

 Standardization Sector

ITU Focus Group Technical Specification
(04/2024)

Focus Group on Testbeds Federations for IMT-2020
and beyond

(FG-TBFxG)

 FG-TBFxG-TS-D2.2

Testbed as a Service APIs descriptions and
interoperability requirements

ITUPublications International Telecommunication Union

 FG-TBFxG-TS-D2.2 (2024-04) i

Technical Specification ITU FG-TBFxG-TS-D2.2

Testbed as a Service APIs descriptions and interoperability requirements

Summary

This Technical Specification is reporting the elaboration of Testbed as a Service APIs based on the

requirements and reference model with properties of relevance for delivering Testbed as a Service

(TaaS), to complement and extend Recommendation ITU-T Q.4068. It is more particularly focused

on the user interface, services, and requirements to address end-user needs when remotely accessing

testbeds through APIs in order to deliver adequate user experience. From this point, the Technical

Specification elaborates the related terms and definitions, requirements, reference model with

properties of relevance for TaaS, and interoperability requirements for virtualizing and delivering

modular and scalable TaaS on top of existing and future testbed infrastructures, including federated

ones. The TaaS is able to list the assets provided by the different testbeds and expose them through

dedicated APIs based on Recommendation ITU-T Q.4068.

The experience and results gained by international research projects in this domain, such as

F-Interop [b-F-Interop], Fed4FIRE+ [b-Fed4FIRE+], PAWR [b-PAWR] and SLICES [b-SLICES]

are exploited in the Technical Specification.

Keywords

API, federated testbeds, interoperability, testbed as a service.

Note

This is an informative ITU-T publication. Mandatory provisions, such as those found in ITU-T

Recommendations, are outside the scope of this publication. This publication should only be referenced

bibliographically in ITU-T Recommendations.

Change Log

This document contains Version 1.0 of the ITU-T FG-TBFxG D2.2 Technical Specification

"Testbed as a Service APIs descriptions and interoperability requirements" approved at FG-TBFxG

eighth meeting held in Sophia Antipolis, France from 10 to 12 April 2024.

Acknowledgement

This Technical Specification was prepared under the leadership of Dr.-Ing. Giulio Maggiore

(Telecom Italia, Italy) and Dr. Sébastien Ziegler (Mandat International, Switzerland), who served as

the FG-TBFxG chair and FG-TBFxG vice-chair.

It is based on the contributions of various authors who participated in the Focus Group activities.

FG-TBFxG appreciates Dr. Martial Michel (Data Machines Corp., US), Dr.-Ing. Ranganai

Chaparadza (Capgemini Engineering, Germany), Dr.-Ing. Tayeb Ben Meriem (IPv6 Forum, France)

and Dr. Robert Bohn (NIST, US) for presenting IEEE P2302-2021 Project and for their inputs to

this Technical Specification.

Ing. Cédric Crettaz and Dr. Sébastien Ziegler (Mandat International, Switzerland) served as the main

Editors of this Technical Specification.

ii FG-TBFxG-TS-D2.2 (2024-04)

Mr Denis Andreev (FG TBFxG Advisor) and Ms Emmanuelle Labare (FG-TBFxG Assistant) served

as the FG-TBFxG Secretariat.

Editor: Dr. Sébastien Ziegler

(Mandat International, Switzerland)

Email: sziegler@mandint.org

Editor: Ing. Cédric Crettaz

(Mandat International, Switzerland)

Email: ccrettaz@mandint.org

© ITU 2025

Some rights reserved. This publication is available under the Creative Commons Attribution-Non Commercial-

Share Alike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-

sa/3.0/igo).

For any uses of this publication that are not included in this licence, please seek permission from ITU by

contacting TSBmail@itu.int.

mailto:sziegler@mandint.org
mailto:ccrettaz@mandint.org
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-sa%2F3.0%2Figo&data=05%7C02%7Canibal.cabrera%40itu.int%7C0fe5406e5055456a0b5a08dc7bce06f3%7C23e464d704e64b87913c24bd89219fd3%7C0%7C0%7C638521372007831165%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=V4LM72V7Z%2F80irqs1MTJY8U1C%2FFVgqCq26On8J9MZuo%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-sa%2F3.0%2Figo&data=05%7C02%7Canibal.cabrera%40itu.int%7C0fe5406e5055456a0b5a08dc7bce06f3%7C23e464d704e64b87913c24bd89219fd3%7C0%7C0%7C638521372007831165%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=V4LM72V7Z%2F80irqs1MTJY8U1C%2FFVgqCq26On8J9MZuo%3D&reserved=0
mailto:TSBmail@itu.int

 FG-TBFxG-TS-D2.2 (2024-04) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Technical Specification ... 1

4 Abbreviations and acronyms .. 1

5 Conventions .. 2

6 TaaS API and interoperability requirements .. 2

6.1 APIa .. 6

6.2 APIb .. 6

6.3 APIc .. 7

6.4 APId .. 7

6.5 APIe .. 7

6.6 APIf .. 7

6.7 APIg .. 7

6.8 APIh .. 8

6.9 APIi ... 8

6.10 APIj ... 8

6.11 APIk .. 8

6.12 APIl/GUI_l ... 9

6.13 APIm/GUI_m ... 10

6.14 APIn .. 10

6.15 APIo .. 11

6.16 APIp .. 11

6.17 APIq .. 11

6.18 APIr .. 11

6.19 APIs .. 12

6.20 APIt ... 12

6.21 APIu .. 12

6.22 APIv .. 12

6.23 APIw ... 12

6.24 APIx .. 13

6.25 APIy/GUI_y ... 13

6.26 APIz .. 14

Appendix I – Instantiation of generic APIs ... 15

I.1 TM Forum Business API .. 15

I.2 BSS/OSS APIs .. 15

I.3 Customer-facing APIs .. 15

iv FG-TBFxG-TS-D2.2 (2024-04)

 Page

I.4 IEEE 2302-2021 ... 15

I.5 Comparison between Recommendation ITU-T Q.4068 and

IEEE 2302-2021 APIs .. 18

Bibliography... 19

 FG-TBFxG-TS-D2.2 (2024-04) 1

Technical Specification ITU FG-TBFxG-TS-D2.2

Testbed as a Service APIs descriptions and interoperability requirements

1 Scope

This Technical Specification describes the Testbed as a Service APIs and interoperability

requirements. The APIs specified in this document are dedicated exclusively to TaaS. Integration,

interoperability and extensibility of the TaaS are also studied in this Technical Specification.

