a second step, we aggregate the identified components and micro protocols to get the PIM,
which describes a highly maintainable model, because every building block is self-contained
and can be exchanged with other components offering the same functionality.

The architecture is shown in Fig. 3 with the surrounding network and physical layer [1,
4]. The main components ServiceLayer and BasicLayer are connected to Multiplexer,
which multiplexes signals between both main components and the physical layer:

– BasicLayer is responsible for network-wide tick synchronization between MacZ in-
stances and the fragmentation of the medium into micro slots. We will not address
this component further in this paper, but concentrate on ServiceLayer.

– The ServiceLayer component aggregates micro slots provided and numbered by the
BasicLayer into virtual slot regions. This allows the assignment of different kinds of
medium access control methods to special time periods. So, MacZ can offer a contention-
free and a contention-based transmission mode. These facts result in a further decom-
position of the ServiceLayer shown in Fig. 4.

The sub components in the mentioned Fig. 4 have the following functionality:

5



NetworkLayer

Service-Layer

BasicLayer

Mult iplexer

PacketStorage

SLMultiplexer

PrioTxRx

SLController

ResTxRx

MacZ

Fig. 4. Architecture of the ServiceLayer of MacZ [4].

SLController is responsible for the synchronous switching between virtual slot regions
by every protocol entity, i.e., on every node. This switching is based on the micro slot counting
and tick synchronization provided by BasicLayer. The component meets all properties of
a micro protocol, although it has the characteristic that no messages are exchanged by the
protocol entities. It is specified as an SDL process type.

ResTxRx is also specified as an SDL process type and provides the transmission and
receiving of frames in a contention-free virtual slot region, i.e., it provides a single, symmetric,
distributed functionality. Therefore, this component classifies as a typical micro protocol.
The frames are sent without any arbitration in the micro slot numbers prescribed by the
reservation protocol.

PrioTxRx is a composition of several micro protocols, which are enabled in contention-
based virtual slot regions only. Thus, PrioTxRx encapsulates more than one functionality
and represents a macro protocol. The behavior was specified as an SDL block type that
consists of the process types shown in Fig. 5. The following micro protocols are distributed
among the depicted sub components:

– MediumArbitration is responsible for the medium arbitration, i.e., it waits until the
medium becomes free and sends frames, if the medium remains free for an amount of
time that depends on the lower and upper bound of the contention window, which is
given by the priorities of each frame. Its functionality is specified in the two process
types NAV and FrameTx.

– SimpleSend sends and receives single data frames. So, it is responsible for the processing
of MAC specific headers in frames. The behavior of this micro protocol was specified as
a set of SDL procedures and is included in the process type PrioTxRx (see also Fig. 6).

– RTS CTS offers the possibility to send frames with a preceding RTS/CTS sequence.
Its specification is included as a set of SDL procedures in the process type PrioTxRx

(see also Fig. 6).

6



block type PrioTxRx 1(1)

txRx(1,1):
PrioTxRx

frame(1,1):
FrameTx

nav(1,1):NAV

toMw toStorage

toMw

(TxRx2Mw)

toStorage

(Prio2Storage)PrioResponse

toCtrl

2

(OnOffSwitch)

toCtrl

0

(TxRx2Mw)

toMw

1

(Prio2Storage)

PrioResponse

toStorage

3

(PrioTxRx2FrameTx)

(Confirmation)
toFrameTx

toPrioTxRx

6

TX_CCA

SFD_Prio,
SENDING

toSLMux

toSLMux

toCtrl

(OnOffSwitch)

toSLMux

TX_CCA(Mux2Prio)

toSLMux

7

RX,
CCA_Prio

toSLMux

4

(NAV2PrioTxRx)

toPrioTxRx

toNAV

5

VCCA

toFrameTx
toNAV

Fig. 5. PrioTxRx block type in ServiceLayer [4]. FrameTx and NAV belong to the micro protocol
MediumArbitration. Process type PrioTxRx encapsulates SimpleSend and RTS CTS.

The micro protocols SimpleSend and RTS CTS were specified as SDL procedures as
shown in Fig. 6, because after their composition, these two micro protocols are very close to
each other in terms of dependency. More precisely, in case RTS/CTS is desired, the functions
of SimpleSend are used, if a CTS was received as answer to a sent RTS. Therefore, the
two micro protocols are composed in a possibly sequential way, which needs some kind of
synchronization. Moreover, the sending of data frames must pause, if an RTS was received
and a CTS was answered. Hence, with SDL procedures, the micro protocols can synchronize
with shared SDL variables defined in the SDL process type, and an extensive exchange of
messages is avoided. These variables are introduced during the composition of the micro
protocols as a kind of glue code. We use SDL procedures instead of SDL service types,
because the utilized code generator Cmicro does not support service types.

