ITU Focus Group Technical Specification

(04/2024)

Focus Group on Testbeds Federations for IMT-2020 and beyond

(FG-TBFxG)

FG-TBFxG-TS-D2.1

User requirements and reference model for Testbed as a Service

Technical Specification ITU FG-TBFxG-TS-D2.1

User requirements and reference model for Testbed as a Service

Summary

In the context of federated testbeds, requirements and reference model with properties of relevance for delivering Testbed as a Service (TaaS) are elaborated, to complement and extend Recommendation ITU-T Q.4068. It is more particularly focused on the user interface, services, and requirements to address end-user needs when remotely accessing testbeds in order to deliver adequate user experience. From this point, this Technical Specification is reporting the elaboration of the related terms and definitions, requirements, reference model with properties of relevance for TaaS, and interoperability specifications for virtualizing and delivering modular and scalable TaaS on top of existing and future testbed infrastructures, including federated ones. Furthermore, the TaaS will be able to list the assets provided by the different testbeds and expose them through dedicated APIs based on Recommendation ITU-T Q.4068. Generic Key Performance Indicators (KPIs) are defined in a generic manner in the corresponding Technical Specification; for instance, the exposure of capabilities is a generic KPI, so agnostic from the TaaS, and is common to all the parts of a testbed federation. Some KPIs concerning specially the TaaS are determined in this Technical Specification such as dynamic discovery, availability and reputation based on a scoring of each testbed. Integration, interoperability and extensibility of the TaaS are also defined.

Keywords

Reference model, requirements, testbed as a service, testbed federation.

Note

This is an informative ITU-T publication. Mandatory provisions, such as those found in ITU-T Recommendations, are outside the scope of this publication. This publication should only be referenced bibliographically in ITU-T Recommendations.

Change Log

This document contains Version 1.0 of the ITU-T FG-TBFxG D2.1 Technical Specification "User requirements and reference model for Testbed as a Service" approved at FG-TBFxG eighth meeting held in Sophia Antipolis, France from 10 to 12 April 2024.

Acknowledgement

This Technical Specification was prepared under the leadership of Dr.-Ing. Giulio Maggiore (Telecom Italia, Italy) and Dr. Sébastien Ziegler (Mandat International, Switzerland), who served as the FG-TBFxG chair and FG-TBFxG vice-chair.

It is based on the contributions of various authors who participated in the Focus Group activities.

Ing. Cédric Crettaz and Dr. Sébastien Ziegler (Mandat International, Switzerland) served as the main Editors of this Technical Specification.

Mr Denis Andreev (FG TBFxG Advisor) and Ms Emmanuelle Labare (FG-TBFxG Assistant) served as the FG-TBFxG Secretariat.

Editor: Dr. Sébastien Ziegler Email: sziegler@mandint.org

(Mandat International, Switzerland)

Editor: Ing. Cédric Crettaz Email: ccrettaz@mandint.org

(Mandat International, Switzerland)

© ITU 2025

Some rights reserved. This publication is available under the Creative Commons Attribution-Non Commercial-Share Alike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

For any uses of this publication that are not included in this licence, please seek permission from ITU by contacting TSBmail@itu.int.

Table of Contents

			Page
1	Scope		1
2	Referen	ices	1
3	Definiti	ons	1
	3.1	Terms defined elsewhere	1
	3.2	Terms defined in this Technical Specification	1
4	Abbrev	iations and acronyms	1
5	Conven	tions	2
6	User red	quirements and reference model for Testbed as a Service	2
Biblio	graphy		5

Technical Specification ITU FG-TBFxG-TS-D2.1

User requirements and reference model for Testbed as a Service

1 Scope

This document is the Technical Specification of the user requirements and reference model for Testbed as a Service (TaaS). It defines the specific requirements for TaaS with the user's perspective. This Technical Specification describes the interconnection of testbeds through the testbed management system. Other aspects like business, polices and monetization are taken into account in this Technical Specification. The Technical Specification is also leveraging the experience and results gained by international research projects in this domain, such as F-Interop [b-F-Interop], Fed4FIRE+[b-Fed4FIRE+], PAWR [b-PAWR], and SLICES [b-SLICES].

2 References

[ITU-T Q.4068] Recommendation ITU-T Q.4068 (2021), Open application program interfaces (APIs) for interoperable testbed federations.