2 References

[ITU-T Q.4068] Recommendation ITU-T Q.4068 (2021), Open application

program interfaces (APIs) for interoperable testbed federations.

[b-ITU-T D2.1 FG-TBFxG] FG-TBFxG Technical Specification D2.1 (2025), User

requirements and reference model for Testbed as a Service.

[IEEE 2302-2021] IEEE 2302-2021, IEEE Standard for Intercloud Interoperability

and Federation (SIIF).

3 Definitions

3.1 Terms defined elsewhere

This Technical Specification uses the following terms defined elsewhere:

3.1.1 experiment [b-ISO 3534-3]: Purposive investigation of a system through selective

adjustment of controllable conditions and allocation of resources.

3.1.2 resource [b-ITU-R BT.1699]: A network data object or a service which is uniquely identified

in a network. A well-defined capability or asset of a system entity, which can be used to contribute

to the realization of a service. Examples: MPEG decoder, graphics system.

3.1.3 testbed [ITU-T Q.4068]: Platform to realise scientific tests with new technologies on an

environment fully controlled by experimenters.

3.1.4 testbed as a service [b-ITU-T D0.1 FG-TBFxG]: Service hosted on cloud providing access

to distributed testbeds.

3.2 Terms defined in this Technical Specification

None.

4 Abbreviations and acronyms

This Technical Specification uses the following abbreviations and acronyms:

API Application Programming Interface

BSS Business Support Systems

CUT Component Under Test

E2E End-To-End

FHS Fed Hosting Server

GUI Graphical User Interface

HTTPS Hypertext Transfer Protocol Secure

https://handle.itu.int/11.1002/1000/14765

2 FG-TBFxG-TS-D2.2 (2024-04)

IEEE Institute of Electrical and Electronics Engineers

MPEG Moving Picture Experts Group

OSS Operations Support Systems

SIIF Standard for Intercloud Interoperability and Federation

SLA Service-Level Agreement

SUT System Under Test

TaaS Testbed as a Service

5 Conventions

None.

6 TaaS API and interoperability requirements

This Technical Specification is dedicated to all the TaaS APIs which are based on the generic

reference model defined in [ITU-T Q.4068] and [b-ITU-T D2.1 FG-TBFxG]. These APIs are taking

care of all the aspects to the monetization of the TaaS. Through the APIs specified in this Technical

Specification, it is possible for the users, for example, to reserve a testbed slice, to reuse an experiment

based on a template of a testbed slice. Furthermore, if the user doesn't find a service through the TaaS

APIs, a request to a specific endpoint of the TaaS APIs is made by the user to execute the service on

demand.

According to Figure 1 and Table 1 of [ITU-T Q.4068], the APIs needed for the TaaS are listed in the

table below:

Table 1 – Testbed as a Service APIs

API name

(identification tags)

API description

1 APIa The API is used for providing descriptive information about the resource,

its state and usage in real-time upon the invocation of the API by the testbed

management system.

2 APIb The API is used for enabling a test manager to interact with the resource, in

cases where the resource is either a component under test (CUT) or system

under test (SUT), or provides an interface that can be used by a Test System

to configure it, such that the test manager may configure the resource as

may be required for some test scenario, and/or pull test results from the

resource after a completion of a test.

3 APIc The API is used by Level-0 resources to dynamically provide information in

real-time about their state in terms of usage and other information such as

performance data and workload being sustained on the resource.

4 APId The API is used by Level-1 resources to dynamically provide information in

real-time about their state in terms of usage and other information such as

performance data and workload being sustained on the resource.

5 APIe The API is used by testbed management system to enable testbed admin to

pull and view (visualize) information about the State of resources (Level-0

and Level-1) from the real-time state repository, especially when the testbed

admin intends to view the state of certain resources before deciding to cause

connectivity to be established among resources in the testbed and/or

establishing connectivity to resources in other testbeds.

 FG-TBFxG-TS-D2.2 (2024-04) 3

Table 1 – Testbed as a Service APIs

API name

(identification tags)

API description

6 APIf The API is used by test manager to pull information about Level-0 and

Level-1 Resources that may be required to participate in a certain test

scenario a testbed user may want to execute. The API is also meant for use

by a Test Manager to pull Information about the state of resources (Level-0

and Level-1) from the real-time state repository, especially when state of a

resource plays a role during the execution of certain test cases or when the

test manager may require to use the state of certain resources in deciding to

cause connectivity to be established among resources in the testbed and/or

establishing connectivity to resources in other testbeds.

7 APIg The API is used by a test manager to execute certain test cases that are

meant to test the resource during a scenario in which the resource is a

system under test (SUT) or a component under test (CUT). The API is also

meant for use by a test manager to request the resource to execute a certain

behavior that is required by a test case(s) being executed by the test

manager, including configuring some Level-0 resource(s) that can only be

configured via the Level-1 resource.

8 APIh The API is used by the testbed resource broker to gather information about

the capabilities of the resource, its state and its availability to serve testbed

services request(s) received from prospective testbed user(s). In case the

resource is an orchestrator of resources (Level-1 and/or Level-0), then the

same API is also used by the testbed resource broker to request the resource

for orchestration of instance(s) of certain Level-1 resource(s) and/or Level-0

resource(s) as slices that are required to fulfil requirements of a testbed

service request received from a prospective testbed user, when there is no

existing instance (slice) of the required type of resource(s) that is already

available to fulfil the requirements of the newly received request for a

prospective testbed user. The same API is also used by testbed broker to

obtain information about capabilities and state of resources directly under

the management and control responsibility of the Level-1 resource.

9 APIi The API is used for providing descriptive information about the resource,

its state and usage in real-time upon the invocation of the API by the testbed

management system.

10 APIj The API is used for providing updates to descriptive information about the

resource, its state and usage in real-time upon the invocation of the API the

Level-1 resource, whenever there are changes that have occurred on the

resource.

