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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The procedures for establishment of focus groups are defined in Recommendation ITU-T A.7. ITU-T Study 

Group 20 set up the ITU-T Focus Group on Data Processing and Management to support IoT and Smart 

Cities & Communities (FG-DPM) at its meeting in March 2017. ITU-T Study Group 20 is the parent group 

of FG-DPM. 

Deliverables of focus groups can take the form of technical reports, specifications, etc., and aim to provide 

material for consideration by the parent group in its standardization activities. Deliverables of focus groups 

are not ITU-T Recommendations. 
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Summary 

This Technical Specification specifies a framework to support data quality management in IoT for 

the provision of quality data and services. The relevant requirements and technologies that support 

the data quality management are defined in this Technical Specification. 
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Technical Specification D4.4 

Framework to support data quality management in IoT 

1. Scope 

This technical Specification identifies the followings to provide data quality management in IoT. This 

Technical Specification addresses a framework for data quality management. The scope of this 

Technical Specification covers several key requirements with respect to data quality management in 

IoT and many important elements to fulfil these requirements. Specifically, it covers the following: 

– Overview of data quality management; 

– Data quality management in IoT; 

– Requirements of data quality management in IoT; 

– Functional model to support data quality management. 

2. References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Technical Specification. At the time of publication, 

the editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Technical Specification are therefore encouraged to investigate the possibility of 

applying the most recent edition of the Recommendations and other references listed below. A list of 

the currently valid ITU-T Recommendations is regularly published. The reference to a document 

within this Technical Specification does not give it, as a stand-alone document, the status of a 

Recommendation. 

[ITU-T Y.2060] Recommendation ITU-T Y.2060 (2013), Overview of the Internet of things 

[ITU-T Y.3600] Recommendation (07/2016), Big data standardization Roadmap 

[ITU-T Technical Paper] Technical Paper (11/2016), Analysis of Digital Data Technologies 

Toward Future Data Eco-Society 

3. Definitions 

This Technical Specification uses the following terms defined elsewhere: 

3.1 Terms defined elsewhere 

3.1.1 Internet of Things (IoT) [ITU-T Y.2060]: A global infrastructure for the information 

society, enabling advanced services by interconnecting (physical and virtual) things based on existing 

and evolving interoperable information and communication technologies. 

3.2 Terms defined in this Technical Specification 

3.2.1 Critical data: The data to be required for the successful completion of a task in an application 

or service within a specific business context. It is characterized by defined attributes and priorities.  

3.2.2 Data quality: The degree to which the characteristics of data satisfy stated and implied needs 

when used under specified conditions.  

3.2.3 Non-critical data: Low business value and impact data. 

3.2.4 Poor Data: The data classified with low quality during the data quality assessment process. 
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4. Abbreviations and acronyms 

This technical Specification uses the following abbreviations and acronyms: 

AI  Artificial Intelligence 

DL  Deep Learning 

DQM  Data Quality Management 

IoT  Internet of Things 

ML  Machine Learning 

5. Conventions 

None 

6. Overview of data quality  

6.1 Concept of data quality  

The data quality will be attributed to a quality supporting business processes, analysis techniques, 

and it will be raised as to whether a data quality of the existing data would be worthwhile or plausible. 

Thus, data quality is necessarily architected, measured and assessed with consideration, and the 

possible risks in deploying data business will be overcome well.  

For data that is collected through sensing to be fit for use, it should possess certain features so that it 

can satisfy a set of system requirements.  

There is increasing awareness of the criticality of data to making informed decisions and how 

inaccurate data can lead to disastrous consequences. The challenge lies in ensuring that enterprises 

collect relevant data for their business, manage or govern that data in a meaningful and sustainable 

way, ensure high quality for critical data, and analyse the high quality data to accomplish stated 

business objectives. 

6.2 Data quality classification 

Based on the concept of data quality, the data quality classification have been identified as follows 

(Figure ): 
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Figure 6-1. Classification of data quality 

6.2.1 Intrinsic data quality 

The intrinsic category of data quality that is related to the actual values of data regardless of the 

context or data components (e.g., accuracy). 

Following are the data quality metrics of this category: 

– Believability: The believability is the extent to which data are accepted or regarded as true, 

real, and credible;  

– Accuracy: The degree to which data correctly describes the “real world” object or event being 

described; 

– Objectivity: The extent to which data is unbiased, unprejudiced, and impartial; 

– Reputation: The extent to which data is highly regarded in terms of its source or content. 

