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Summary 

Technical Report ITU-T TR.sgfdm provides a guideline for secure data aggregation in machine 

learning (ML) while protecting input data. It focuses on how fully homomorphic encryption (FHE) 

works on data aggregations in machine learning. It first describes a general workflow on secure 

aggregation in ML and explains how FHE-based data aggregation in ML could satisfy a certain 

requirement. A general workflow is then given on FHE-based ML supporting data aggregation 

between more than two parties. 
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Technical Report ITU-T TR.sgfdm 

FHE-based data collaboration in machine learning 

1 Scope 

This Technical Report provides guidelines for secure data aggregation in machine learning (ML) 

inference and training using fully homomorphic encryption (FHE) as a building block. It describes a 

general workflow on data aggregation in ML with a set of security requirements and explains how 

FHE-based data aggregation in ML could satisfy a certain requirement. FHE primitive itself is out of 

scope for this Technical Report, but its brief description is given. Finally, a workflow is described on 

FHE-based ML supporting data aggregation between more than two parties.  

2 References 

None. 

3 Definitions 

3.1 Terms defined elsewhere 

This Technical Report uses the following terms defined elsewhere: 

3.1.1 aggregated data [b-ISO/IEC 20889]: Data representing a group of data principals (see below 

clause 3.1.3), such as a collection of statistical properties of that group. 

3.1.2 attribute [b-ISO/IEC 20889]: Inherent characteristic. 

3.1.3 data principal [b-ISO/IEC 20889]: Entity to which data relates. 

NOTE – The term "data principal" is broader than "PII principal" (or "data subject" as used elsewhere) and is 

able to denote any entity such as a person, an organization, a device, or a software application. 

3.1.4 dataset [b-ISO/IEC 20889]: Collection of data. 

3.1.5 inference [b-ISO/IEC 20889]: Act of deducing otherwise unknown information with non-

negligible probability, using the values of one or more attributes (3.1.2) or by correlating external 

data sources. 

3.1.6 microdata [b-ISO/IEC 20889]: Dataset (3.1.4) comprised of records (3.1.7) related to 

individual data principals (3.1.3). 

3.1.7 record [b-ISO/IEC 20889]: Set of attributes (3.1.2) concerning a single data principal (3.1.3). 

3.2 Terms defined in this Technical Report 

This Technical Report defines the following terms: 

3.2.1 computing party: Entity that performs data aggregation (see clause 3.2.2) from multiple 

input parties (3.2.4), and then statistical analysis and/or machine learning requested by an output party 

(3.2.6). 

3.2.2 data aggregation: Act whereby dataset (3.1.4) is gathered from multiple input parties (3.2.4) 

to obtain statistical properties or perform machine learning on collected datasets. 

3.2.3 input data: Microdata provided by input party (3.2.4). 

3.2.4 input party: Entity that provides microdata (3.1.6) for data aggregation (3.2.2). 
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3.2.5 input data protection: Property that makes sure that the input data (3.2.3) as well as its 

intermediate results are not disclosed to any other party than the party who provides the input data 

during data aggregation (3.2.2). 

3.2.6 output party: Entity that obtains the computing result on input data (3.2.3) from multiple 

input parties (3.2.4). 

3.2.7 output data protection: Property that prevents data leakage from input data (3.2.3) when 

the computing result on input data is published to the output party (3.2.6). 

4 Abbreviations and acronyms 

This Technical Report uses the following abbreviations and acronyms. 

AES  Advanced Encryption Standard 

AI  Artificial Intelligence 

FHE  Fully Homomorphic Encryption 

HE  Homomorphic Encryption 

ML  Machine Learning 

MPC  Multi Party Computation 

PET  Privacy Enhancing Technologies  

5 Overview 

Data aggregation has been arranged either directly between concerned organizations or through 

trusted third parties with a commitment to certain terms of use. Such conventional methodologies 

involve manual processes and thus takes considerable resources and time. As data sharing becomes 

more widespread, data aggregation services are likely to be provided by shared infrastructures with 

greater effectiveness and efficiency, but such services can potentially be untrusted. For example, 

during data aggregations, a third party that collects the dataset may intentionally or unintentionally 

leak the data, and, when anonymous datasets are sequentially combined, data principles can be 

re-identified [b-Narayanan]. Furthermore, such a trusted party may not be available when data 

aggregation takes place across borders. It is thus essential to explore ways to achieve secure 

aggregation under "untrusted" assumptions. 