11 APIk The API is used for providing updates to descriptive information about the

resource, its state and usage in real-time upon the invocation of the API the

Level-0 resource, whenever there are changes that have occurred on the

resource.

12 APIl (or GUI_l) The GUI is to be used by the broker administrator (broker admin) for

performing all necessary broker governance and management activities and

operations on the broker. For example, the broker admin installs the policies

that govern the operation of the broker in terms of how it registers the

testbed domain to the inter-testbed E2E universal resource broker for

testbeds federation. It also installs policies that govern the services offered

to prospective users of testbeds (including the policies for testbed usage by

prospective users). Via the GUI (API), the broker admin can manage the

broker to prepare the broker in such a way that the broker can register with

4 FG-TBFxG-TS-D2.2 (2024-04)

Table 1 – Testbed as a Service APIs

API name

(identification tags)

API description

the inter-testbed E2E universal resource broker for testbeds federation. In

this case, the broker is ready to provide its services to prospective testbed

users.

13 APIm (or GUI_m) The API is to be used by the testbed administrator (testbed admin) for

performing all necessary Testbed management activities and operations. Via

the GUI (API), the testbed admin can manage the testbed to prepare the

testbed in such a way that the testbed can provide testbed services to

prospective Users and can also participate in testbed federations with other

testbeds and the inter-testbed E2E universal resource broker for testbeds

federation. The GUI of the testbed management system is used by the

testbed administrator in establishing connectivity of the testbed with other

testbeds that should be interconnected with this testbed in order to provide

federated capabilities and resources to prospective users of federated

testbeds.

14 APIn The API is used by the testbed resource broker to register itself into the

testbed management system, provide descriptive state and change of state

information in real-time to the testbed Management System. The API is also

used by the testbed resource broker to obtain descriptive information about

all resources and other entities of the testbed domain and their capabilities

descriptions (as the various resources and entities not only update the real-

time state repository but the testbed management system as well, and the

information is kept in sync and consistent between the testbed management

system and the real-time state repository). NOTE – The testbed resource

broker may use an API provided by the real-time state repository for

directly pulling out information about Resources available in the testbed

domain and their capabilities descriptions.

15 APIo The API is used by a test manager to register itself into the testbed

management system, provide descriptive state and change of state

information in real-time to the testbed management system, because a test

manager could be a considered as a resource itself.

16 APIp The API is used for providing descriptive information about a test manager,

its state and usage in real-time upon the invocation of the API by the testbed

management system.

17 APIq The API is used for providing Test Results to a test manager(s) that

involved the resource in a test case as a component under test (CUT) or

system under test (SUT). The same API is also used for communicating to a

test manager some feedback (e.g., errors or failures during the execution) to

some invocations triggered earlier on the resource by the test manager.

18 APIr The API is to be used by a test suite/cases designer and test executer (upon

the acceptance of its request for testbed service by the testbed resource

broker) to connect to the test manager instance assigned to the testbed user

to use the test manager to design, compile and run test cases, or to upload

and compile some Test Cases designed offline and execute them. Through

the API, the testbed user is able to upload some test cases or test suites if the

testbed domain allows that and then compile and/or execute the test cases,

or the user is only allowed to design, compile and execute test cases directly

on the test manager without uploading test cases/suites from outside.

19 APIs The API is used by the inter-testbed E2E universal resource broker for

testbeds federation to connect to the test manager, e.g., to enable the E2E

 FG-TBFxG-TS-D2.2 (2024-04) 5

Table 1 – Testbed as a Service APIs

API name

(identification tags)

API description

resource broker to access state information about the specific test manager,

or for cases whereby some test results could be shared to the testbed user

via the E2E resource broker if not possible that the test manager provides

direct access to those kinds of test results directly to the user (test executor),

though primarily the test executor should be able to access test results

directly from the test manager(s). APIs is using the same uniform resource

description model that APIx uses.

20 APIt The API is used for providing test results to a test manager(s) that involved

the resource in a test case as a component under test (CUT). The same API

is also used for communicating to a test manager some feedback (e.g.,

errors or failures during the execution) to some invocations triggered earlier

on the resource by the test manager.

21 APIu The API is used by the testbed management system to keep synchronizing

with the testbed resource broker on the state of the broker. The same API is

also used by the testbed management system to provide updates to any

changes in the descriptive information about all resources and other entities

of the testbed domain and their capabilities descriptions (Information that is

kept in sync and consistent between the testbed management system and the

real-time state repository).

22 APIv The API is used by a Level-1 resource to push updated information

(updates) about state of resources under the management and control

responsibility of the Level-1 resource and their capabilities descriptions,

and any changes that may have occurred to the resources and capabilities.

The same API is also used for synchronizations between the Level-1

resource and the testbed Resource Broker.

23 APIw The API is used by the inter-testbed E2E universal resource broker for

testbeds federation, after the testbed resource broker has registered itself

with it via APIx, to then obtain (pull) descriptive information about all

testbed resources available in the Testbed domain to serve testbed services

requests that may come from the E2E Resource Broker and their

capabilities descriptions. The same API is also used by the E2E resource

broker to provide synchronization related descriptive state and change of

state information in real-time to the test broker. APIw is using the same

uniform resource description model that APIx uses.

24 APIx The API is used by the testbed resource broker to push updated information

(updates) about state of resources of the testbed domain and their

capabilities descriptions, and any changes that may have occurred to the

resources and capabilities. The same API is also used, complementarily to

APIw, for synchronizations between the testbed resource broker and the

inter-testbed E2E universal resource broker for testbeds federation.

Complementarily to APIs, APIx is used to synchronize information between

the test manager and the inter-testbed E2E universal resource broker for

testbeds federation. APIx is using the same uniform resource description

model that APIw uses.

25 APIy (or GUI_y) The API is to be used by the broker administrator (broker admin) for

performing all necessary broker governance and management activities and

operations on the broker. For example, the broker admin installs the policies

that govern the operation of the broker in terms of admitting (or not

admitting) testbed domains in their attempts to discover and register with

6 FG-TBFxG-TS-D2.2 (2024-04)

Table 1 – Testbed as a Service APIs

API name

(identification tags)

API description

the broker, as well as policies that govern the services offered to prospective

users of testbeds registered with broker (including the policies for testbeds

user registrations). Via the GUI (API), the broker admin can manage the

broker to prepare the broker in such a way that the broker can expose the

APIz and any GUIs of the broker that can be made available to prospective

testbeds users, such that the broker is ready to provide its services to

prospective testbed users and to testbeds intending to register with it.