6.2.2 Contextual data quality 

The contextual category of data quality that is related with respect to other data components and 

within a certain context (e.g., completeness, timeliness, and consistency). 

Following are the metrics of contextual data quality: 

– Value added: The extent to which data is beneficial and provides advantages from its use; 

– Relevancy: The extent to which data is applicable and helpful for the task at hand; 

– Timeliness: The degree to which data represent reality from the required point in time; 

– Completeness: The proportion of stored data against the potential of “100% complete”; 

– Appropriate amount of data:  This means that the sufficient amount of data is available for use 

to compute a result of data items. 

6.2.3 Representational data quality 

The representational category captures aspects related to the design of the data.  

Following are the metrics of representational data quality: 

– Interpretability: The extent to which data is in appropriate languages, symbols, units, and the 

definitions are clear; 
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– Ease of understanding: The ease of understanding means the extent to which data is easily 

comprehended; 

– Representational consistency: The extent to which a whole dataset is presented in the data 

structure and format; 

– Concise representation: The extent to which data is compactly represented. 

6.2.4 Accessibility data quality 

This category deals with the data quality aspects related to data infrastructure such as accessibility, 

security access, data retrieval. 

Following are the metrics of representational data quality; 

– Accessibility: The extent to which data is available, or easily and quickly retrievable; 

– Security access: The security access metrics measures that the data is safeguarded from 

unauthorized access and preventing data loss. 

7. Data quality management in IoT  

7.1 Overview of data quality management  

Due to the advanced information and communication technologies, a very huge amount of data is 

generated in the operation, production, and management of the IoT business . However, the quality 

and reliability of that data are questionable. This newly collected data from out sources and already 

available data in the organization should be pre-processed in order to check the data completeness, 

accuracy, and consistency for the improved and high quality decision making services. Data quality 

management is an administration type that incorporates the role establishment, role deployment, 

policies, responsibilities and processes with regard to the acquisition, maintenance, disposition and 

distribution of data. Data quality management initiative promotes a strong partnership between 

technology groups and the business. Building and controlling the entire data environment, that is, 

architecture, systems, technical establishments, and databases will be promoted through the overall 

environments to acquire, maintain, disseminate and dispose of an organization's electronic data assets. 

Further following are the key motivations for the data quality management in the IoT .     

– Data quality management is the set of process and activities of combing all the entities in the 

organization including people, technology and culture to promote the common goal of data 

quality provision to the IoT data consumers; 

– Data quality management should be an open system where data quality professionals need to 

interact with data consumers and other stakeholders of data freely in order to identify the 

information need and data quality requirements; 

– Data quality management is also crucial when it comes to choosing one dataset for business 

IoT applications over the other available datasets; 

– The data quality will be attributed to a quality supporting business processes, analysis 

techniques, and it will be raised as to whether a data quality of the existing data would be 

worthwhile or plausible; 

– Information in data application can be derived from the processing of data to give meaning 

and sense to it with multiple types of metadata; 
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– To achieve data quality for IoT applications, it should be necessary to collect and pre-process 

the data, perform the quality assessment of existing data, evaluate the results and improve it, 

if necessary, perform the ranking and monitoring of data for the sustainable data quality 

management. The overview of various data quality management capabilities have been 

illustrated in Figure  and the detail of these components will be presented in chapter 9 

functional model of data quality management.   

 

 

 

Figure 7-1. Overview of data quality management 

− Data acquisition: The data acquisition supports internal and external data with consistency, 

storage efficiency, retrieval efficiency and security efficiency. 

− Data quality assessment: To assess the existing data quality, common data quality metrics are 

applied; 

− data quality evaluation: The evaluation of data quality management procedures is mandatory 

because it also focuses on the economic advantages to choose data quality improvement solutions. 

To ensure the suitable level of data quality evaluation, the following functionalities should be 

provided by the data quality management framework; 

− Data quality improvement: To improve the data quality a design data quality plan is applied for 

the data quality improvement; 

− Data quality ranking: Rank the data as per achieved data quality level, the ranking of data for 

further use in the business services; 
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− Support process to monitor data quality:  To support the ongoing data quality monitoring and 

management. 

7.2 Data quality management characteristics 

Based on the data quality and data quality management overview, the data quality management 

framework should have the following characteristics.  