7



process type  PrioTxRx

Help procedures affecting frames and frame structures.
If you have to change the frame format, you only need
to adapt these procedures

used with rts/cts send mode. They are synchronized with
the following shared variables defined in this process type:
pending, waiting, seSaved, canceled

initRtsCtsFrames sendRts

createDataFrame receiveRts

createRtsFrame receiveCts

createCtsFrame

calcDataFrameDur

Help procedures, which are invoked in different transitions
and can be reused.

The following procedures represent micro protocol functionalities,
which are used when sending frames with rts/cts or without rts/cts.
Sending of frames without rts/cts needs the same functions as
sending data frames after the rts/cts sequence is complete. If you
don't want to use rts/cts you don't need "sendRts", "receiveRts"
and "receiveCts".

startTx confirmationHandling

sendData

receiveData

Fig. 6. Procedures in PrioTxRx encapsulating RTS CTS and SimpleSend [4].

The SDL procedures in Fig. 6 yield a trade-off between synchronization overhead and
separation of functionalities. They are grouped into 4 classes:

– Procedures affecting frame structure (represented with crossing lines) contain all access
operations to the frame. Those must be adapted, if the frame format changes.

– Help procedures are illustrated with diagonal lines. They are used in different contexts.
– RTS/CTS procedures (vertical lines) contain all the behavior necessary for RTS/CTS

handshakes. The procedures are invoked only, if the RTS/CTS mechanism is used.
– General procedures (nested rectangles) handle the transmission of data frames. If a send

operation fails, this class is also responsible for possible new attempts.

SLMultiplexer (de-)multiplexes signals between ServiceLayer and lower layers. How-
ever, signals are not just multiplexed according to their type, but also according to the cur-
rent type of slot region. This allows a strict separation of the presented protocols ResTxRx
and PrioTxRx. At first view, this component does not seem to be a micro protocol, because
a multiplexer typically does not have a distributed functionality. Nevertheless, in this case,
the multiplexer fulfills the properties of micro protocols, because for the correct behavior,
it is essential that all protocol instances forward the signals in the same way. E.g., a frame
sent by PrioTxRx on one host must not be received by ResTxRx on a second host. This
crucial primitive represents a distributed functionality. Therefore, the component classifies
as a micro protocol, which we have specified as an SDL process type.

8



3.3 Types of Collaboration

The micro protocols described above collaborate in different ways: The SLMultiplexer is
composed with the other micro protocols in a sequential collaboration according to the
data/control flow through the protocol layers. The SLController is concurrently composed
with the micro protocol ResTxRx and the macro protocol PrioTxRx.

ResTxRx and PrioTxRx are composed with mutual exclusion, so at most one of them is
enabled and transmits frames. This exclusive composition requires synchronization, which is
accomplished by SLController by deactivating certain protocol(s) if the current virtual slot
region does not suit their functionality. Thus, this central synchronization solution avoids
failures that would come with an error-prone, distributed slot determination.

3.4 Micro Protocol Documentation

To get documentation of the micro protocols, we use ConTraST [8], our own SDL-to-C++
code generator that can – in addition to the generation of C++-code out of SDL models 1

– extract annotations from SDL specifications and create a LATEX file, which includes the
interface behavior of the examined micro protocol [7]. With this LATEX source, documen-
tations in PS or PDF format can be produced automatically. In later developments, such
a documentation can be used to find and select micro protocols in a repository, which is
crucial for successful reuse.

package ResTxRx 1(1)

/*
Version: 1.0

Author: Philipp Becker, Dennis Christmann

contention-based virtual slot regions.

*/

Fig. 7. Annotations showing the overall intention of a micro protocol [4].

The documentation generator extracts inter alia annotations of packages showing the
overall purpose of the micro protocol (Fig. 7), and of transitions including triggers, outputs,
and decisions. This leads to a documentation that shows the complete behavior of the micro
protocol from an outside viewpoint.

Fig. 8 shows on the left a small excerpt of the SDL specification of BasicLayer that
is responsible for synchronization and medium slotting. The annotations are added to the

1 One could ask why we use Cmicro instead of ConTraST for generating code out of the SDL
model. This is due to the fact that ConTraST was not developed for embedded systems with
scarce hardware resources like the MicaZ mote [5], for which MacZ was developed originally.