26 APIz This API provides the entry point into the system of federated testbeds to

prospective users (testbed users) of the system of federated testbeds. It

provides 'search and query and find services' that enable the prospective

user of testbed service(s), i.e., the test suite/cases designer and test executer

to find/discover Testbeds that are available to accept new requests within

the time of interest to the prospective testbed user as well as their

capabilities topology information pertaining to their interconnection and

federations with other testbeds. A prospective testbed user (test suite/cases

designer and test executer) can query the broker for testbeds that fulfil

certain capabilities and requirements such as end-to-end latency within the

scope of the single testbed or across multiple testbeds, before the

prospective user can then select testbeds and launch requests for testbed

services. And then, the prospective user can contact the APIr of the

different testbed domains to create new experiments, new test cases and test

suites.

6.1 APIa

The APIa provides the description, the state and the usage of a given resource in real-time.

The calls related to the APIa are the following:

• getResourceDescription: An HTTPS GET message for receiving a response that contains the

description of a given resource.

• getResourceState: An HTTPS GET message for retrieving the current state of a given

resource.

• getResourceUsage: An HTTPS GET message for obtaining the usage in real-time of a given

resource.

6.2 APIb

The APIb is used by a test manager to configure a resource.

The calls for the APIb are:

• interactWithComponent: A HTTPS POST message for triggering an action on a component

under test.

• interactWithSystem: An HTTPS POST message for triggering an action on a system under

test.

• getConfigurationInterface: An HTTPS GET message for obtaining information on an

interface used to configure a component or a system under test.

• configureResource: An HTTPS POST message for configuring a given resource.

• getResults: An HTTPS GET message for retrieving the results of a test from a given resource.

 FG-TBFxG-TS-D2.2 (2024-04) 7

6.3 APIc

The APIc retrieves in real-time the state, the usage, the performance and the workload of a resource

of the Level-0 type.

The calls of the APIc are the following:

• getState: An HTTPS GET message for retrieving the state in real-time of a resource of the

type Level-0.

• getUsage: An HTTPS GET message for obtaining the usage in real-time of a Level-0

resource.

• getInformation: An HTTPS GET message for retrieving all the information in real-time of a

Level-0 resource. The information provided by a given Level-0 resource can be the

performance, the workload and the energy consumption.

6.4 APId

The APId retrieves in real-time the state, the usage, the performance and the workload of a resource

of the Level-1 type.

The calls for the APId are the following ones:

• getState: An HTTPS GET message for retrieving the state in real-time of a resource of the

type Level-1.

• getUsage: An HTTPS GET message for obtaining the usage in real-time of a Level-1

resource.

• getInformation: An HTTPS GET message for retrieving all the information in real-time of a

Level-1 resource. The information provided by a given Level-1 resource can be the

performance, the workload and the energy consumption.

6.5 APIe

The APIe permits to a testbed administrator to retrieve and see the current state of a resource.

The calls used by the APIe are:

• getState: An HTTPS GET message for obtaining the state in real-time of a set of resources

from different types (Level-0 and Level-1).

• viewState: An HTTPS GET message for obtaining a view showing in real-time the state of a

set of resources.

6.6 APIf

The APIf is used by a test manager to retrieve the current state of a resource.

The calls dedicated to the APIf are the following:

• getInformation: An HTTPS GET message for obtaining the information of a set of resources.

This set can include resources from the Level-0 and Level-1 types.

• getState: An HTTPS GET message for obtaining the state of resources from the real-time

state repository.

6.7 APIg

The APIg allows a test manager to execute a test on a given resource.

The calls for the APIg are composed by:

• executeSystemTest: An HTTPS POST message for starting a test on a resource which is a

SUT.

8 FG-TBFxG-TS-D2.2 (2024-04)

• executeComponentTest: An HTTPS POST message for starting a test on a resource which is

a CUT.

• configureLevel0Resource: An HTTPS POST message for configuring a Level-0 resource.

This message is sent to a Level-1 resource which effectively configures the Level-0 resource.

• configureLevel1Resource: An HTTPS POST message for configuring a Level-1 resource.

6.8 APIh

The APIh is used by the testbed resource broker to collect the capabilities, the state and the availability

of a resource.

The calls of the APIh are the following ones:

• getResourceCapabilities: An HTTPS GET message for retrieving all the capabilities of a

given resource.

• getResoureState: An HTTPS GET message for obtaining the state of a given resource.

• getResourceAvailability: An HTTPS GET message for retrieving the availability of a given

resource.

6.9 APIi

The APIi provides the description, the state and the usage of a resource in real-time to the testbed

management system.

The calls related to the APIi are the following:

• getResourceDescription: An HTTPS GET message for obtaining the description of a given

resource.

• getResourceState: An HTTPS GET message for obtaining the current state of a given

resource.

• getResourceUsage: An HTTPS GET message for obtaining the usage in real-time of a given

resource.

6.10 APIj

The APIj provides the updated information on the description, the state and the usage of a Level-1

resource.

The calls related to the APIj are:

• subscribeResourceDescription: An HTTPS POST message for subscribing to any changes of

the description of a given resource. The resource is from the Level-1 type.

• subscribeResourceState: An HTTPS POST message for subscribing to any changes of the

state of a given resource of the Level-1 type.

• subscribeResourceUsage: An HTTPS POST message for subscribing to any changes of the

usage of a Level-1 resource.

6.11 APIk

The APIk provides the updated information on the description, the state and the usage of a Level-0

resource.

The calls dedicated to the APIk are the following:

• subscribeResourceDescription: An HTTPS POST message for subscribing to any changes of

the description of a given resource. The resource is from the Level-0 type.

• subscribeResourceState: An HTTPS POST message for subscribing to any changes of the

state of a given resource of the Level-0 type.