3 Definitions

3.1 Terms defined elsewhere

This Technical Specification uses the following terms defined elsewhere:

- **3.1.1 experiment** [b-ISO 3534-3]: Purposive investigation of a system through selective adjustment of controllable conditions and allocation of resources.
- **3.1.2 resource** [b-ITU-R BT.1699]: A network data object or a service which is uniquely identified in a network. A well-defined capability or asset of a system entity, which can be used to contribute to the realization of a service. Examples: MPEG decoder, graphics system.
- **3.1.3 testbed** [ITU-T Q.4068]: Platform to realise scientific tests with new technologies on an environment fully controlled by experimenters.
- **3.1.4 testbed as a service** [b-D0.1 FG-TBFxG]: Service hosted on cloud providing access to distributed testbeds.

3.2 Terms defined in this Technical Specification

None.

4 Abbreviations and acronyms

This Technical Specification uses the following abbreviations and acronyms:

3GPP 3rd Generation Partnership Project

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CSP Communication Service Provider

FTTH Fiber to the Home

GDPR General Data Protection Regulation

1

GUI Graphical User Interface

IoT Internet of Things

KPI Key Performance Indicator

MANO Management and Orchestration

MEC Multi-access Edge Computing

MEF Metro Ethernet Forum

MPEG Moving Picture Experts Group
NFV Network Function Virtualization

QoS Quality of Service

RAM Random-Access Memory

RAN Radio Access Network

SDN Software-Defined Networking

TaaS Testbed as a Service

UDM User Data Management

xDSL Any type of Digital Subscriber Line

5 Conventions

None.

6 User requirements and reference model for Testbed as a Service

User requirements defined in this clause are based on results of several projects [b-Fed4FIRE+D4.01], [b-SLICES-DS D2.2], [b-SLICES-SC D2.1], [b-F-Interop D1.1], [b-IoT Lab D1.1] dedicated to the concept of Testbed as a Service. Some elements are aligned with [ITU-T Q.4068].

There are two types of users to be involved in the TaaS:

- 1) The experimenters or researchers, simply called users through this Technical Specification;
- 2) The testbed providers which are responsible for the implementation and the maintenance of the TaaS.

There are following functional requirements pertaining to the TaaS users' needs:

- Resource discovery: The users should be able to discover the specific resources for all available federated testbeds.
- Resource provisioning: Mechanisms for provisioning resources by the users should be implemented, including the access and the orchestration of resources.
- Resource configuration: The users should be able to configure the resource by changing the value or range of value of one or several parameters before an experiment.
- Resource description: An understandable description of each resource should be provided to the users.
- Resource reservation: Users should be able to reserve the resources in different modes such as a scheduled reservation or on-demand.
- Experiment control and orchestration: The users should be able to control various parameters during the execution of an experiment. The users should be able to manage the full lifecycle of their experiments through a dashboard.

- Authentication: The users should authenticate themselves to access the TaaS.
- Authorization: The users should receive an authorization to use the resources provided by the testbeds.
- Monitoring, results gathering and reporting: The users should be able to track which parameters should be monitored during an experiment and to collect the results of the experiment, including generation of experiment's report.
- Interconnection of testbeds: The users should be able to select resources distributed among several testbeds.
- User interface: The users should be able to manage their experiments through a graphical user interface (GUI).
- Remote access: The users should be able to access the TaaS remotely.
- Data analytics tools: The users should be able to use data analytics tools offered by the TaaS.
- Experiment discovery and selection: The users should be able to find and use passed experiments. A clear description of an experiment and related test suites are also required as prerequisite.
- Experiment storage: The users should be able to store finished experiments and their results in order to execute them again later, if needed.

The functional requirements concerning the testbed providers are:

- Resource description, catalogue provisioning: The testbed providers should describe and list their testbeds in their catalogue, including the available resources and their capabilities. A common description/advertisement scheme should be applied for all the resources of all the testbeds available under publish/subscribe model.
- Resource identification: The resources should be clearly identified by unique identifiers used across all the testbeds.
- Resource reservation: The testbed providers should continuously update the information related to the status of the reservation of their resources.
- Resource provisioning: The testbed providers should operate provisioning systems and expose them through open APIs/interfaces to the rest of the testbed federation.
- Experiment control: The testbeds should be able to work with tools used to control the experiments.
- Management of testbeds: A testbed management system should be owned by the testbed providers. A testbed provider can change the policies of the testbed management system. Network programmability and SDN solutions could be envisioned to control in fine-grained manner the interworking aspects between the testbeds.
- Documentation: The testbed providers should make TaaS manual publicly available. It should be updated on a regular basis.
- Consumption of the service: The testbed providers should provide a usage and billing services which inform the users about the utilisation of the TaaS. This service should also handle the invoices to be addressed to the users.
- Scalability: The testbed providers should ensure the scalability of the TaaS, allowing the execution of experiments to scale based on needs.

