

 Standardization Sector

ITU-T Technical Report
(09/2023)

TR.sgfdm

 FHE-based data collaboration in machine
learning

ITUPublications International Telecommunication Union

 TR.sgfdm (2023-09) i

Technical Report ITU-T TR.sgfdm

FHE-based data collaboration in machine learning

Summary

Technical Report ITU-T TR.sgfdm provides a guideline for secure data aggregation in machine

learning (ML) while protecting input data. It focuses on how fully homomorphic encryption (FHE)

works on data aggregations in machine learning. It first describes a general workflow on secure

aggregation in ML and explains how FHE-based data aggregation in ML could satisfy a certain

requirement. A general workflow is then given on FHE-based ML supporting data aggregation

between more than two parties.

Keywords

Data aggregation, data protection, fully homomorphic encryption, machine learning.

Note

This is an informative ITU-T publication. Mandatory provisions, such as those found in ITU-T

Recommendations, are outside the scope of this publication. This publication should only be referenced

bibliographically in ITU-T Recommendations.

© ITU 2024

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

ii TR.sgfdm (2023-09)

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Technical Report ... 1

4 Abbreviations and acronyms .. 2

5 Overview ... 2

6 FHE as a building block ... 3

7 Workflows for FHE-based input data protection in ML .. 4

Appendix I – Related standardizations on machine learnings and homomorphic

encryptions .. 6

Appendix II – FHE libraries and supporting schemes ... 7

Appendix III – Case studies for FHE-based data aggregation ... 8

III.1 Official statistics ... 8

III.2 Healthcare and finance ... 8

Bibliography... 10

 TR.sgfdm (2023-09) 1

Technical Report ITU-T TR.sgfdm

FHE-based data collaboration in machine learning

1 Scope

This Technical Report provides guidelines for secure data aggregation in machine learning (ML)

inference and training using fully homomorphic encryption (FHE) as a building block. It describes a

general workflow on data aggregation in ML with a set of security requirements and explains how

FHE-based data aggregation in ML could satisfy a certain requirement. FHE primitive itself is out of

scope for this Technical Report, but its brief description is given. Finally, a workflow is described on

FHE-based ML supporting data aggregation between more than two parties.

2 References

None.

3 Definitions

3.1 Terms defined elsewhere

This Technical Report uses the following terms defined elsewhere:

3.1.1 aggregated data [b-ISO/IEC 20889]: Data representing a group of data principals (see below

clause 3.1.3), such as a collection of statistical properties of that group.

3.1.2 attribute [b-ISO/IEC 20889]: Inherent characteristic.

3.1.3 data principal [b-ISO/IEC 20889]: Entity to which data relates.

NOTE – The term "data principal" is broader than "PII principal" (or "data subject" as used elsewhere) and is

able to denote any entity such as a person, an organization, a device, or a software application.

3.1.4 dataset [b-ISO/IEC 20889]: Collection of data.

3.1.5 inference [b-ISO/IEC 20889]: Act of deducing otherwise unknown information with non-

negligible probability, using the values of one or more attributes (3.1.2) or by correlating external

data sources.

3.1.6 microdata [b-ISO/IEC 20889]: Dataset (3.1.4) comprised of records (3.1.7) related to

individual data principals (3.1.3).

3.1.7 record [b-ISO/IEC 20889]: Set of attributes (3.1.2) concerning a single data principal (3.1.3).

3.2 Terms defined in this Technical Report

This Technical Report defines the following terms:

3.2.1 computing party: Entity that performs data aggregation (see clause 3.2.2) from multiple

input parties (3.2.4), and then statistical analysis and/or machine learning requested by an output party

(3.2.6).

3.2.2 data aggregation: Act whereby dataset (3.1.4) is gathered from multiple input parties (3.2.4)

to obtain statistical properties or perform machine learning on collected datasets.

3.2.3 input data: Microdata provided by input party (3.2.4).

3.2.4 input party: Entity that provides microdata (3.1.6) for data aggregation (3.2.2).

2 TR.sgfdm (2023-09)

3.2.5 input data protection: Property that makes sure that the input data (3.2.3) as well as its

intermediate results are not disclosed to any other party than the party who provides the input data

during data aggregation (3.2.2).

3.2.6 output party: Entity that obtains the computing result on input data (3.2.3) from multiple

input parties (3.2.4).

3.2.7 output data protection: Property that prevents data leakage from input data (3.2.3) when

the computing result on input data is published to the output party (3.2.6).