 FG-TBFxG-TS-D2.2 (2024-04) 9

• subscribeResourceUsage: An HTTPS POST message for subscribing to any changes of the

usage of a Level-0 resource.

6.12 APIl/GUI_l

The APIl, also named GUI_l, permits to the broker administrator to access the testbed resource broker.

It is composed by a Graphical User Interface (GUI) accessible by the broker administrator.

The different calls related to this API are the following:

• brokerAdminLogin: An HTTPS POST message which contains the username and the

password of the broker administrator. This API call allows the authentication of the broker

administrator on the GUI used to manage the broker.

• installBrokerPolicy: An HTTPS POST message composed by a policy to be applied on the

broker. The API call permits the instantiation of a broker policy.

• getBrokerPolicies: An HTTPS GET message for obtaining all the policies applied on the

broker.

• getBrokerPolicy: An HTTPS GET message composed by the identifier of a policy. This API

call retrieves the policy based on its identifier.

• updateBrokerPolicy: An HTTPS PUT message for updating a broker policy. The message

contains the policy to be updated in the broker.

• deleteBrokerPolicy: An HTTPS DELETE message for erasing a broker policy from the

broker. The identifier of the broker policy is given in the message.

• registerTestbed: An HTTPS POST message for registering a new testbed in the universal

resource broker. This message contains the information of the testbed to be registered.

• getTestbeds: An HTTPS GET message for obtaining the list of all the testbeds registered in

the broker.

• getTestbed: An HTTPS GET message with the identifier of a particular testbed. This call

retrieves the testbed registered in the broker, based on the given identifier.

• updateTestbed: An HTTPS PUT message for modifying in the broker the information of the

testbed included in the message.

• deleteTestbed: An HTTPS DELETE message for erasing the testbed from the broker. The

identifier of the testbed is available in the message.

• installUserPolicy: An HTTPS POST message composed by a policy to be applied on the

broker. The API call permits the instantiation of a user policy.

• getUserPolicies: An HTTPS GET message for obtaining all the policies applied on the

broker.

• getUserPolicy: An HTTPS GET message composed by the identifier of a user policy. This

API call retrieves the policy based on its identifier.

• updateUserPolicy: An HTTPS PUT message for updating a user policy. The message

contains the policy to be updated in the broker.

• deleteUserPolicy: An HTTPS DELETE message for erasing a user policy from the broker.

The identifier of the user policy is given in the message.

• publishService: An HTTPS POST message for publishing a new service.

• getServices: An HTTPS GET message for obtaining all the services listed in the broker.

• getService: An HTTPS GET message for retrieving the service associated to the given

identifier.

• updateService: An HTTPS PUT message for modifying an existing service registered in the

broker. The service to be updated is given in the message.

10 FG-TBFxG-TS-D2.2 (2024-04)

• deleteService: An HTTPS DELETE message for erasing a service from the broker. The

identifier of the service to be deleted is given in the message.

6.13 APIm/GUI_m

The APIm, as known as GUI_m, allows the testbed administrator to access the testbed management

system. Through this GUI, the testbed administrator manages the testbed, including all the operations

needed to make the testbed interoperable inside a testbeds federation.

The related API calls are described below:

• testbedAdminLogin: An HTTPS POST message for containing the username and the

password of the testbed administrator. This API call allows the authentication of the testbed

administrator on the GUI used to manage the testbed.

• publishTestbedService: An HTTPS POST message for publishing a new service. The

message contains the new service to be published.

• getTestbedServices: An HTTPS GET message for obtaining all the services listed in the

testbed.

• getTestbedService: An HTTPS GET message for retrieving the testbed service associated to

the identifier given in the message.

• updateTestbedService: An HTTPS PUT message for modifying an existing service registered

in the testbed. The service to be updated is given in the message.

• deleteTestbedService: An HTTPS DELETE message for erasing a service from the testbed.

The identifier of the service to be deleted is in the message.

• connectTestbedFederation: An HTTPS POST message for connecting a testbed to a

federation of testbeds. The message contains the identifier of the testbed, the identifier of the

federation and other parameters needed for the connection.

• disconnectTestbedFederation: An HTTPS PUT message for disconnecting a testbed from a

testbeds federation. The message contains the identifier of the testbed and the identifier of

the federation.

• getFederation: An HTTPS GET message for obtaining the information about a particular

testbeds federation. The identifier of the federation is given in the message.

• getTestbed: An HTTPS GET message for retrieving all the information on a given testbed.

The message contains the identifier of the testbed.

6.14 APIn

The APIn is used by the testbed resource broker to register itself into the testbed management system.

The calls of the APIn are the following ones:

• registerTestbedResourceBroker: An HTTPS POST message for registering a testbed resource

broker into the testbed management system.

• sendTestbedResourceBrokerStateDescription: An HTTPS POST message for sending the

description of the state to the testbed management system.

• sendTestbedResourceBrokerState: An HTTPS POST message for sending the state in real-

time to the testbed management system.

• getResourceDescription: An HTTPS GET message for obtaining the description of all the

resources available in a testbed.

• getResourceCapabilities: An HTTPS GET message for retrieving the capabilities of all the

resources of a given testbed.

 FG-TBFxG-TS-D2.2 (2024-04) 11

6.15 APIo

The APIo is used by a test manager to register itself into the testbed management system.

The calls of the APIo are the following ones:

• registerTestManager: An HTTPS POST message for registering a test manager into the

testbed management system.

• sendTestManagerStateDescription: An HTTPS POST message for sending the description of

the state of a test manager.

• sendTestManagerState: An HTTPS POST message for sending the state in real-time of a test

manager to the testbed management system.

6.16 APIp

The APIp provides the description, the state and the usage of a test manager in real-time.

The calls of the APIp are composed by:

• getTestManagerDescription: An HTTPS GET message for retrieving the description of a test

manager.

• getTestManagerState: An HTTPS GET message for obtaining the state of a test manager.

• getTestManagerUsage: An HTTPS GET message for retrieving the usage in real-time of a

test manager.

6.17 APIq

The APIq retrieves the results of a test and sends them to a test manager.

The calls of the APIq are the following:

• getResultsFromCUT: An HTTPS GET message for obtaining the results of a test involving

a component under test (CUT).