We now provide a general workflow and security requirements considering data aggregation services 

is provided by shared and untrusted computing infrastructure. There are more than two input parties 

which provide input data for ML inference or training, and the output party receives the computing 

result and could be one of the input parties. The computing party then provides the necessary 

measures for input data protection and output data protection. Input data protection ensures that the 

input data as well as its intermediate results are not disclosed to any other party than the party that 

provides the input data. For example, the input party applies the necessary security techniques such 

as a fully homomorphic encryption (FHE) prior to sending its data to the computing party, and the 

computing party supports services including FHE-based ML computations while providing the input 

data protection. There exist cases of using FHE-based data aggregation in ML, and such case studies 

in official statistics, healthcare, and finance are described in Appendix III. With necessary security 

controls such as differential privacy in place, output data protection also prevents data leakage from 

input data when the computing result is published to the output party. 
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Figure 1 – Overview on data-protecting ML workflow 

This guideline focuses on the use of FHE to support input data protection when more than two parties 

collaborate with their data as input to perform ML computations using 3rd party shared infrastructure 

services. As mentioned earlier, FHE primitives or schemes are not in the scope of this Technical 

Report. This guideline however, aims to provide the security guidelines for FHE-based ML 

supporting data aggregation. 

6 FHE as a building block 

Cryptography has been extensively studied to secure data-in-transit and data-at-rest with standardized 

primitives such as RSA [b-PKCS], ECDSA [b-FIPS 186-5], the advanced encryption standard (AES) 

[b-FIPS 197], etc. Protection for data-in-use, however, becomes increasingly important with more 

requirements of data sharing and adopting 3rd party computing resources such as cloud computing 

services. As cryptographic primitives secure data-in-use, homomorphic encryption allows one to 

perform computations on an encrypted form of data, i.e., ciphertext, without having to first decrypt it 

for further operations. As shown in Figure 2, when the computation result on the ciphertext is 

decrypted, it is identical to the output of the same computations on the original data, i.e., plaintext.  

 

Figure 2 – Homomorphic encryption explained 

In fact, conventional standardized cryptographic primitives, such as RSA, ElGamal [b-ElGamal], and 

Paillier [b-Paillier], allows to perform either addition or multiplication in ciphertext; these types of 

cryptographic primitives are called partial homomorphic encryption. For example, RSA and ElGamal 

cryptosystems support an unbounded number of modular multiplications on ciphertext, and the 

Paillier cryptosystem supports an unbounded number of modular additions on ciphertext. The list of 

related standards is in Appendix I.  

There exist yet other types of homomorphic encryption (HE) primitives, called somewhat HE or 

levelled HE, which support both addition and multiplication on ciphertext, but the numbers of the 

operations are limited. Gentry [b-Gentry] proposed the notion of FHE by adding to somewhat HE a 

process called bootstrapping, which renews the remaining number of multiplications. Since Gentry 
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suggested FHE, several FHE primitives have been proposed such as BGV, BFV, TFHE and CKKS. 

Each FHE primitives are not described in this Technical Report, but the list of primitives and libraries 

is found in Appendix II. 

Since FHE allows arbitrary operations on ciphertext, it thus becomes possible to evaluate functions 

in machine learning on encrypted data without decrypting them. This could be one of the methods to 

support input data protection without having to rely on the due diligence of outsourced computing 

parties. For a practical deployment of FHE as building blocks, however, other building blocks need 

to be considered such as compliers and secure application framework. First, a lack of knowledge on 

FHE prohibits engineers to adopt in the field, because they have to consider cryptographic details 

such as circuit depth analysis, noise tracking, bootstrapping, and cryptographic parameter selection. 

FHE compliers or also called transpilers, enable to convert existing code that works on plaintext to 

work on ciphertext generated by the FHE. Second, more importantly, it is not straightforward to use 

FHE in applications such as data aggregation in ML. It is thus important to construct a secure 

application framework such as security guidelines for FHE-based data aggregation in ML. 

7 Workflows for FHE-based input data protection in ML  

FHE could provide input data protection when two input parties provide microdata to the computing 

party for ML inference. Assume that a data owner wants to utilize a well-trained machine learning 

model provided by an external organization, such as cancer prediction models with a genome data as 

input. The genome data is of course sensitive and private information, but the model parameters are 

also valuable assets to share outside the organization. In this case, the two input parties encrypt their 

input, i.e., genome data and model parameters, using FHE and then sends them to the computing 

party. The owner of the genome data, as an output party, could receive the result after the computing 

party performs inference on those ciphertexts and each party collaborates for decryption. Throughout 

the whole process, the computing party cannot access both the input and output of the prediction 

services.  

FHE can also be applied to the case where two organizations need to aggregate their data for ML 

training. Each data set from the input parties could be encrypted using FHE and then computed by 

the computing party, and the encrypted result can be securely decrypted by a cooperation between 

the input parties. 