4 Abbreviations and acronyms

This Technical Report uses the following abbreviations and acronyms.

AES Advanced Encryption Standard

AI Artificial Intelligence

FHE Fully Homomorphic Encryption

HE Homomorphic Encryption

ML Machine Learning

MPC Multi Party Computation

PET Privacy Enhancing Technologies

5 Overview

Data aggregation has been arranged either directly between concerned organizations or through

trusted third parties with a commitment to certain terms of use. Such conventional methodologies

involve manual processes and thus takes considerable resources and time. As data sharing becomes

more widespread, data aggregation services are likely to be provided by shared infrastructures with

greater effectiveness and efficiency, but such services can potentially be untrusted. For example,

during data aggregations, a third party that collects the dataset may intentionally or unintentionally

leak the data, and, when anonymous datasets are sequentially combined, data principles can be

re-identified [b-Narayanan]. Furthermore, such a trusted party may not be available when data

aggregation takes place across borders. It is thus essential to explore ways to achieve secure

aggregation under "untrusted" assumptions.

We now provide a general workflow and security requirements considering data aggregation services

is provided by shared and untrusted computing infrastructure. There are more than two input parties

which provide input data for ML inference or training, and the output party receives the computing

result and could be one of the input parties. The computing party then provides the necessary

measures for input data protection and output data protection. Input data protection ensures that the

input data as well as its intermediate results are not disclosed to any other party than the party that

provides the input data. For example, the input party applies the necessary security techniques such

as a fully homomorphic encryption (FHE) prior to sending its data to the computing party, and the

computing party supports services including FHE-based ML computations while providing the input

data protection. There exist cases of using FHE-based data aggregation in ML, and such case studies

in official statistics, healthcare, and finance are described in Appendix III. With necessary security

controls such as differential privacy in place, output data protection also prevents data leakage from

input data when the computing result is published to the output party.

 TR.sgfdm (2023-09) 3

Figure 1 – Overview on data-protecting ML workflow

This guideline focuses on the use of FHE to support input data protection when more than two parties

collaborate with their data as input to perform ML computations using 3rd party shared infrastructure

services. As mentioned earlier, FHE primitives or schemes are not in the scope of this Technical

Report. This guideline however, aims to provide the security guidelines for FHE-based ML

supporting data aggregation.

6 FHE as a building block

Cryptography has been extensively studied to secure data-in-transit and data-at-rest with standardized

primitives such as RSA [b-PKCS], ECDSA [b-FIPS 186-5], the advanced encryption standard (AES)

[b-FIPS 197], etc. Protection for data-in-use, however, becomes increasingly important with more

requirements of data sharing and adopting 3rd party computing resources such as cloud computing

services. As cryptographic primitives secure data-in-use, homomorphic encryption allows one to

perform computations on an encrypted form of data, i.e., ciphertext, without having to first decrypt it

for further operations. As shown in Figure 2, when the computation result on the ciphertext is

decrypted, it is identical to the output of the same computations on the original data, i.e., plaintext.

Figure 2 – Homomorphic encryption explained

In fact, conventional standardized cryptographic primitives, such as RSA, ElGamal [b-ElGamal], and

Paillier [b-Paillier], allows to perform either addition or multiplication in ciphertext; these types of

cryptographic primitives are called partial homomorphic encryption. For example, RSA and ElGamal

cryptosystems support an unbounded number of modular multiplications on ciphertext, and the

Paillier cryptosystem supports an unbounded number of modular additions on ciphertext. The list of

related standards is in Appendix I.

There exist yet other types of homomorphic encryption (HE) primitives, called somewhat HE or

levelled HE, which support both addition and multiplication on ciphertext, but the numbers of the

operations are limited. Gentry [b-Gentry] proposed the notion of FHE by adding to somewhat HE a

process called bootstrapping, which renews the remaining number of multiplications. Since Gentry

4 TR.sgfdm (2023-09)

suggested FHE, several FHE primitives have been proposed such as BGV, BFV, TFHE and CKKS.

Each FHE primitives are not described in this Technical Report, but the list of primitives and libraries

is found in Appendix II.

Since FHE allows arbitrary operations on ciphertext, it thus becomes possible to evaluate functions

in machine learning on encrypted data without decrypting them. This could be one of the methods to

support input data protection without having to rely on the due diligence of outsourced computing

parties. For a practical deployment of FHE as building blocks, however, other building blocks need

to be considered such as compliers and secure application framework. First, a lack of knowledge on

FHE prohibits engineers to adopt in the field, because they have to consider cryptographic details

such as circuit depth analysis, noise tracking, bootstrapping, and cryptographic parameter selection.