– The quality data should be managed in a way that it should be accurate, available, consistent, 

confident, integrated, relevant, reusable, current, and complete; 

– The quality of data should be measured with relevant data quality metrics; 

–  The data quality management framework contains data provenance information; 

– The management system contains methodologies to maintain the metadata; 

–  Data quality management has the capability to manage reference data;  

– The system provides support to improve the data quality if the received data has poor quality; 

– A central data modeling system is being provided in the data quality management framework; 

–  The ranking of the data with respect to its data quality indicators is supported. 

8. Requirements to support data quality management in IoT  

To support the business goal of data quality management in the IoT, many aspects are required to be 

considered. Following sections highlight some general requirements to support data business goals 

of quality management and some specific requirements with respect to each business process in the 

data quality management framework. 

8.1 General requirements of data quality management 

To receive the appropriate level of data quality following general aspects are required: 

− The system should be scalable in order to handle growing large volume of IoT data; 

− The data quality management should be available during the processing of data; 

− Define the set of validations that need to be developed to measure the quality of data; 

− The data quality management process should be interoperable in order to handle data received 

from heterogeneous sources; 

− For the ongoing improvement in the data quality, the system should be able to monitor data 

quality with some length of period; 

− privacy of users must be considered during the processing of data in order to estimate and 

improve the data quality; 

− Privacy protection during the data collection process; 

− In order to increase the data quality completeness aspects, handling of missing data with 

sophisticated techniques should be provided; 

− To increase the accuracy and confidence in the IoT data, the data quality management system 

should be able to detect and correct the false and suspect data; 
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− Ability to produce ad hoc reports indicating gaps in data for any attributes selected 

− Ability to identify the number of data points that are not populated for each required attribute 

field; 

− It is required that the data collection scheduler should balance the data collection interval in 

order to increase efficiency (for example: the battery life of IoT sensing objects.); 

− The data quality management framework should support time alignment in the collection of 

data in the case multi-sources data collection request for the IoT service provision; 

− To estimate and improve the quality of data efficiently, the data collection methodologies in 

the data quality framework should support the collection of metadata along with the data; 

− The data quality management framework should support the coordinated workflow 

mechanism in order to handle the collection of duplicated data. 

8.2 Requirements of data acquisition 

To acquire the IoT data for business needs, the data quality management framework should support 

the following functionalities: 

− Ensure that no extra data should be collected with respect to the required policy. The collection 

of extra data reduces customers privacy and introduces the data leakage issues of data quality; 

− Supports of acquiring and validation of data from external sources; 

− Supports of acquiring and validation of data from internal sources; 

− Support data masking during the data acquiring phase in order to handle privacy aspects. 

8.3 Requirements of data quality assessment 

To measure the quality of data with optimal precision, data quality management framework should 

support the following functionalities: 

− Due to the large volume of IoT data, it is difficult to estimate the quality of data within a 

reasonable amount of time, therefore the data quality management framework should be 

efficient and scalable to support efficient data quality assessment; 

− As there is no unified standard to estimate the quality of data for various IoT applications, 

therefore the framework should support to measure the quality of data with many data quality 

metrics; 

− The framework should support to estimate data quality with common metrics initially;  

− The data quality management framework should support a basic set of data quality 

measurement methodologies; 

− There should be a support to add new data quality indicator and measurement methodology 

in the framework; 

− The measurement of data quality should be considered according to various interest groups; 

− There should be the provision of update in the measurement methodology of existing data 

quality indicators; 
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− Data quality assessment functions should support individual quality measurement for each 

data source; 

− Data quality assessment functions should support aggregated measurement for data received 

from multiple sources; 

− Periodic data quality assessment capability should be supported for non-critical data; 

− Continuous data quality assessment functions should be supported for  critical data.  

8.4 Requirements of data quality evaluation  

The evaluation of data quality management procedures is mandatory because it also focuses on the 

economic advantages to choose data quality improvement solutions. To ensure the suitable level of 

data quality evaluation, the following functionalities should be provided by the data quality 

management framework: 

− The system should be able to locate critical areas of data which affects the quality of data; 

− The system should be able to optimize the time used in the data quality assessment; 

− The system should also check the data reputation after its usage in the IoT applications so that 

other services can get the benefit; 

− The system should be able to evaluate the direct and indirect cost of the data quality process; 

− The system should check that the results of data quality assessment are up to standard for the 

IoT applications and services; 

− The system should recommend improving the grey areas of data which weaken the level of 

data quality; 

− The system should support to evaluate the business rules from time to time defined against 

the various data sources. 

