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Summary 

Machine learning models for artificial intelligence (AI) in health are deployed in high-impact tasks. 

As a result, it is important to follow best practices for training and documentation so as to achieve 

maximum performance and transparency. The first part of this document provides a review of best 

practices for proper AI model training. The second part of this document provides guidelines for model 

reporting. 
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ITU-T FG-AI4H Deliverable DEL06 

AI training best practices specification 

1 Scope 

This deliverable provides a general introduction and background to model training across a typical 

AI pipeline. It explains basic key concepts, considerations, practices and limitations on the different 

aspects of model training in the health-care domain and points readers to cited sources or studies 

where advanced materials can be found.  

2 References 

[FG-AI4H DEL0.1] ITU-T FG-AI4H DEL0.1 (2022), Common unified terms in artificial 

intelligence for health. 
https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4H-2022-1-PDF-E.pdf 

Additional references are found in the Bibliography of this document. 

3 Definitions 

3.1 Terms defined elsewhere 

The terms defined in [FG-AI4H DEL0.1] are applicable to this Technical Report. 

3.2 Terms defined in this Technical Report 

This Technical Report defines the following term: 

3.2.1 alarm fatigue: Also known as alert fatigue, is the sensory overload and desensitization that 

occurs when one is exposed to a large number of alerts and alarms in the health care context, leading 

to missed alarms or delayed response. (Adapted from [b-Woo].) 

4 Abbreviations and acronyms 

This Technical Report uses the following abbreviations and acronyms: 

AI Artificial Intelligence 

AutoML Automated Machine Learning 

EHR Electronic Health Record  

LOCF Last Observation Carried Forward 

MAR Missing At Random 

MCAR Missing Completely At random 

NMAR Not Missing At Random 

RNN Recurrent Neural Networks 

5 Conventions 

None. 

https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4H-2022-1-PDF-E.pdf
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6 AI pipeline: A brief description 

Given the complexities of diseases and their interaction with the human body, AI for health requires 

a high degree of customization. This document broadly covers the important considerations 

throughout an AI pipeline highlighted in Figure 1. 

 

Figure 1 – A brief description of an AI training pipeline 

7 Best practices for data pre-processing 

Data pre-processing is an important aspect in the AI model training pipeline. Health-care data exist 

in many forms, such as physicians’ notes, patient details, medication and medical images, which are 

typically consolidated and referred to as an electronic health record (EHR). Within EHR data, the 

number of domains (e.g., patient demographic, lifestyle, and health-related variable groups) and their 

individual subdomains (e.g., occupation, smoking habits, exercise frequency and intensity, family 

history etc.) predictor variables, or features, present are large and complex.  

However, not all features are equally significant to the problem statement and certain specific 

biomarkers hold a greater weightage, or are more clinically meaningful, in determining the outcome 

of a medical examination, e.g., specific cancer detection. It is imperative to scrutinize datasets, not 

only through the lens of AI or data scientists, but also through the lens of medical domain experts in 

the fields around the problem statement. However, employing traditional clinical approaches and 

models to peruse all available dataset features would be tedious, time-consuming and resource-

intensive. How then should the data be explored meticulously to identify and select data of 

significance? 

7.1 Feature engineering 

Before embarking on feature engineering, the problem statement must be clearly articulated to 

understand the desired outcomes. This highlights the necessary features, if present within the dataset, 

that contribute significantly to the desired outcomes, and elucidates other possible features that could 

be generated to complement them. As not all features are necessary, careful feature selection, 

reduction and generation is critical in building an accurate AI model, while saturating the AI model 

with irrelevant or inconsequential data degrades its performance or exacerbates resource costs. As AI 

applications proliferate within the health-care space, a shift of approaches that guide feature selection 

or reduction is seen.  

– Traditional approaches. In traditional prediction models, predictor variables are typically 

predefined [b-Goldstein], such as blood pressure or cholesterol in the Framingham Heart 

Study [b-Wilson]. In most cases, these features are selected based on expert judgment or 

knowledge. However, the depth of patient data is not completely utilized, which may explain 

poorer model performances when compared with newer, automated approaches.  

– Semi-automatic approaches. These approaches may consist of two components in varying 

degree; one which relies on automatic data-driven techniques to select and extract clinically 
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meaningful features from large datasets, while complementing existing predefined features 

selected manually based on expert judgment or established clinical studies and industry 

standards. This usually results in an AI model that outperforms traditional approaches 

[b-Luo].  