FHE compliers or also called transpilers, enable to convert existing code that works on plaintext to

work on ciphertext generated by the FHE. Second, more importantly, it is not straightforward to use

FHE in applications such as data aggregation in ML. It is thus important to construct a secure

application framework such as security guidelines for FHE-based data aggregation in ML.

7 Workflows for FHE-based input data protection in ML

FHE could provide input data protection when two input parties provide microdata to the computing

party for ML inference. Assume that a data owner wants to utilize a well-trained machine learning

model provided by an external organization, such as cancer prediction models with a genome data as

input. The genome data is of course sensitive and private information, but the model parameters are

also valuable assets to share outside the organization. In this case, the two input parties encrypt their

input, i.e., genome data and model parameters, using FHE and then sends them to the computing

party. The owner of the genome data, as an output party, could receive the result after the computing

party performs inference on those ciphertexts and each party collaborates for decryption. Throughout

the whole process, the computing party cannot access both the input and output of the prediction

services.

FHE can also be applied to the case where two organizations need to aggregate their data for ML

training. Each data set from the input parties could be encrypted using FHE and then computed by

the computing party, and the encrypted result can be securely decrypted by a cooperation between

the input parties.

Although FHE allows arbitrary computations such as machine learning (ML) in encrypted data, its

use for data aggregation is not straightforward. This clause provides a secure workflow, where more

than two parties aggregate their data using FHE for ML inference and training while providing input

data protection. There may be more than two input parties, and the output party could be one of the

input parties. Input parties aim to aggregate their data either to the ML inference or ML training. The

computing party provides FHE-based ML operations, and the output party receives the result, i.e., an

inference result or the model parameters of a trained ML model.

We now provide secure workflows in data aggregation for FHE-based ML, as shown in Figure 3.

1) Each input party generates a key pair (𝑠𝑘𝑖 , 𝑝𝑘) using distributed secret sharing protocols.

2) Each input party computes the ciphertext 𝐸𝑖 (= 𝐸𝑛𝑐(𝐷𝑎𝑡𝑎𝑖, 𝑝𝑘)) with its 𝐷𝑎𝑡𝑎𝑖 and public

key 𝑝𝑘 as input.

3) Each input party sends the ciphertext and public key (𝐸𝑖, 𝑝𝑘) to the computing party.

4) On receiving the ciphertext and public key from each input party, the computing party

performs the operation 𝑒𝑣𝑎𝑙, e.g., ML inference or ML training, with the ciphertexts and

public key as input.

5) The computing party sends back the result 𝑓(= 𝑒𝑣𝑎𝑙(𝐸1,… , 𝐸𝑛, 𝑝𝑘)) to each input party.

6) Each input party decrypts and generates a decryption share 𝐷𝑖(= 𝐷𝑒𝑐(𝑓, 𝑠𝑘𝑖)).

7) Each input party sends the decryption share to the output party.

 TR.sgfdm (2023-09) 5

8) The output party merge and recover the result, i.e., the inference result of ML or the

parameters of the trained ML model.

It is also possible to use multi-key FHE for the case above, where each input parties independently

generate and use their key pairs (𝑠𝑘𝑖 , 𝑝𝑘𝑖). The workflow of such a case is the same as Figure 3 except

that output parties may interact with input parties to recover the result depending on the underlying

FHE primitives. Input parties may also interact with the computing party using cryptographic

protocols to accelerate 𝑒𝑣𝑎𝑙 depending on the details of ML and the underlying FHE primitives.

Figure 3 – A workflow in FHE-based ML

6 TR.sgfdm (2023-09)

Appendix I

Related standardizations on machine learnings and homomorphic encryptions

The following are important references considered at the beginning of this Technical Report.

[b-IEEE 3652.1] is a guide to using machine learning from various input sources, which is the case

of ours without the FHE method. ISO/IEC 18033 series are standards for encryption methods

including FHE. [b-ISO/IEC 18033-6] defines partial homomorphic encryption (HE) tools supporting

single operations in encrypted form, and they can replace FHE in this guideline if an application needs

only one type of encrypted operations.

I.1) [b-IEEE 3652.1] IEEE guide for architecture framework and application of federated

machine learning

• Data aggregation in machine learning is a special case of federated machine learning.

Before applying the FHE technique, the base machine learning is assumed to follow the

standard.