8.5 Requirements of data quality improvement. 

To ensure to choose suitable methodologies to improve data quality, the following functionalities 

should be provided by the data quality management framework: 

− The system should be able to perform data various types of data interpolation in order to 

handle missing data; 

− The system should support to detect and correct data outliers in the streaming data; 

−  The system should be able to rectify and improve the data effected by malwares attacks. 

− It is required that the framework should support data deduplication; 

− Data should be transformed in the encrypted format in order to increase security and 

confidence of data; 

− The system should support the common data representation format in order to increase the 

data interpretability; 

− The data quality management model should have high power infrastructure in order to support 

data availability in the peak hours and emergency situation; 
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− The system should have a predefine data threshold in order to validate data accuracy; 

− The data quality management framework should support a proactive approach to improve the 

data quality if possible. 

8.6 Requirements of data quality ranking 

To ensure the suitable level of data quality ranking, the following functionalities should be provided 

by the data quality management framework: 

− In consideration of fitness for use for the task at hand, the system should be able to assign 

weights to the preferred data quality metrics for measuring the ranking of data; 

− In the IoT services sometimes the data of individual source is used and another time data from 

multiple sources are used collectively. Therefore, the data quality management framework 

should have the provision of individual aggregative data quality ranking; 

− For ongoing improvement and provision of services, the quality of data should be ranked in 

different time slots; 

− The data quality management framework should support estimated or predicted data quality 

ranking if the actual data quality ranking is under processing, in order to support to predict 

IoT service behavior modeling; 

− The system should provide the ranking of the quality of data in terms of its business usage 

and technical ranking; 

− For the sustainable data quality management, the system should support to monitor and 

improve the data at the source level. 

8.7 Setup process to support data quality monitoring 

To support the ongoing data quality monitoring, the following functionalities should be provided by 

the data quality management framework: 

− The system should support periodic monitoring, that provides feedback on the data quality 

management process and it enables dynamic tuning; 

− The system should be able to generate alerts when the level of data quality decreases to a 

certain threshold; 

− The data quality management framework should have the capability of periodical  reporting 

of quality; 

− For the sustainable data quality management, the system should support to monitor the quality 

of data at the source level; 

− The data quality management framework should support multiple schedulers to monitor 

ongoing data quality; 

− The framework should support appropriate visualization data quality monitoring results; 

− The framework should support tracking levels of data quality over time for monitoring the 

ongoing process and improvement. 
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9. Functional model to support data quality management  

The functional model of data quality management provides mechanisms to support the management 

of IoT data. The functional capability of this model is distributed as follow. 

9.1 Data acquisition capability 

Data acquisition is the processes for bringing data that has been created by a source outside the 

organization, into the organization, for business use. The data acquisition supports internal and 

external data with consistency, storage efficiency, retrieval efficiency and security efficiency. Figure 

9-1 shows the function model of data acquisition capability with respect to data quality in this 

capability. 

  

Figure 9-1. Functional model of Data acquisition capability 

− Handling data leakage function: Data leakage issue occurs when the IoT service or application 

acquires more data than the necessary requirements. This function handles these issues when data 

acquisition has been performed in the data quality management platform; 

− Data retrieval efficiency function: This function provides the capability to acquire data from 

the repository within an appropriate time. Due to the application of this function, the data availability 

and timeliness aspects of data could be improved; 

− Data storage efficiency function: This function supports the mechanism to store the acquired 

data within an appropriate time and consistent format.; 

− Data security and privacy function. 

9.2 Data quality assessment capability 

The capability offers the methodologies to estimate the data quality of the received and existing IoT 

data. The quality of data is measured with various data quality metrics. Figure 9-2 shows the functions 

of data quality assessment capability. 
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Figure 9-2. Function model of  data quality assessment capability 

− Recurrent data quality assessment function: The recurrent data quality assessment function 

supports the measurement of IoT data quality after each specific interval. This function checks the 

quality of data with respect to various aspects as defined in the function template; 

− Ongoing data quality assessment: This function checks the quality of data received from IoT 

objects periodly. The main capability of this function is to ensure the validation of the quality of data 

received from critical IoT data sources. This function also supports priority assessment among the 

critical data categories; 

− Individual data quality assessment: This function provides the mechanism to check and measure 

the quality of data of each source separately. Another capability of this function is that the individual 

data quality assessment function can be applied standalone or it can be used collectively with 

recurrent and ongoing data quality assessment function; 

− Aggregated data quality assessment: In order to use data from various IoT data sources in a 

single service, then the IoT service required the aggregated data quality level for all of the data used 

in the service. The aggregated data quality checking function provides this capability. In aggregated 

data quality checking, good or poor quality affects the overall checking results. 