• getResultsFromSUT: An HTTPS GET message for retrieving the results of a test for a system

under test (SUT).

• subscribeErrors: An HTTPS POST message for subscribing to the errors encountered during

the execution of the test.

6.18 APIr

The APIr lets access the test suite/cases designers and test executers to the test managers. The APIr

gives the possibility to the test suite/cases designers to create new experiments, new test cases and

new test suites. Then, test executers can run the different kinds of tests through the APIr. Stored test

cases can be retrieved to be executed by the test executers.

The API calls are presented below:

• testbedUserLogin: An HTTPS POST message containing the username and the password of

the user who will designed and run a test. This API call allows the authentication of the

testbed user to access the interface for the creation of tests.

• designTest: An HTTPS POST message for creating a new test. The test is included in the

message.

• compileTest: An HTTPS POST message for launching the compilation of a test. The

identifier of the test to be compiled is given in the message.

• runTest: An HTTPS POST message for executing the test given by the parameter named

identifier.

12 FG-TBFxG-TS-D2.2 (2024-04)

• saveTest: An HTTPS POST message for saving a test. The message contains the test

identifier and the location where to store the test.

• uploadTest: An HTTPS GET message for uploading a test to be executed.

6.19 APIs

The APIs is employed to connect the inter-testbed E2E universal resource broker for testbeds

federation to the test manager.

The calls of the APIs are the following ones:

• getTestManagerState: An HTTPS GET message for retrieving the state of a test manager.

• getTestResults: An HTTPS GET message for obtaining the results of a given test.

6.20 APIt

The APIt provides the test results to a test manager.

The calls of the APIt are:

• getResultsFromCUT: An HTTPS GET message for obtaining the results of a test involving

a component under test (CUT).

• subscribeErrors: An HTTPS POST message for subscribing to the errors encountered during

the execution of the test.

6.21 APIu

The APIu synchronizes the testbed management system and the testbed resource broker.

The calls of the APIu are:

• synchronize: An HTTPS POST message for triggering the synchronization between the

testbed resource broker and the testbed management system.

• subscribeResourceDescription: An HTTPS POST message for subscribing to any changes in

the description of the resources.

• subscribeResourceCapabilities: An HTTPS POST message for subscribing to any changes in

the capabilities of the resources.

6.22 APIv

The APIv is used by a Level-1 resource to push its state and its capabilities to the testbed resource

broker.

The calls of the APIv are the following:

• sendResourceState: An HTTPS POST message for sending the state of a given resource of

the Level-1 type.

• sendResourceCapabilities: An HTTPS POST message for sending the capabilities of a

Level-1 resource.

• Synchronize: An HTTPS POST message for doing the synchronization between a Level-1

resource and the testbed resource broker.

6.23 APIw

The APIw is employed by the inter-testbed E2E universal resource broker for testbeds federation to

retrieve all the information related to all the available resources.

 FG-TBFxG-TS-D2.2 (2024-04) 13

The calls dedicated to the APIw are listed below:

• getResourceDescription: An HTTPS GET message for obtaining the description of all the

resources available in the testbed.

• getResourceCapabilities: An HTTPS GET message for obtaining the capabilities of all the

resources available in a testbed.

• synchronize: An HTTPS POST message for starting the synchronization between the inter-

testbed E2E universal resource broker and the testbed resource broker.

6.24 APIx

The APIx allows the testbed resource broker to push updated information on the state and the

capabilities of the resources.

The calls of the APIx are:

• sendResourceState: An HTTPS POST message for sending the state of the resources.

• sendResourceCapabilities: An HTTPS POST message generated by the testbed resource

broker for sending the capabilities of the resources.

• synchronize: An HTTPS POST message for doing the synchronization between the testbed

resource broker and the inter-testbed E2E universal resource broker.

6.25 APIy/GUI_y

The APIy, also named GUI_y, gives access to the inter-testbed E2E universal resource broker for the

testbeds federation to the broker administrator. The activities done by a broker administrator through

the APIy consists to apply the governance policies for the broker, the operations to discover and

register the resources provided by the testbed through the broker. The APIy permits to expose the

endpoints of the testbed made available by the broker.

The different calls for this API are available below:

• brokerAdminLogin: An HTTPS POST message containing the username and the password

of the broker administrator. This API call allows the authentication of the broker

administrator on the GUI used to manage the broker.

• installBrokerPolicy: An HTTPS POST message composed by a policy to be applied on the

broker. The API call permits the instantiation of a broker policy.

• getBrokerPolicies: An HTTPS GET message for obtaining all the policies applied on the

broker.

• getBrokerPolicy: An HTTPS GET message composed by the identifier of a policy. This API

call retrieves the policy based on its identifier.

• updateBrokerPolicy: An HTTPS PUT message for updating a broker policy. The message

contains the policy to be updated in the broker.

• deleteBrokerPolicy: An HTTPS DELETE message for erasing a broker policy from the

broker. The identifier of the broker policy is given in the message.

• admitTestbed: An HTTPS POST message containing a testbed to be approved in the

federation of testbeds.

• refuseTestbed: An HTTPS POST message for withdrawing a testbed from the testbeds

federation. The identifiers of the testbed and the federation are included in the message.

• installUserPolicy: An HTTPS POST message composed by a policy to be applied on the

broker. The API call permits the instantiation of a user policy.

• getUserPolicies: An HTTPS GET message for obtaining all the policies applied on the

broker.

14 FG-TBFxG-TS-D2.2 (2024-04)

• getUserPolicy: An HTTPS GET message composed by the identifier of a user policy. This

API call retrieves the policy based on its identifier.

• updateUserPolicy: An HTTPS PUT message for updating a user policy. The message

contains the policy to be updated in the broker.

• deleteUserPolicy: An HTTPS DELETE message for erasing a user policy from the broker.

The identifier of the user policy is included in the message.

• publishService: An HTTPS POST message for publishing a new service.

• getServices: An HTTPS GET message for obtaining all the services listed in the broker.

• getService: An HTTPS GET message for retrieving the service associated to the identifier

included in the message.

• updateService: An HTTPS PUT message for modifying an existing service registered in the

broker. The service to be updated is given in the message.