• Federated machine learning is designed for special machine learning purposes. But FHE

can be used not only in machine learning areas but also in any other non-machine learning

areas.

• In federated machine learning, not only the final result but also the intermediate

parameters of each iteration are revealed; many federated machine learning methods

require a trusted third party as client parameters are leaked to the third party. In FHE,

there are no intermediate data revealed except the final computation result, and a trusted

third party is not needed.

I.2) [b-ISO/IEC 18033-6]:2019 IT Security techniques – Encryption algorithms – Part 6:

Homomorphic encryption

• In this standard, there are two mechanisms for partially homomorphic encryption:

exponential ElGamal encryption and Paillier encryption. The partially homomorphic

encryption encompasses schemes that support the evaluation of only one type of

operation, e.g., addition (in Paillier encryption) or multiplication (in exponential

ElGamal encryption). But FHE can support arbitrary operations and allow arbitrary

computation on encryption data.

• If a data aggregation needs only one type of operation, then the encryption mechanism

can be applied by partially homomorphic encryption following the standard, rather than

the FHE.

 TR.sgfdm (2023-09) 7

Appendix II

FHE libraries and supporting schemes

An FHE library refers to a software package or framework that provides support for a fully

homomorphic encryption operation. An FHE scheme is a cryptographic system that can perform

several classes of computations on encrypted data, including addition and multiplication. Table II.1

is a collection of popular FHE libraries. The libraries support different FHE schemes. They aim to

simplify the development and deployment of FHE applications by providing efficient and secure

implementations of FHE schemes and algorithms.

Table II.1 – FHE libraries

Libraries Supporting FHE schemes

Concrete[b-Concrete] TFHE [b-Chillotti]

FV-NFLlib [b-FV-NFL] BFV [b-Brakerski]

FHEW [b-FHEW] FHEW [b-Ducas]

HEAAN [b-HEAAN] CKKS [b-Cheon]

HElib [b-HElib] BGV [b-Brakerski, Z], CKKS [b-Cheon]

Lattigo [b-Lattigo] BFV [b-Brakerski], CKKS [b-Cheon]

OpenFHE [b-PALISADE] BFV [b-Brakerski], BGV [b-Brakerski, Z], CKKS [b-Cheon], etc.

SEAL [b-SEAL] BFV [b-Brakerski], CKKS [b-Cheon]

• The libraries are just examples: each library has no significant difference yet on the

performance.

• Language in which each library is built: Concrete: Rust FV-NFLlib, FHEW, HEAAN, HElib,

OpenFHE, SEAL: C++ Lattigo: Go

• Characteristics of each FHE scheme: BGV, BFV: advantage in single operation with

encrypted integral data

 CKKS: supporting more kinds of operations with encrypted real valued data

 TFHE: less bootstrapping with encrypted data in bit

 FHEW: faster bootstrapping than BGV, BFV with encrypted integral data

8 TR.sgfdm (2023-09)

Appendix III

Case studies for FHE-based data aggregation

III.1 Official statistics

Nation policy decisions could benefit from data sharing with other countries, but cross-border data

sharing is often infeasible because of privacy concerns. The privacy preserving techniques task team

(PPTTT) has been active under the statistics division of the United Nations (UN) since April 2018 to

advise the UN Committee of experts on big data and data science for official statistics (UN-CEBD),

developing the guidelines such as the UN privacy preserving techniques handbook [b-UNH]. The

guideline motivates to use privacy-preserving techniques for statistical analysis of sensitive data and

present use cases. Those techniques include FHE as well as secure multi-party computation (SMPC),

zero-knowledge proof (ZKP), trusted execution environment (TEE), and differential privacy. The

task team has also launched the UN PET Lab project in 2020, where multiple national statistics offices

(NSOs), such as the United States of America (U.S.) Census Bureau, Statistics Netherlands, the Italian

National Institute of Statistics (ISTAT), and the United Kingdom's (U.K.) Office for National

Statistics, demonstrate the sharing of sensitive data using the privacy enhancing technologies (PETs).

III.2 Healthcare and finance

One of the interesting efforts to enhance privacy in healthcare is the iDASH privacy & security

workshop [b-iDash]. The computation requirements from the growth of genome data enforce to

consider more cost-effective cloud computing services, but security and privacy remains a major

concern. This community efforts evaluates the performance of various state-of-the-art privacy

enhancing technologies. The competition has particularly focused on FHE-related tasks every year

since 2015, and challenges regarding FHE-based ML is as follows.

• Homomorphic encryption based logistic regression model learning; to build a machine

learning model over data encrypted using FHE.