9.3 Data quality evaluation capability 

The details of data quality evaluation capability in accordance with data quality classification and 

characteristics to support data quality management is presented here. Figure 9-3 shows the functional 

model of data quality evaluation capability. 

 

Figure 9-3. Functional model of data quality evaluation capability 

− Evaluation based on critical data quality spots: The critical data quality spots evaluation 

function evaluates areas  which hamper the overall quality of a dataset and analyses the root causes 

in order to avoid issues in future data; 
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− Evaluation based on data usage history: This function enables the capability of data quality 

management framework to evaluate the quality of data based on its usage in the IoT services. The 

feedback from the users could be the input in order to make the evaluation of the quality of the data; 

− Evaluation of data quality cost: The data quality cost evaluation function supports the 

evaluation of the process of data quality. The main focus of this function is to measure the people and 

computational time, and system memory by considering data quality aspects, because the data quality 

assessment process requires high computation power and large memory due to the large volume of 

IoT data.   

9.4 Data quality improvement capability 

The data quality improvement capability to enhance the data spots whose data quality has been 

estimated and evaluated as poor. Figure 9-4 shows the functional model of data quality improvement 

capability. 

− Data quality constraints validation: The data quality constraints validation function enables to 

detect missing interrelations in the IoT data. For the identification of missing interrelations in the data, 

this function uses the reference of dependency and integrity constraints. Due to the functional 

capability of this function, the data quality aspects towards data consistency and data representation 

could be improved in the data quality management framework; 

− Data outliers: This outliers function includes identifying those values from a dataset or a single 

data source which are not coming in a certain range. As the data outliers is a major data quality issue 

in the IoT environment, by analyzing and fixing data outliers, the quality of data in terms of data 

accuracy, and data consistence could be enhanced; 

− Data interpolation: The interpolation function is an estimation of a value within two known 

values in a sequence of values. The data interpolation functions enable the various mechanism to 

improve the quality of data in terms of data completeness and accuracy. This function applies various 

methodologies to estimate the missing data in the IoT data streams; 

− Data deduplication: The deduplication is the process of data cleaning. The data deduplication 

function provides the mechanism to reduce a large volume of duplicate data by detecting the same 

copy or instance of data for similar real-world events. The data pointers are supported by this function 

which is referring to the unique copy of data. This function enhances the data availability aspects of 

data quality management and reduces the size of data storage and data management efforts; 

− Data representation: The data representation function enables to improve the quality of data in 

terms of data interoperability. This function provides the mechanism to translate and transform the 

data in the common representation and storage format. The advantages of this function are the 

improvement of data consistency, data availability, and data accuracy. 
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Figure 9-4. Functional model of data quality improvement capability 

9.5 Data quality ranking capability 

To ensure the suitable level of data quality ranking, three functions of data quality ranking capability 

are needed to enhance the business value of the data in the business applications. Figure 9-5 shows 

the functional model of data quality ranking capability. 

 

 

Figure 9-5. Functional model of data quality ranking capability 

− Individual data quality ranking: The individual data quality ranking function enables to rank 

the data separately as per the data quality checking results with respect to each data source and data 

quality aspects such as data accuracy, data completeness, data consistency, and data availability. The 

applications of this function support to use the data individually with respect to the IoT object real-

world sensing capability; 

− Aggregative data quality ranking: The functional capability of the aggregative ranking function 

supports the ranking of data quality collectively of all the data received from multiple sources. Further, 

this function enables business-oriented data quality ranking such as location, time, and also data 

quality ranking’ 

− Preferred ranking as metric weightage: To create and update application specific data quality 

ranking templates, this function enables to assign data quality weightage to preferred data quality 

metrics, so that the data could be categorized and used in the specific context.   
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9.6 Setup process to support data quality monitoring 

To support the ongoing data quality monitoring for sustainable data quality, this function group 

provides many functions to monitor data quality at each stage in the data quality management 

framework. Figure 9-6 shows the data quality monitoring functions in this group. 

 

 

Figure 9-6. Data quality monitoring capability 

− Recurrent data quality: The recurrent data quality monitoring function ensures the monitoring 

of various aspects of data quality periodically. This function supports various components which 

create many schedules for the checking of the entire process of data quality management systems. 

