ITU-T Workshop on

"From Speech to Audio: bandwidth extension, binaural perception"
Lannion, France, 10-12 September 2008

CHARACTERIZATION OF CURRENT CODECS DEGRADATIONS FOR SUBJECTIVE ASSESSMENT OF SPEECH QUALITY

T. ETAME ^{1, 3}, <u>C. QUINQUIS</u> ¹, L. GROS ¹, G. FAUCON ^{2, 3} and R. LE BOUQUIN JEANNES ^{2, 3}

¹ France Telecom R&D, Lannion, France
 ² INSERM, Rennes, France,
 ³ University of Rennes, Rennes, France

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

Introduction

Context:

- subjective assessment is the most reliable way to determine overall perceived voice quality of network equipment, as digital codecs
- reference conditions are useful in subjective tests to provide anchors so that results from different tests can be compared
- the MNRU⁽¹⁾ is extensively used in subjective evaluations to provide a simulated and calibrated degradation qualitatively similar to quantization distortion of waveform codecs
- the improvements in audio coding technologies modified the types of degradations and so the MNRU⁽¹⁾ is not representative any more of the current degradations

Goal:

the purpose of our work is to produce a reference system that can simulate and calibrate degradations of speech and audio codecs which are currently used on telecommunications networks

Our approach:

- produce the multidimensional perceptive space underlying the perception of current degradations
- characterize these perceptive dimensions
- simulate and calibrate similar degradations

⁽¹⁾ MNRU: Modulated Noise Reference Unit (ITU-T P.810)

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

Technical specifications of codecs under evaluation

- ADPCM codecs (Adaptive Differential Pulse Code Modulation)
 - ITU-T G722 at 64, 56 and 48 kbps
- ACELP codecs (Algebraic Code-Excited Linear Predictive)
 - **ITU-T G722.2** at 6.6 23.85 kbps
- Transform codecs
 - MLT (Modulated Lapped Transform) with Scalar Quantized Vector Huffman Coding and bit allocation by categorization (ITU-T G722.1 Wideband at 24, 32 kbps, ITU-T G722.1C Super-Wideband at 24, 32, 48 kbps)
 - MDCT (Modified Discrete Cosine Transform) with scalar Huffman coding and rate loop, based on psychoacoustic model (MP3 format which is the standard MPEG Layer-3 (MP3 / ISO/IEC 11172-3))
 - MDCT with Spectral Band Replication (SBR) (HE AAC Full band at 16 -48 kbps)
- Hybrid codecs (CELP + Time-Domain Aliasing Cancellation (TDAC))
 - **ITU-T G729.1** at 14 32 kbps

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

Multidimensional scaling technique (MDS)

- Limits of methods using semantic descriptors
 - people lack of vocabulary to describe most of the auditory sensations
 - the choice of descriptors is biased by the experimenter
- Multidimensional scaling technique
 - MDS consists of studying the perceptive structures which underlie the judgments of similarities given for pairs of stimuli, by translating them into a matrix of distance
 - the matrix of distance is used to project the whole of the stimuli or objects in a multidimensional space according to a mathematical model
 - there is no presumption on dimensions
- Which MDS?
 - nonmetric multidimensional scaling (the ranking induced by the judgments of dissimilarities in human listening experiments is more reliable than their values)
 - INDSCAL (INDividual differences SCALing) (subjects differently weight the perceptive dimensions when they elaborate an overall judgment)

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

Experiments: selection of codecs (1/2)

- Tandem speech coding was applied to the nineteen following codecs in order to introduce degradation at different magnitudes
 - G722 at 64, 56, 48 kbps;
 - G722.2 at 8.85, 12.65, 15.85, 23.85 kbps;
 - G722.1 at 24, 32 kbps;
 - G729.1 at 14, 20, 24, 32 kbps;
 - HEaac at 16, 24, 32 kbps;
 - G722.1 C at 24 kbps;
 - MP3 at 32, 64 kbps.
 - ◆ 58 conditions (19 codecs x 3 tandem-levels + original signal)
- An ACR (Absolute Category Rating) test was run on to select around twenty codecs with medium speech quality (2 < MOS < 3.5)</p>
 - The samples used in the ACR test consisted of pairs of sentences spoken by two male and two female talkers, two samples per talker
 - Each condition output signal is filtered in order to limit its bandwidth to wideband
 - Thirty-two subjects participated in this ACR listening test

Experiments: selection of codecs (2/2)