• deleteService: An HTTPS DELETE message for erasing a service from the broker. The

identifier of the service to be deleted is given in the message.

• discoverResources: An HTTPS GET message for retrieving all the available resources.

• registerResource: An HTTPS POST message for registering a new resource.

• unregisterResource: An HTTPS DELETE message for removing an existing resource.

6.26 APIz

The APIz allows the test suite/cases designer and the test executer to reach out the inter-testbed E2E

universal resource broker for testbeds federation. The APIz provides the necessary interface offered

to the testbed users to search, query and find all the services of the Testbed as a Service. This APIz

publishes all the information useful to the testbed users such as testbed capabilities, testbed topology

and testbed features inside the testbeds federation.

The calls for this API are described as follows:

• searchTestbed: An HTTPS GET message for finding a testbed or several testbeds. The call

returns the testbeds.

• queryTestbed: An HTTPS GET message for obtaining specific information on a given

testbed. The identifier of the testbed is included in the message.

• findTestbedServices: An HTTPS GET message for obtaining all the services available in the

given testbed.

• selectTestbeds: An HTTPS POST message for selecting the different testbeds for an

experiment.

 FG-TBFxG-TS-D2.2 (2024-04) 15

Appendix I

Instantiation of generic APIs

I.1 TM Forum Business API

The TM Forum Business API ecosystem [b-TMF-business-API] allows the monetization of the

services provided through the Testbed as a Service. This API contains notably the licenses and the

SLA (Service-Level Agreement) elements. It also provides an accountability service. This API

permits the management of all the assets provided through the Testbed as a Service. The TM Forum

Business API allows the creation of pricing plans such as one-time payment, pay-per-use payment

and subscription. This API provides the necessary endpoints in function of the applied payment

models. An instantiation of the TM Forum Business API can be used to the monetization of the

services provided by the Testbed as a Service.

I.2 BSS/OSS APIs

The Business Support Systems (BSS) and the Operations Support Systems (OSS) allow the

telecommunications network operators to activate and configure the different resources for their

customers. Furthermore, they enable a good management of their inventory and catalogue. For

example, TM Forum publishes an OSS/BSS blueprint for the development of BSS/OSS solutions

[b-TMF-OSS-BSS]. This toolkit offered by TM Forum is composed by TM Forum Open APIs,

related data models and several guides to help the developers to build OSS/BSS solutions. An

instantiation of the TM Forum OSS/BSS toolkit could be done in a testbeds federation for the

management of all the resources and the related operations executed on these resources.

I.3 Customer-facing APIs

The customer-facing APIs are used by the users to register to the Testbed as a Service and then, to

log in. They also allow the users to select which data should be shared, in particular personal data.

The users can also choose the services provided by a federation of testbeds and configure them to

their needs. This includes in particular the creation of the tests, their compilation, their execution and

the retrieval of the test results. The customer-facing APIs enable the centralization and the display of

the data provided by the components of the Testbed as a Service and the other components of a

testbeds federation. Furthermore, the customer-facing APIs are instantiated on top of the TM Forum

Business API to permit the monetization of the services. The customer-facing APIs are of course

directly linked to the BSS/OSS APIs: indeed, they provide the information given by the users to the

BSS/OSS components through the BSS/OSS APIs.

NOTE – In this context, the customers are the users of the federated testbeds.

I.4 IEEE 2302-2021

[IEEE 2302-2021] is an IEEE standard for intercloud interoperability and federation (SIIF)

[b-TBFxG-I-028R1]. Several APIs related to testbeds federations are described and can be used in

the context of the Testbed as a Service (TaaS).

16 FG-TBFxG-TS-D2.2 (2024-04)

The first API is the FHS Operator API which permits to manage a Fed Hosting Server (FHS) and the

communication between two Fed Hosting Servers. The following table presents the FHS Operator

API:

Table I.1 – Fed Host Server (FHS) Operator API

HTTP

request

method

Endpoint Description

POST /FHSOperator/NewFedAdmin Add a new administrator of the

federations.

GET /FHSOperator/FedAdmins List all the administrators.

PUT /FHSOperator/FedAdmin/{member_id} Update the information of a given

administrator.

DELETE /FHSOperator/FedAdmin/{member_id} Erase the given administrator.

GET /FHSOperator/FedInstances List all the federations.

PUT /FHSOperator/FedInstances/{fed_id} Update the information of a given

federation.

DELETE /FHSOperator/FedInstances/{fed_id} Erase the given federation.

POST /FHSOperator/AllowConnection Allow the connection from another

federation service.

POST /FHSOperator/Connect Connect to another federation service.

GET /FHSOperator/Connections List all the connections.

DELETE /FHSOperator/Connection/{conn_id} Erase a connection.

The second API, named Fed Hosting Server-Fed Hosting Server (FHS-FHS), allows the connection

to the federation services, the management of members in a federation instance, the transmission of

monitoring data, the monitoring and the management of a federation, the listing of available services

in a federation and the management of the services. The following table provides a summary of the

different possible operations available through the FHS-FHS API:

Table I.2 – FHS-FHS API

HTTP

request

method

Endpoint Description

POST /Connect Connect to another federation service.

DELETE /Connect/{connection_id} Disconnect from another federation

service.

POST /JoinFederation Join a federation.

PUT /UpdateFederation Update the information of a federation.

GET /ValidateMember Validate a member from another

federation service.

DELETE /LeaveFederation/{fed_id} Quit a federation.

POST /MonitoringData/{fed_id} Transmit monitoring data to another

federation.

PUT /MonitoringParams/{fed_id} Set the monitoring parameters for the

given federation.

 FG-TBFxG-TS-D2.2 (2024-04) 17

Table I.2 – FHS-FHS API

HTTP

request

method

Endpoint Description

GET /MonitoringParams/{fed_id} Get the current monitoring parameters for

the given federation.

PUT /MonitoringProxy/{fed_id} Call the external monitoring system for

the given federation.

GET /Federation/Query Get the list of federations which can be

joined.

POST /Federation/Join/{fed_id} Request to join a federation.

GET /Federation/JoinRequests Get the list of all requests to join a

federation.

POST /Federation/JointGrant/{request_id} Accept the request to join a federation.