Although FHE allows arbitrary computations such as machine learning (ML) in encrypted data, its 

use for data aggregation is not straightforward. This clause provides a secure workflow, where more 

than two parties aggregate their data using FHE for ML inference and training while providing input 

data protection. There may be more than two input parties, and the output party could be one of the 

input parties. Input parties aim to aggregate their data either to the ML inference or ML training. The 

computing party provides FHE-based ML operations, and the output party receives the result, i.e., an 

inference result or the model parameters of a trained ML model.  

We now provide secure workflows in data aggregation for FHE-based ML, as shown in Figure 3. 

1) Each input party generates a key pair (𝑠𝑘𝑖 , 𝑝𝑘) using distributed secret sharing protocols. 

2) Each input party computes the ciphertext 𝐸𝑖 (= 𝐸𝑛𝑐(𝐷𝑎𝑡𝑎𝑖, 𝑝𝑘)) with its 𝐷𝑎𝑡𝑎𝑖 and public 

key 𝑝𝑘 as input.  

3) Each input party sends the ciphertext and public key (𝐸𝑖,  𝑝𝑘) to the computing party.  

4) On receiving the ciphertext and public key from each input party, the computing party 

performs the operation 𝑒𝑣𝑎𝑙, e.g., ML inference or ML training, with the ciphertexts and 

public key as input.  

5) The computing party sends back the result 𝑓(= 𝑒𝑣𝑎𝑙(𝐸1,… ,  𝐸𝑛,  𝑝𝑘)) to each input party. 

6) Each input party decrypts and generates a decryption share  𝐷𝑖(= 𝐷𝑒𝑐(𝑓,  𝑠𝑘𝑖)). 

7) Each input party sends the decryption share to the output party.  
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8) The output party merge and recover the result, i.e., the inference result of ML or the 

parameters of the trained ML model.  

It is also possible to use multi-key FHE for the case above, where each input parties independently 

generate and use their key pairs (𝑠𝑘𝑖 , 𝑝𝑘𝑖). The workflow of such a case is the same as Figure 3 except 

that output parties may interact with input parties to recover the result depending on the underlying 

FHE primitives. Input parties may also interact with the computing party using cryptographic 

protocols to accelerate 𝑒𝑣𝑎𝑙 depending on the details of ML and the underlying FHE primitives. 

 

Figure 3 – A workflow in FHE-based ML 
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Appendix I 

 

Related standardizations on machine learnings and homomorphic encryptions 

The following are important references considered at the beginning of this Technical Report. 

[b-IEEE 3652.1] is a guide to using machine learning from various input sources, which is the case 

of ours without the FHE method. ISO/IEC 18033 series are standards for encryption methods 

including FHE. [b-ISO/IEC 18033-6] defines partial homomorphic encryption (HE) tools supporting 

single operations in encrypted form, and they can replace FHE in this guideline if an application needs 

only one type of encrypted operations. 

I.1) [b-IEEE 3652.1] IEEE guide for architecture framework and application of federated 

machine learning 

• Data aggregation in machine learning is a special case of federated machine learning. 

Before applying the FHE technique, the base machine learning is assumed to follow the 

standard. 

• Federated machine learning is designed for special machine learning purposes. But FHE 

can be used not only in machine learning areas but also in any other non-machine learning 

areas. 

• In federated machine learning, not only the final result but also the intermediate 

parameters of each iteration are revealed; many federated machine learning methods 

require a trusted third party as client parameters are leaked to the third party. In FHE, 

there are no intermediate data revealed except the final computation result, and a trusted 

third party is not needed. 

I.2) [b-ISO/IEC 18033-6]:2019 IT Security techniques – Encryption algorithms – Part 6: 

Homomorphic encryption  

• In this standard, there are two mechanisms for partially homomorphic encryption: 

exponential ElGamal encryption and Paillier encryption. The partially homomorphic 

encryption encompasses schemes that support the evaluation of only one type of 

operation, e.g., addition (in Paillier encryption) or multiplication (in exponential 

ElGamal encryption). But FHE can support arbitrary operations and allow arbitrary 

computation on encryption data. 

• If a data aggregation needs only one type of operation, then the encryption mechanism 

can be applied by partially homomorphic encryption following the standard, rather than 

the FHE. 
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Appendix II 

 

FHE libraries and supporting schemes 

An FHE library refers to a software package or framework that provides support for a fully 

homomorphic encryption operation. An FHE scheme is a cryptographic system that can perform 

several classes of computations on encrypted data, including addition and multiplication. Table II.1 

is a collection of popular FHE libraries. The libraries support different FHE schemes. They aim to 

simplify the development and deployment of FHE applications by providing efficient and secure 

implementations of FHE schemes and algorithms. 