9



BlackBurstEncode

TxLongBurst

TX

msc Idle

Description:

The signal TxLongBurst triggers the sending
of a long black burst frame over the medium.
The signal TX transmits a long black burst
encoded as physical frame.

Fig. 8. Excerpt of the SDL specification with annotations and the resulting documentation compiled
with LATEX [4, 7]. The example is out of a sub component of BasicLayer.

specification as comments, following a predefined format. On the right, the documentation
that is generated out the model is shown.

The example demonstrates that beside the benefit of getting a separate documentation,
the annotations also provide a description of the behavior in the SDL model itself. This
helps developers in understanding the intention of a specification that was created by other
developers, and improves maintainability.

4 Model-driven Performance Simulation

To simulate the functional behavior, we take the PSM of MacZ and extend it to a complete
SDL system with an application layer, which performs stimuli to the system. For all that, the
SDL model of MacZ is unchanged, so the behavior of the system under test and the system
after deployment is the same. The RIC is generated afterwards by Cmicro and compiled
with a platform-specific compiler, supplemented with additional code of SEnF and the SDL
Engine. The resulting RSC is then simulated with PartsSim [3], which is based on ns-2
[18]. Therefore, constraints by the network like message loss, e.g., caused by weak signals or
collisions, are simulated.

Below, we show the results of three simulations [2, 4]. They are generated with the same
partitioning of the medium into micro slots, the same configuration of virtual slot regions,
the same system stimuli, and the same topology consisting of six nodes. We also use the
same transceiver providing a total bandwidth of 250 Kbps. The difference is the used trans-
mission mode, because every simulation was performed with one of the following modes
provided by MacZ : Contention-free with reservations, contention-based with strict priorities
and contention-based without strict priorities. Thus, we can compare the benefits and im-
pacts of the medium access mechanisms to the performance results. Due to the SDL-MDD

10



 0

 1000

 2000

 3000

 4000

 5000

 6000

 4  5  6  7  8

ba
nd

w
id

th
 (

by
te

/s
)

simulation time (s)

contention−free with reservations
contention−based with priorities
contention−based w/o priorities

Fig. 9. Comparison of transmission bandwidth with different transmission modes [2, 4].

process, we can adapt the SDL system with very little effort to change the desired trans-
mission mode. Afterwards, the executables, which are loaded by PartsSim, can be generated
automatically.

Fig. 9 presents the attained bandwidth of an audio stream transmitted in the simulations
[2, 4]. In each simulation, the audio stream is generated by a single node with a data rate of
2 kB/s. The audio data is divided into fragments of 40 ms, so every frame contains 82 bytes
payload. The frames with the audio data are transmitted over 2 hops, i.e., an intermediate
node forwards the audio data to the destination node. This results in a total bandwidth
requirement of 4 kB/s to transmit the audio stream completely. Two of the remaining three
nodes fill the rest of the bandwidth with sporadic events and other background traffic.
Thus, up to 4 nodes compete with each other, which leads to potential collisions and strong
competition when the contention-based medium access without strict priorities is used.

The best results are obtained with contention-free transmissions, because all frames are
sent with exclusive access to the medium. This prevents collisions of frames, and competition
for network bandwidth. All aberrations between the obtained bandwidth and the required
bandwidth of 4 kB/s can be traced back to the loss of frames due to weak signal strength,
because the size of the contention-free slot region is configured large enough, so every audio
frame is assigned sufficient resources and can be sent in time.

With contention-based access without strict priorities, we get the worst results, because
all sending nodes compete with the same conditions for medium access. This results both in
the deferral of frames with audio data and collisions. Collisions occur, if at least two stations
choose the same backoff interval that is determined between the lower and upper bound of
the contention window randomly.

The resulting bandwidth of contention-based transmissions with priorities is almost as
perfect as the results given with transmissions based on reservations. The only difference
comes with the non-preemptive nature of frame transmissions, because proceeding transmis-
sions can delay the sending of audio frames.

11



5 Conclusions

In this paper, we have presented the development and performance evaluation of MacZ, a
MAC layer for wireless ad-hoc networks, in the context of SDL-MDD. SDL-MDD uses SDL
as design language to specify the central artifacts of the model-driven development process.