POST /Federation/JointDeny/{request_id} Refuse the request to join a federation.

DELETE /Federation/Leave/{fed_id} Quit the given federation.

POST /MemberLogin Log into a federation.

DELETE /MemberLogout/{login_session_id} Log out from a federation.

GET /Discovery/{fed_id}/{member_id} Get the list of all services available in the

given federation.

POST /Federation Create a federation.

GET /Federation List all the federations.

GET /Federation/{fed_id} Get the information of a given federation.

DELETE /Federation/{fed_id} Erase a federation.

POST /Attribute/{fed_id} Create an attribute in the given

federation.

GET /Attribute/{fed_id} Get all the attributes of the given

federation.

DELETE /Attribute/{fed_id}/{attr_id} Erase the given attribute from the given

federation.

POST /Membership/{fed_id} Grant membership to the given

federation.

GET /Membership/{fed_id} Get all the members of the given

federation.

GET /Membership/{fed_id}/{member_id} Get the information of the given member

of the specific federation.

DELETE /Membership/{fed_id}/{member_id} Erase the membership from the given

federation.

PUT /Authorization/{fed_id}/{member_id}/{attr_id} Give the authorization on the given

attribute to the specific member of the

federation.

DELETE /Authorization/{fed_id}/{member_id}/{attr_id} Revoke the authorization on the given

attribute from the specific member of the

federation.

18 FG-TBFxG-TS-D2.2 (2024-04)

Table I.2 – FHS-FHS API

HTTP

request

method

Endpoint Description

POST /Services/{fed_id} Register a new service in the given

federation.

GET /Services/{fed_id}/{svc_owner_id} Get the list of all the services in the given

federation, which are linked to a specific

service owner.

GET /Services/{fed_id}/{svc_owner_id}/{svc_id} Get the information of a given service of

a specific federation.

PUT /Services/{fed_id}/{svc_owner_id}/{svc_id} Update the information of a given service

included into a specific federation.

DELETE /Services/{fed_id}/{svc_owner_id}/{svc_id} Remove the given service from a specific

federation.

OPTIONS /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

HEAD /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

GET /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

POST /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

PUT /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

PATCH /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

DELETE /Invocation/{fed_id}/{svc_id} Invoke the given service available in a

specific federation.

I.5 Comparison between Recommendation ITU-T Q.4068 and IEEE 2302-2021 APIs

The following table compared the APIs defined in [ITU-T Q.4068] and in [IEEE 2302-2021]:

Table I.3 – Mapping between APIs

API from

[ITU-T Q.4068]

API from [IEEE 2302-2021]

APIl (or GUI_l) FHS Operator API with the endpoints corresponding to /FHSOperator/*

APIm (or GUI_m) FHS-FHS API

APIr Partially covered by FHS-FHS API. The creation, the compilation, the execution

and the recording of tests are missing in the FHS-FHS API. A possible solution

is to include these missing actions into a service or several services available in

the testbeds federation through the FHS-FHS API.

APIy (or GUI_y) FHS Operator API with the endpoints corresponding to /FHSOperator/*

APIz FHS-FHS API

 FG-TBFxG-TS-D2.2 (2024-04) 19

Bibliography

[b-ITU-T D0.1 FG-TBFxG] FG-TBFxG Technical Specification D0.1 (2025), Federated

testbeds taxonomy.

[b-ITU-T D2.1 FG-TBFxG] FG-TBFxG Technical Specification D2.1 (2025), User

requirements and reference model for Testbed as a Service.

[b-ITU-R BT.1699] Recommendation ITU-R BT.1699 (2005), Harmonization of

declarative application formats for interactive TV.
https://www.itu.int/rec/R-REC-BT.1699/en

[b-TBFxG-I-028R1] IEEE, Presentation that provides Information on IEEE Std 2302-

2021 that could be considered and referenced for potential use in

Testbed Federation APIs.

[b-ISO 3534-3] ISO 3534-3:2013, Statistics – Vocabulary and symbols – Part 3:

Design of experiments. https://www.iso.org/standard/44245.html

[b-F-Interop] F-Interop project. https://cordis.europa.eu/project/id/687884

[b-Fed4FIRE+] Fed4FIRE+ project. https://www.fed4fire.eu/

[b-PAWR] PAWR project. https://advancedwireless.org/

[b-TMF-business-API] FIWARE TM Forum Business API Ecosystem.
https://fiwaretmfbizecosystem.docs.apiary.io/#

[b-TMF-OSS-BSS] TM Forum OSS/BSS. https://www.tmforum.org/resources/toolkit/agile-ossbss-

toolkit/

[b-SLICES] SLICES project. https://slices-ri.eu/

https://www.itu.int/rec/R-REC-BT.1699/en
https://www.iso.org/standard/44245.html
https://cordis.europa.eu/project/id/687884
https://www.fed4fire.eu/
https://advancedwireless.org/
https://fiwaretmfbizecosystem.docs.apiary.io/
https://www.tmforum.org/resources/toolkit/agile-ossbss-toolkit/
https://www.tmforum.org/resources/toolkit/agile-ossbss-toolkit/
https://slices-ri.eu/

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Technical Specification

	4 Abbreviations and acronyms
	5 Conventions
	6 TaaS API and interoperability requirements
	6.1 APIa
	6.2 APIb
	6.3 APIc
	6.4 APId
	6.5 APIe
	6.6 APIf
	6.7 APIg
	6.8 APIh
	6.9 APIi
	6.10 APIj
	6.11 APIk
	6.12 APIl/GUI_l
	6.13 APIm/GUI_m
	6.14 APIn
	6.15 APIo
	6.16 APIp
	6.17 APIq
	6.18 APIr
	6.19 APIs
	6.20 APIt
	6.21 APIu
	6.22 APIv
	6.23 APIw
	6.24 APIx
	6.25 APIy/GUI_y
	6.26 APIz

	Appendix I Instantiation of generic APIs
	I.1 TM Forum Business API
	I.2 BSS/OSS APIs
	I.3 Customer-facing APIs
	I.4 IEEE 2302-2021
	I.5 Comparison between Recommendation ITU-T Q.4068 and IEEE 2302-2021 APIs

	Bibliography

