

A. Los Santos, V.González, F.Milagro

"Performance Comparison of AODV and OLSR in urban VANET scenarios"

Geneva, 5-7 March 2008

"Performance Comparison of AODV and OLSR in urban VANET scenarios"

Introduction

• The guideline concept in COM2REACT is the Virtual Sub-Centre (VSC).

The Fully Networked Car Geneva, 5-7 March 2008

 The VANET (Vehicular Ad-hoc Network) is the communication
 layer that supports all VSC
 functions. This network is
 composed of different vehicles
 communicating between
 themselves, using the V2V
 communication system.

VANETs

- Specialisation of mobile ad-hoc networks (MANETs).
- Common characteristics of MANETs are present in VANETs too.
 - Multihop communication, dynamic topology, lack of a central entity, auto-configuration and self-healing are the principal issues of these networks.
- However, automotive ad-hoc networks behave in different ways than MANETs.
 - Constraints on mobility and high speeds.
 - Rapid but somewhat predictable topology changes.
 - Small effective network diameter.
 - Driver behaviour.

Routing protocols

- A routing protocol specifies how different nodes in a network communicate with each other to spread information that allows them to select routes between them.
- MANETs routing protocols Classification:
 - Attending at the moment when the table route is calculated: Reactives, proactives, hybrids.
 - Attending on route selection strategies or routing metrics: Shortest path, multipath, link-reversal, link stability, distance-vector, geographical...
 - Attending on network structure: Uniform, flat, hierarchical, clustering...
- AODV and OLSR are well-know MANET protocols, but could they be used for VANETs?

- o OLSR: Optimized Link State Routing.
 - Proactive Protocol.
 - Works in a completely distributed manner.
 - Hello messages are used to establish links and select MPRs.
 - Multipoint relays (MPRs) allow efficient flooding of Topology Control (TC) messages to all nodes.
 - Only MPR nodes are responsible for forwarding control traffic.

• AODV: Ad-hoc On-demand Distance Vector

- Reactive protocol, it is an on demand algorithm.
- It maintains the routes as long as they are needed by the sources.
- Additionally, AODV forms trees which connect multicast group members. The trees are composed of the group members and the nodes needed to connect the members.
- Its main advantage is that it uses bandwidth efficiently, minimizing the network load for control and data traffic.
- It is loop-free, self-starting, and scales to large numbers of mobile nodes.

802.11b based V2V communication module

- Components:
 - Ubiquiti SR2 WIFICARD (máx. 400 mW)
 - 9 dBi ANTENNA
 - ROUTERBOARD 532A
 - SERIAL GPS
- Software:
 - Debian MIPS distribution (2.6 Kernel)
 - Madwifi driver
 - Iperf

8

Field tests

- Together with the simulations, numerous field tests have been done in different scenarios.
- The simulations have complemented the tests performed. Some scenarios couldn't be tested due to logistic and physical problems.

Simulations platform

- Different software was connected:
 - NS2: Network Simulator 2.
 - SUMO: Simulation of Urban Mobility.
 - Parser
 - Gnuplot

Manhattan Scenario

- Characteristics:
 - 1 Km x 1Km area
 - 2 lanes per street (one per way)
 - 5 traffic lights
 - Vehicles Speed:
 0 to 60 Km/h
 - Crossroads
 - The same turning probability for each direction
 - Closed Circuit

Simulations set up

- Random Movement patterns (SUMO) and Random Traffic Network.
- Shadowing-vis propagation model used in NS2. It allows the definition of obstacles in the scenario, where NLOS situations are presented.
- The hardware parameters configuration in NS2 is similar to the one provided in the data sheets (wificard power emission and sensitivity, antennae gain...)
- Each connection is a 10KB UDP burst sent at the maximum IEEE802.11b rate (11Mb/s). Packet size is 1460 Bytes at application layer.
- HI value in OLSR is set to 1 second.
- Objective: OLSR and AODV performance comparison
 - Vehicles density: 50, 100 and 150 vehicles/km²
 - Connections number: 1000, 2000, 4000 and 8000 UDP connections.
 - Evaluated parameters: PDR, Average Throughput, Average Hop Number and Overhead.

OLSR vs AODV (I)

Solution connections vs modghput

The Fully Networked Car Geneva, 5-7 March 2008

AODV: Connections vs Throughput

OLSR vs AODV (II)

Conclusions

- o Simulations results:
 - Routing protocols performance depends on the vehicles density, and thus on the network load.
 - OLSR performance is better with higher load network, since its overhead is constant.
 - AODV has shown in our simulations that is a better option when the traffic is lower.
 - No one can be considered the best option for all the situations.
- Currently there are multitude of routing protocols, the future for VANETs could be protocols combining geographical information with traffic patterns. But:
 - OLSR which was initially designed for MANETs has demonstrated its correct performance in real field tests done in COM2REACT project. Information can be seen in <u>http://www.com2react-project.org/</u>.

More information

For more information: Alberto Los Santos Aransay Networked Vehicles Division

Telefónica I+D Huesca - Spain :: +34 974 21 55 00 P.T. Walqa - Edificio Ramón y Cajal

Telefónica Investigación y Desarrollo

The Fully Networked Car Geneva, 5-7 March 2008

alberto@tid.es