Table II.1 – FHE libraries 

Libraries Supporting FHE schemes 

Concrete[b-Concrete] TFHE [b-Chillotti] 

FV-NFLlib [b-FV-NFL] BFV [b-Brakerski] 

FHEW [b-FHEW] FHEW [b-Ducas] 

HEAAN [b-HEAAN] CKKS [b-Cheon] 

HElib [b-HElib] BGV [b-Brakerski, Z], CKKS [b-Cheon] 

Lattigo [b-Lattigo] BFV [b-Brakerski], CKKS [b-Cheon]  

OpenFHE [b-PALISADE] BFV [b-Brakerski], BGV [b-Brakerski, Z], CKKS [b-Cheon], etc. 

SEAL [b-SEAL] BFV [b-Brakerski], CKKS [b-Cheon] 

• The libraries are just examples: each library has no significant difference yet on the 

performance. 

• Language in which each library is built: Concrete: Rust FV-NFLlib, FHEW, HEAAN, HElib, 

OpenFHE, SEAL: C++ Lattigo: Go 

• Characteristics of each FHE scheme: BGV, BFV: advantage in single operation with 

encrypted integral data  

 CKKS: supporting more kinds of operations with encrypted real valued data 

 TFHE: less bootstrapping with encrypted data in bit 

 FHEW: faster bootstrapping than BGV, BFV with encrypted integral data 
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Appendix III 

 
Case studies for FHE-based data aggregation 

III.1 Official statistics 

Nation policy decisions could benefit from data sharing with other countries, but cross-border data 

sharing is often infeasible because of privacy concerns. The privacy preserving techniques task team 

(PPTTT) has been active under the statistics division of the United Nations (UN) since April 2018 to 

advise the UN Committee of experts on big data and data science for official statistics (UN-CEBD), 

developing the guidelines such as the UN privacy preserving techniques handbook [b-UNH]. The 

guideline motivates to use privacy-preserving techniques for statistical analysis of sensitive data and 

present use cases. Those techniques include FHE as well as secure multi-party computation (SMPC), 

zero-knowledge proof (ZKP), trusted execution environment (TEE), and differential privacy. The 

task team has also launched the UN PET Lab project in 2020, where multiple national statistics offices 

(NSOs), such as the United States of America (U.S.) Census Bureau, Statistics Netherlands, the Italian 

National Institute of Statistics (ISTAT), and the United Kingdom's (U.K.) Office for National 

Statistics, demonstrate the sharing of sensitive data using the privacy enhancing technologies (PETs).  

III.2 Healthcare and finance 

One of the interesting efforts to enhance privacy in healthcare is the iDASH privacy & security 

workshop [b-iDash]. The computation requirements from the growth of genome data enforce to 

consider more cost-effective cloud computing services, but security and privacy remains a major 

concern. This community efforts evaluates the performance of various state-of-the-art privacy 

enhancing technologies. The competition has particularly focused on FHE-related tasks every year 

since 2015, and challenges regarding FHE-based ML is as follows. 

• Homomorphic encryption based logistic regression model learning; to build a machine 

learning model over data encrypted using FHE.  

• Secure multi-label tumour classification using homomorphic encryption; to develop an FHE-

based multi-label classification method to predict the classes of tumour samples on genomic 

information.  

• Homomorphic encryption-based secure viral strain classification; to develop FHE-based 

methods to classify a given viral genome, e.g., COVID-19 genome, into one of the four 

different strains. 

• Secure model evaluation on homomorphically encrypted genotype data; to develop an FHE-

based method to securely predict phenotype while protecting both model parameters and 

genotype.  

The World Economic Forum and Deloitte released a white paper [b-WEF] highlighting FHE as one 

of the five key privacy enhancing technologies (PETs), enabling financial institutions to improve 

collaboration in 2019. In the same year, there was the global AML and financial crime techSprint 

[b-FCA], which focused on how encryption privacy enhancing technologies (PETs) including FHE 

can facilitate the sharing of data in order to tackle money laundering and financial crime concerns, 

which are related to 800 000 people trafficking and 40 million people under a form of modern slavery 

every year.  

In July 2022, the U.S. and the U.K. governments launched a set of challenges in privacy-enhancing 

technologies to tackle financial crime and public healthcare issues. The competition proceeds with 

two separate tracks, i.e., improving the detection of financial crime and bolstering pandemic response 

capabilities, motivating to develop privacy-preserving federated learning solutions, where artificial 

intelligence (AI) or ML models are trained on sensitive data without organizations having to share 

their raw data. The first track aiming for financial crime prevention aims to use PETs for privacy-
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preserving sharing of financial information, e.g., SWIFT, in order to identify anomalous payments 

without compromising individual privacy. The second track aims to forecast an individual risk of 

infection during a pandemic using the dataset representing a digital twin of a regional population.  
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