We have shown the possibilities of reusablity when applying SDL-MDD, which improves
productivity and quality. Especially, micro protocols were identified and composed to the
Platform-Independent Model of MacZ. The idea behind micro protocols is the specification
of self-contained, ready-to-use components that provide a single, distributed protocol func-
tionality. When following this idea, in the course of time, a repository of micro protocols
can be created, which enables the fast composition of larger protocols with existing design
solutions. So, experiences of prior development processes are kept, and only marginal speci-
fication effort remains. With a well thought-out documentation (as provided by ConTraST ),
the identification of matching micro protocols is simplified.

Furthermore, we have presented the benefits of SDL-MDD regarding model-driven per-
formance simulations. Here, the additional effort of the transformation between SDL design
and the test application is very small. This allows the evaluation of SDL models during
early development stages. For this purpose, we have used PartsSim, an extension of ns-2, to
simulate the SDL specification. This approach has the second advantage that the system-
under-test is based on the same SDL model as the binary that is deployed to a concrete
hardware platform.

Up to now, MacZ has been developed for the MicaZ mote [5]. In ongoing work, we are
porting MacZ to the Imote2 [6]. With the model-driven approach presented in this paper,
the porting is possible with very little effort.

References

1. Philipp Becker. Entwicklung des MacZ Service Layers. Master’s thesis, Computer Science
Department, University of Kaiserslautern, 2006.

2. Philipp Becker, Reinhard Gotzhein, and Thomas Kuhn. MacZ - a quality-of-service mac layer
for ad-hoc networks. Proceedings of 7th Conference on Hybrid Intelligent Systems (HIS), Kaiser-
slautern, Germany, 2007.

3. Phillipp Becker, Reinhard Gotzhein, and Thomas Kuhn. Model-driven performance simulation
of self-organizing systems with partssim. Praxis der Informationsverarbeitung und Kommunika-
tion, pages 45–50, 1/2008.

4. Dennis Christmann. Mikroprotokoll-basierte Restrukturierung, toolgestützte Dokumentation
und Evaluation von MacZ. Bachelor’s thesis, March 2008.

5. Crossbow Technology Inc. Micaz data sheet. http://www.xbow.com/Products/Product_pdf_

files/Wireless_pdf/MICAz_Datasheet.pdf.
6. Crossbow Technology Inc. mote2 data sheet. http://www.xbow.com/Products/Product_pdf_

files/Wireless_pdf/Imote2_Datasheet.pdf.

7. Ingmar Fliege. Documentation of micro protocols. Technical Report 358/07, Computer Science
Department, University of Kaiserslautern, 2007.

8. Ingmar Fliege, Rüdiger Grammes, and Christian Weber. ConTraST - a configurable SDL tran-
spiler and runtime environment. In Reinhard Gotzhein and Rick Reed, editors, SAM, volume
4320 of Lecture Notes in Computer Science, pages 216–228. Springer, 2006.

9. Reinhard Gotzhein. Model-driven with SDL - improving the quality of networked systems
development (invited paper). In Proceedings of the 7th International Conference on New Tech-
nologies of Distributed Systems (NOTERE 2007), Marrakesh, Morocco, pages 31–46, June 4-8
2007.

12



10. Reinhard Gotzhein, Ferhat Khendek, and Philipp Schaible. Micro protocol design: The SNMP
case study. In Edel Sherratt, editor, SAM, volume 2599 of Lecture Notes in Computer Science,
pages 61–73. Springer, 2002.

11. Reinhard Gotzhein and Thomas Kuhn. Tick synchronization for multi-hop medium slotting in
wireless ad hoc networks using black bursts. IEEE SECON 2008, San Francisco, California,
USA, June 16-20 2008.

12. IEEE Std. 802.11e. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications: Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements.
IEEE Computer Society, 2005.

13. ITU-T. Message Sequence Charts (MSC). ITU-T Recommendation Z.120. International
Telecommunication Union (ITU), 2001.

14. ITU-T Recommendation Z.100 (11/2007). Specification and description language (SDL). Inter-
national Telecommunication Union (ITU), 2007.

15. Phil Karn. MACA - a new channel access method for packet radio. In Proceedings of the
ARRL/CRRL Amateur Radio 9th Computer Networking Conference, 1990.

16. Thomas Kuhn, Reinhard Gotzhein, and Christian Webel. Model-driven development with SDL
- process, tools, and experiences. In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna
Reggio, editors, MoDELS, volume 4199 of Lecture Notes in Computer Science, pages 83–97.
Springer, 2006.

17. Telelogic Tau. Tau sdt. http://www.telelogic.com/products/tau/index.cfm.
18. USC Information Sciences Institute. The network simulator - ns-2. http://www.isi.edu/

nsnam/ns/.

13