Choice of data attributes to monitor, and how to monitor them, is one of the key decisions of the 

design phase of the data quality management; 

− Monitoring correlated critical spots of poor data: The monitoring correlated critical spots of 

poor data enables to monitor the quality of data and related data whose quality estimated as weak in 

the data quality evaluation and ranking function. This function generates reports which show the 

trends of correlated critical data quality improvement or deterioration from time to time.   

− Critical data monitoring: The critical data monitoring function supports an important issue in 

the data quality management. The critical data are more important than the rest of the data in the data 

quality management framework such as IoT data to monitor patient, surveillance data, etc. The 

monitoring mechanism in this function focuses on critical data defined as per IoT applications. 

− Non-critical data monitoring: This type of data has also business value and impact but not as 

serious as critical data. Similarly, as monitoring of critical data quality function, the mechanism in 

this function focuses on non-critical data monitoring. Difference between critical and non-critical 

data could be defined in the data quality monitoring templates stored into the data quality monitoring 

templates repository. 
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Appendix A: Intelligent data quality management using machine learning and deep learning 

A.1 Machine Learning based data quality management 

The identification and correction of measurement errors often involves labor intensive case-by-case 

evaluations by statisticians. Machine learning will increase the efficiency and effectiveness of these 

evaluations. It proceeds in two steps: in the first step, a supervised learning algorithm exploits data 

on decisions to flag data points as erroneous to approximate the results of the human decision making 

process, and in the second step, the algorithm applies the first-step knowledge to predict the 

probability of measurement errors for newly reported data points.  

Further improving and maintaining high data quality is a central goal of official statistics. In the 

field of data quality management (DQM), the collection of data on human decisions in the DQM 

process creates an opportunity to increase the efficiency and effectiveness of DQM with machine 

learning (ML). It is necessary to predict measurement errors on the basis of data on human 

decisions to flag data points as erroneous. These predicted probabilities of measurement errors 

facilitate the work of statisticians and form the basis for a ML based approach to automate their 

checks.  

The main focus of an application of ML to DQM is in both applications; 

− prediction of measurement errors; 

− help to overcome data gaps.  

To support DQM in both applications, the ML algorithms predict if a human decision maker would 

flag data points. In the application to data gaps, the algorithms predict missing values.  

The ML yields accurate out-of-sample predictions and increases the efficiency of DQM. The potential 

of ML for official statistics is not limited to the prediction of measurement errors. Another important 

problem that ML can help to overcome is missing data. Out-of-sample predictions of missing values 

with ML algorithms can help to close data gaps in a wide range of datasets. 

The use of ML based matching algorithms enables the service platform to ingest data for 

standardization at scale. Typical use cases include matching specific records or data sets to a common 

standard and transforming data to this standard, allowing for the creation of relationships and accurate 

links between base data and derived data. This workflow is particularly important in ML and fraud 

detection scenarios, where a high volume of customer’s due diligence and transaction data from 

disparate systems necessitates extensive standardization to set flags and generate meaningful derived 

data.  

Standardization simplifies deduplication issues and accuracy-related data quality problems. The 

flexibility of ML provides that changes to these metrics, it can be applied across the entire data set in 

a cost-effective way, reducing the overhead of moving to a new standard. 

A.2  Deep Learning based DQM 

Deep Learning (DL) in Artificial Intelligence (AI) might help us discover where the master data is 

kept. DL might be able to “spot” where the most frequently referenced data reside. 

In fact, there are two other tasks in the DL applied to DQM that are much different and we don’t need, 

and cannot use, DL. 

The first task is the identification of the master data and the second concerns the enforcement of the 

policies that sustain it. The former steps should take no more than an hour with the right business 

people in the room; simply ask the business users such things as: 

• What is the most important data (at a conceptual level) that is needed to make business 

process A work as planned? 

• How much of this data is needed also to make business process B work as planned? 

• How much less data can you use to make business process C work as planned? 

The second task is at the other extreme; the enforcement of policy. It is the work of policy 
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enforcement that sustains the level of data quality and the effectiveness of the workflows executed to 

meet that data quality and business process.  
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Appendix B: Definition of business goal for data quality management 

There is a strong correlation between the business processes and data quality. Thus, the design of 

business goal for data quality management should take place before any initiative associated with 

data-driven decision making and should continue during all the business process. Figure B-1 shows 

the process to perform the design of business goal in the data quality management. 

 

 

 

Figure B-1. Definition process of business goal for data quality management 
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