The non-functional requirements are listed below:

- User-friendliness: The users should utilise TaaS GUI according to the guidelines and the best practices in terms of user-friendliness.
- Security and confidentiality: The TaaS should comply with relevant standards in this area, the best practices about security and the applicable regulation for data protection, such as the

- GDPR and other data protection regulations. An approach following the security and privacy by design principles is recommended (e.g., the critical data shall be encrypted).
- Visualization: The users should be able to see real-time information during the execution of an experiment. After the completion of an experiment, they should be able to have access to the results and the logs for further analysis and other purposes (e.g., download of results). The formats of the results should be generic enough in order to be customised for various purposes.

For the TaaS, there are following Key Performance Indicators (KPIs):

- Dynamic discovery: The discovery of all the resources provided by all the testbeds is realized dynamically and all the discovered resources are displayed in the TaaS GUI in real time. It will permit to evaluate the number of resources provided by the testbeds.
- Availability: The availability of the testbeds and their resources are also shown in the TaaS GUI. It will allow the detection of problems per testbed, notably network disconnections. This KPI can be used to improve the quality of service (QoS).
- Reputation based on testbed rating: The broker is maintaining and updating the rating of each testbed. In the same manner, the collection of the information provided by the users is done in order to rate each testbed.
- Number of open user sessions (active or idle): This KPI permits to know how many users are currently using the TaaS.

In the context of the TaaS, a conformity assessment of testbeds should be based on some criteria such as data protection, security, audit of the components, specifications and standards including those defined in [ITU-T Q.4068]. A test tool offered by the TaaS can be used to assess whether reserved resources are in conformity with the regulation or not (e.g., data processed in different locations/countries, insufficient CPU/RAM or detected congestions), which can be used as evidence in reconciliations before trials on the implications of third-party testing [b-SSRN].

A tool can be declared compliant to carry out tests, for example diagnostic tests, by all the actors agree or have the tools recommended/prescribed by a regulator to the different stakeholders such as operators, regulators themselves, auditors, test manufacturers. An important point is to know if the tests are to be carried out and on which specification releases (4G, 5G, 6G, FTTH, xDSL, cloud, etc.) but also whether they comply with relevant legislations (e.g., related to cloud, AI, data protection like GDPR).

Bibliography

[b-ITU-T FG-TBFxG D0.1] FG-TBFxG Technical Specification D0.1, Federated testbeds

taxonomy.

[b-ITU-R BT.1699] Recommendation ITU-R BT.1699 (2005), Harmonization of

declarative application formats for interactive TV.

https://www.itu.int/rec/R-REC-BT.1699/en

[b-ISO 3534-3] ISO 3534-3:2013, Statistics – Vocabulary and symbols – Part 3:

Design of experiments.

https://www.iso.org/standard/44245.html

[b-IoT Lab D1.1] IoT Lab Deliverable D1.1, *IoT Lab end-user requirements report*.

http://www.iotlab.eu/IOTLabProject/Deliverables#D1.1

[b-F-Interop] F-Interop project. https://cordis.europa.eu/project/id/687884

[b-F-Interop D1.1] F-Interop Deliverable D1.1, Requirements specification report.

https://www.finterop.eu/images/deliverables/F-Interop_Deliverable_D1.1.pdf

[b-Fed4FIRE+] Fed4FIRE+ project. https://www.fed4fire.eu/

[b-Fed4FIRE+ D4.01] Fed4FIRE+ Deliverable D4.01, TaaS Gap Analysis Report.

https://www.fed4fire.eu/download/d4-01-taas-gap-analysis-report/?wpdmdl=3526&masterkey=5d397b196723c

report : wparial=3525amastemey=5455757507255

[b-PAWR] PAWR project. https://advancedwireless.org/

[b-SLICES] SLICES project. https://slices-ri.eu/

[b-SLICES-DS D2.2] SLICES-DS Deliverable D2.2, SLICES as Service, baseline.

http://slices-ds.eu/wp-content/uploads/2021/12/SLICES-DS_D2.2.pdf

[b-SLICES-SC D2.1] SLICES-SC Deliverable D2.1, Requirements analysis for exposing

the RI.

[b-SSRN] David D. Clark, Amogh Dhamdhere, Matthew Luckie, KC Claffy,

Policy Implications of Third-Party Measurement of Interdomain

Congestion on the Internet.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3141671