• Secure multi-label tumour classification using homomorphic encryption; to develop an FHE-

based multi-label classification method to predict the classes of tumour samples on genomic

information.

• Homomorphic encryption-based secure viral strain classification; to develop FHE-based

methods to classify a given viral genome, e.g., COVID-19 genome, into one of the four

different strains.

• Secure model evaluation on homomorphically encrypted genotype data; to develop an FHE-

based method to securely predict phenotype while protecting both model parameters and

genotype.

The World Economic Forum and Deloitte released a white paper [b-WEF] highlighting FHE as one

of the five key privacy enhancing technologies (PETs), enabling financial institutions to improve

collaboration in 2019. In the same year, there was the global AML and financial crime techSprint

[b-FCA], which focused on how encryption privacy enhancing technologies (PETs) including FHE

can facilitate the sharing of data in order to tackle money laundering and financial crime concerns,

which are related to 800 000 people trafficking and 40 million people under a form of modern slavery

every year.

In July 2022, the U.S. and the U.K. governments launched a set of challenges in privacy-enhancing

technologies to tackle financial crime and public healthcare issues. The competition proceeds with

two separate tracks, i.e., improving the detection of financial crime and bolstering pandemic response

capabilities, motivating to develop privacy-preserving federated learning solutions, where artificial

intelligence (AI) or ML models are trained on sensitive data without organizations having to share

their raw data. The first track aiming for financial crime prevention aims to use PETs for privacy-

 TR.sgfdm (2023-09) 9

preserving sharing of financial information, e.g., SWIFT, in order to identify anomalous payments

without compromising individual privacy. The second track aims to forecast an individual risk of

infection during a pandemic using the dataset representing a digital twin of a regional population.

10 TR.sgfdm (2023-09)

Bibliography

[b-IEEE 3652.1] IEEE 3652.1-2020, IEEE Guide for Architectural Framework and Application

of Federated Machine Learning.

 <https://standards.ieee.org/ieee/3652.1/7453/>

[b-ISO/IEC 18033-6] ISO/IEC 18033-6:2019, IT Security techniques – Encryption algorithms –

Part 6: Homomorphic encryption.

 <https://www.iso.org/standard/67740.html>

[b-ISO/IEC 20889] ISO/IEC 20889:2018(en), Privacy enhancing data de-indentification

terminology and classification of techniques.

 <https://www.iso.org/obp/ui/#iso:std:iso-iec:20889:ed-1:v1:en>

[b-Brakerski] Brakerski, Z. (2012), Fully homomorphic encryption without modulus

switching from classical GapSVP. Annual Cryptology Conference. Springer,

Berlin, Heidelberg.

 <https://link.springer.com/chapter/10.1007/978-3-642-32009-5_50>

[b-Brakerski, Z] Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2011), Fully Homomorphic

Encryption without Bootstrapping.

 <https://eprint.iacr.org/2011/277>

[b-Chillotti] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M. (2020), TFHE : Fast

fully homomorphic encryption over the torus. Journal of Cryptology. Volume

33, Issue 1, pp 34-91.

 <https://dl.acm.org/doi/10.1007/s00145-019-09319-x>

[b-Cheon] Cheon, J.H., Kim, A., Kim, M., and Song, Y. (2017), Homomorphic

Encryption for Arithmetic of Approximate Numbers. ASIACRYPT 2017:

Advances in Cryptology – ASIACRYPT 2017, pp 409–437.

<https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15>

[b-Concrete] "Concrete" library. Github.

 <https://github.com/zama-ai/concrete>

[b-Ducas] Ducas, L., and Micciancio,. D. (2015), FHEW: Bootstrapping homomorphic

encryption in less than a second. Annual International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, Berlin,

Heidelberg.

 <https://link.springer.com/chapter/10.1007/978-3-662-46800-5_24>

[b-ElGamal] ElGamal, T. (1985), A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE transactions on information theory, Volume: 31,

Issue: 4, pp 469-472.

 <https://ieeexplore.ieee.org/document/1057074/authors#authors>

[b-FCA] Financial Conduct Authority (2019), Global AML and Financial Crime

TechSprint.

<https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint>

[b-FIPS 186-5] FIPS 186-5 (2023), Digital Signature Standard (DSS).

 <https://csrc.nist.gov/pubs/fips/186-5/final>

[b-FIPS 197] FIPS 197 (2023), Advanced Encryption Standard.

 <https://csrc.nist.gov/pubs/fips/197/final>

[b-FHEW] Iducas / FHEW library.

