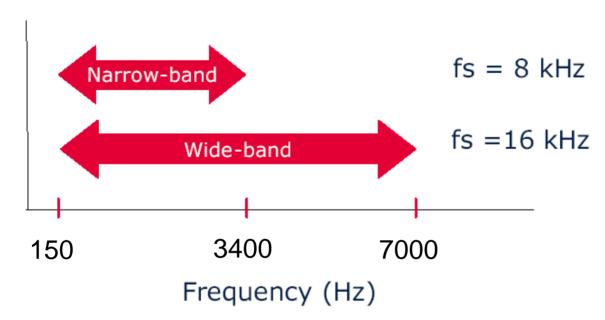
Acoustics of wideband terminals: a 3GPP perspective

Orange Labs

Stéphane RAGOT – Orange Delegate in 3GPP & 3GPP SA4 Vice-Chair

Co-Rapporteur of 3GPP work item on "Requirements and Test Methods for Wideband Terminals"


Sep.10, 2008

Speech Quality in 3G Telephony

Going to wideband (150-7000 Hz)

New challenges for terminal electro-acoustic design

Transducers for wideband (more acoustic bandwidth, loudness, ...)

Pre-/post-processing at 8/16 kHz (dual mode)

- Quality evaluation: subjective tests vs objective tests
 - Terminal acoustic characteristics impact the end user perceived quality as much as the speech coder itself

Small is beautiful, but...

 The form factor of 3G terminals implies strong physical constraints on electroacoustic parts

Mobile handsets phones...)

VS

other terminals (DECT, IP

Necessary trade-offs between acoustic characteristics (loudness, frequency response, distortion...)

Excerpt from 3GPP specification (TS 26.131):

The objective for narrow-band services is to reach a quality as close as possible to ITU-T standards for PSTN circuits. However, due to technical and economic factors, there cannot be full compliance with the general characteristics of international telephone connections and circuits recommended

Acoustic Characteristics of 3G Terminals: TS 26.131 and TS 26.132

- Two specifications address 3G terminal acoustic characteristics
 - TS 26.131: minimum performance requirements
 - TS 26.132: test methods
 - Scope: Narrowband and wideband telephony
 - Interfaces: handset, headset, vehicle/desktop-mounted hansdree, handheld handsfree
- History by 3GPP Release:
 - R'99: Creation with focus on narrowband telephony only (Wideband did not exist in GSM)
 - Information taken from ITU-T SG12 and existing GSM 13.50 specification Main difference: no agreement to adopt the DIA interface
 - R4: standardization of AMR-WB speech coder
 - R5: specification of wideband telephony service (signalling, acoustics, etc.) →
 Wideband ready "on paper"

[....]

 R8 (<u>ongoing</u>): update of TS 26.131 and TS 26.132 (wideband part only) to ensure adequate perceived quality for wideband speech services and convince customers

Status of discussions on Speech Quality (SQ) in 3GPP SA4

 Ongoing work item (R8) to update TS 16.131/TS 26.132: wideband part only

Co-Rapporteurs: Orange and Ericsson/Sony Ericsson

Key agreements so far:

TS 26.131:

- Revision of required performance: loudness, frequency masks, distortion...
- Addition of new performance objectives, e.g. introduction of sidetone delay performance objective
- Introduction of receiving 1/3 octave band idle noise requirement

TS 26.132:

- In handset/headset mode, systematic use of HATS instead of LRGP
- Loudness ratings computed according to P.79 Annex A instead of Annex G
- Distortion measured in terms of signal to harmonic distortion instead of signal to total distortion, using multiple test frequencies (300 Hz to 1kHz) instead of 1 kHz
- Use AMR WE at 12.65 kbit/s for wideband testing

Introduction of new softphone test setup.

unrestricted Groupe France Télécom

Open issues in 3GPP

- Short term: Sidetone delay measurement: test method to be defined (two proposals)
- Long term
 - Alternative distortion measurement, e.g. amplitude-modulate tone, multitone test signals...
 - Diffuse-field correction for receiving frequency response
 - It is more rationale to use a flat response for sending and a diffuse field correction for receive measurement. The existing approach is to use ERP to DRP correction.
 - New test methods for weighted Terminal Coupling Loss (TCLw)
 - P.50 may have some problems, and values may differ for male or female test signals. There could be an issue in measuring noise
 - Handsfree specific measurement: Double talk and switching characteristics test methods
 - Current test methods are not reliable enough to set requirements in double talk conditions
 - Best frequency response in practice?