	Description		Description	
+ 1	G722.1C_24kbps_x2	°11	G722_56kbps_x2	
+ 2	G722.1C_24kbps_x3	°12	G722_56kbps_x3	
+ 3	G722.1_24kbps_x2	*13 G729.1_14kbps_x3		
+ 4	G722.1_24kbps_x3	*14	G729.1_20kbps_x3	
x 5	G722.2_12.65kbps_x2	12.65kbps_x2 *15 G729.1_24kbps_x2		
x 6	G722.2_12.65kbps_x3	*16	G729.1_32kbps_x3	
x 7	G722.2_15.85kbps_x2	□17	HEAAC_24kbps_x2	
x 8	G722.2_8.85kbps_x2	□18	HEAAC_32kbps_x2	
° 9	G722_48kbps_x2	□19	MP3_32kbps_x1	
°10	G722_48kbps_x3		MP3_32kbps_x2	

The 20 tandem codecs selected for the test of dissimilarity

Experiments: dissimilarity test

dissimilarity test

- A 6 s speech sample uttered by one male was processed by the twenty selected codecs with output limited to wideband
- All in all, 210 pairs (190 + 20 null pairs) were presented in random order to subjects, with a different randomization for each subject
- For each pair, the subject was asked to evaluate similarity coded speech samples on a continuous line scale varying between similar(0) and different(100)
- A single subject participated in each test. Scores were collected in two sessions around one hundred trials each (90 minutes) in two different days
- Twenty-five subjects participated in the experiment

verbalization task

- In order to identify the perceptive attributes corresponding to the four dimensions
- After listening to the twenty tested codecs, subjects were invited to describe in their own words the degradations they had perceived during the test
- dissimilarity test

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

Experiments: dissimilarity test results

■ MDS: 4-dimensional solution interpretable (stress = 0.21)

Degradation indicators: what correlates correspond to the 4 dimensions?

The spectral centroid (SC), indicator of timbral brightness is linked with DIM1 (clear/muffle)

	SC (for male talker (m))	SC (for female talket (f))	
DIM 1	-0.93*	-0.91*	
DIM 2	0.01	0.17	
DIM 3	-0.07	0.23	
DIM 4	0.06	-0.35	

The SC feature can be formulated as:

$$SC = \frac{\sum_{i=1}^{N} f_i \times P_i}{\sum_{i=1}^{N} P_i}$$

- where f_i (expressed in Hz) is the frequency of the ith frequency coefficient with power Pi,
- \rightarrow N = number of frequencies of the SC feature
- The energy on the period of silence explains DIM2 (background noise) only on the higher band [4-7 kHz]

	LB (50 – 4000 Hz)	HB (4000 – 7000 Hz)		
DIM2 (m)	0.45	0.71		
DIM2 (f)	0.39	0.76		

DIM3(noise on speech) is significantly correlated with MOS

	MOS (m)	MOS (f)	
DIM 1	-0.13	-0.36	
DIM 2	-0.19	-0.29	
DIM 3	-0.69*	-0.56*	
DIM 4	-0.15	-0.28	

The cross-correlation between the power spectra of the original signal x and of each coded version y characterizes DIM4 (hiss)

(m)	R_{xy} mean	R_{xy} max	R _{xy} std	(f)	R _{xy} mean	R_{xy} max	R_{xy} std
DIM 1	-0.24	-0.15	-0.09	DIM 1	-0.34	0.40	-0.11
DIM 2	-0.05	0.00	-0.04	DIM 2	0.10	-0.02	0.09
DIM 3	0.00	0.10	0.05	DIM 3	-0.03	-0.30	-0.08
DIM 4	-0.86*	-0.90*	-0.91*	DIM 4	0.62*	0.78*	0.74*

(*) Pearson correlations significant at the 0.05 level

- Introduction
- Technical specifications of codecs under evaluation
- Multidimensional scaling technique (MDS)
- Experiments: selection of codecs, dissimilarity test and results
- Degradation indicators: what correlates correspond to the perceptive dimensions?
- Conclusion

Conclusion

- The aim of this study is:
 - to link the current coding technologies with their potential perceptive degradations
 - to produce a reference system that can simulate and calibrate these degradations for subjective tests
- Results
 - Coded speech samples for one male talker are represented in a 4dimensional perceptive space (clear/muffle, background noise, noise on speech, hiss)
 - Similar analysis for the female talker leads to similar conclusions
 - Perceptive dimensions are characterized by correlates: spectral centroid (dimension 1), energy on the period of silence (dimension 2), cross-correlation between the spectrum of the original signal and this one of the coded versions (dimension 4), MOS (dimension 3)
- Further works
 - to simulate and calibrate these degradations for subjective tests

Thank you for your attention

- acknowledgments
 - The present study was carried out at France Telecom R&D , TECH/SSTP, Lannion, France
 - It was supported by:
 - ◆ INSERM, U 642, Rennes, France
 - Université de Rennes 1, LTSI, Rennes, France