 <https://github.com/lducas/FHEW>

https://standards.ieee.org/ieee/3652.1/7453/
https://www.iso.org/standard/67740.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:20889:ed-1:v1:en
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2011/277
https://dl.acm.org/doi/10.1007/s00145-019-09319-x
https://link.springer.com/chapter/10.1007/978-3-319-70694-8_15
https://github.com/zama-ai/concrete
https://link.springer.com/chapter/10.1007/978-3-662-46800-5_24
https://ieeexplore.ieee.org/document/1057074/authors#authors
https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint
https://csrc.nist.gov/pubs/fips/186-5/final
https://csrc.nist.gov/pubs/fips/197/final
https://github.com/lducas/FHEW

 TR.sgfdm (2023-09) 11

[b-FV12/BFV] J. Fan and V. Frederik (2012), Somewhat Practical Fully Homomorphic

Encryption. IACR Cryptology ePrint Archive2012: 144.

[b-FV-NFL] CryptoExperts / FV-NFLlib library.

 <https://github.com/CryptoExperts/FV-NFLlib>

[b-Gentry] Gentry, C. (2009), Fully homomorphic encryption using ideal lattices.

Proceedings of the forty-first annual ACM symposium on Theory of

computing.

 <https://dl.acm.org/doi/10.1145/1536414.1536440>

[b-HEAAN] HEaaN Private AI Homomorphic Encryption library.

 <https://heaan.it/>

[b-HElib] shaih / HElib library.

 <https://github.com/shaih/HElib>

[b-iDash] iDash privacy & security workshop 2024 -secure genome analysis competition.

 <http://www.humangenomeprivacy.org/>

[b-Lattigo] Lattigo: lattice-based multiparty homomorphic encryption library in Go library.

 <https://github.com/ldsec/lattigo>

[b-Narayanan] Narayanan, A., and Shmatikov, V. (2006), How to break anonymity of the

Netflix prize dataset.

 <https://arxiv.org/abs/cs/0610105>

[b-PALISADE] PALISADE Lattice Cryptography library.

 <https://gitlab.com/palisade/palisade-release>

[b-Paillier] Paillier, P. (1999), Public-key cryptosystems based on composite degree

residuosity classes. EUROCRYPT 1999: Advances in Cryptology –

EUROCRYPT '99 pp 223-238.

 <https://link.springer.com/chapter/10.1007/3-540-48910-X_16>

[b-PKCS] RFC 8017 (2016), PKCS #1: RSA Cryptography Specifications Version 2.2.

<https://datatracker.ietf.org/doc/html/rfc8017>

[b-SEAL] Microsoft / SEAL library.

 <https://github.com/microsoft/SEAL>

[b-UNH] United Nations, UN Handbook on Privacy-Preserving Computation

Techniques.

 <https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%20Privacy-

Preserving%20Techniques.pdf>

[b-WEF] World Economic Forum (2019), The Next Generation of Data-Sharing in

Financial Services: Using Privacy Enhancing Techniques to Unlock New

Value. White papers.

 <https://www.weforum.org/publications/the-next-generation-of-data-sharing-in-financial-services-using-

privacy-enhancing-techniques-to-unlock-new-value/>

https://github.com/CryptoExperts/FV-NFLlib
https://dl.acm.org/doi/10.1145/1536414.1536440
https://heaan.it/
https://github.com/shaih/HElib
http://www.humangenomeprivacy.org/
https://github.com/ldsec/lattigo
https://arxiv.org/abs/cs/0610105
https://gitlab.com/palisade/palisade-release
https://link.springer.com/chapter/10.1007/3-540-48910-X_16
https://datatracker.ietf.org/doc/html/rfc8017
https://github.com/microsoft/SEAL
https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://www.weforum.org/publications/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/
https://www.weforum.org/publications/the-next-generation-of-data-sharing-in-financial-services-using-privacy-enhancing-techniques-to-unlock-new-value/

	Technical Report ITU-T TR.sgfdm (2023-09) FHE-based data collaboration in machine learning
	Summary
	Keywords
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Technical Report

	4 Abbreviations and acronyms
	5 Overview
	6 FHE as a building block
	7 Workflows for FHE-based input data protection in ML
	Appendix I Related standardizations on machine learnings and homomorphic encryptions
	Appendix II FHE libraries and supporting schemes
	Appendix III Case studies for FHE-based data aggregation
	III.1 Official statistics
	III.2 Healthcare and finance

	Bibliography