– Deep learning approaches. Deep learning allows the AI model to execute feature engineering 

without being explicitly programmed, removing the need to pre-define features. Deep 

learning AI models are also able to handle large, messy or incomplete datasets sufficiently 

well. In a study by Google AI on deep learning using EHR data [b-Rajkomar], the utilization 

of the full spectrum of EHR data using deep learning techniques has been shown to 

outperform traditional clinical models in prediction tasks such as in-hospital mortality, 

30-day unplanned readmission, prolonged length of stay and final discharge diagnoses.  

Feature generation is often done in tandem with feature selection. Additional features derived from 

the dataset is sometimes required to help the AI model learn better. Determining what additional 

features should or could be generated depends greatly on the problem statement and its relevant 

medical domain knowledge. For example, when determining the effectiveness of a particular 

treatment course and recommending treatment options to the health-care professional for patient 

management, it is necessary to generate and provide AI models with data on historical information 

and lag features, such as patient health markers over a time period. It is therefore useful to always 

keep in mind a guiding framework on approaching feature extraction, generation and aggregation 

[b-Tran] throughout the AI model training pipeline.  

7.2 Treatment of missing data 

It is unrealistic to assume that EHR data can be readily consumed for model training upon retrieval. 

It is common to expect missing values within health-care records. How these missing data (e.g., 

missing true positive alarms) is managed, rationalized, and imputed could drastically impact the final 

model performance (e.g., resulting in false positives or false negatives).  

Missing data could be in statistical terms classified into three main types: (1) missing completely at 

random (MCAR); (2) missing at random (MAR); and (3) not missing at random (NMAR). The easiest 

way to handle missing data is to simply ignore and remove either the value or the entire case itself. 

When doing so an underlying assumption that the missing data is independent of both the observed 

and unobserved data is made, which may not be the case. Several extensive methods used to address 

missing data in various health-care contexts can be found in open literature [b-Wong], and are 

summarized below:  

– Last observation carried forward (LOCF). LOCF carries forward observation from the last 

observed time point to fill the missing data at the endpoints.  

– Complete-case analysis and available-case analysis. Complete-case analysis uses only data 

from patients with a complete record of all visits and ignores all patients with any missing 

data. Available-case analysis on the other hand uses all available data. 

– Mean imputation, hot-deck imputation, regression imputation. Mean imputation uses the 

mean across all data at the time point to fill in the missing data. Hot-deck imputation fills the 

missing data with observed responses from another randomly selected but similar data point. 

Regression imputation uses a regression model to predict and fill the missing value.  

– Mixed effects models and generalized estimating equations. For mixed effects models, a 

statistical distribution (e.g., Gaussian distribution) is used to account for the missing data. On 

the contrary, an estimating function could also be used to predict the missing data.  

– Inference for NMAR data. There are two methods that can be used to infer for NMAR data: 

pattern mixture models and selection models. Pattern mixture models [b-Little] express the 

joint distribution of the responses and missing indicators using the distribution of all possible 

missingness patterns and the distribution of the responses given a specific missingness 
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pattern. Selection models [b-Diggle] express the joint distribution of the responses and the 

missing indicators using the opposite decomposition; the distribution of the responses and 

the distribution of the missing indicators given the responses. 

7.3 Data augmentation 

Data augmentation is another important component of data pre-processing and has slight overlaps 

with feature generation. It is often used for computer vision applications when image data is limited 

or unbalanced (e.g., the proportion of a certain data class is much higher or lower than the others), 

such as medical imaging and diagnosis applications. Data augmentation generates additional training 

data to complement existing datasets, providing the training process with more information to learn 

from, and boosting the model’s accuracy, training stability or generalizability.  

The types of data augmentation techniques that could be deployed depend on specific use cases. 

Below are some basic techniques frequently deployed for image-based AI models, as well as 

references to more advanced techniques [b-Shorten]. 

– Geometric transformations. Techniques such as image cropping, zooming, rotating and 

translating are commonly used to create synthetic images to complement existing datasets. 

This helps expand dataset size while preserving authenticity and may help to reduce 

positional biases during model training.  

– Colour space transformations. Poor image lighting or colour balance may affect a model’s 

ability to identify features during model training, which typically happens for medical 

imaging applications. Techniques such as equalizing or normalizing colour histograms often 

helps to improve model performance. However, caution must be exercised to ensure any 

colour manipulations do not affect key definitions within the image data that characterizes 

these features.  

Data augmentation is less frequently deployed for text-based AI models than for image-based ones 

due to a few factors. First, it is much easier to acquire large text-based data than image-based data, 

hence it less likely to need to overcome challenges such as limited data or class imbalance. Second, 

text-based data is much more complex due to the intricacies of the language medium. The resulting 

sentence sentiment, position and nuance could be drastically altered if one word is changed 

incorrectly. Yet, the benefits of data augmentation seen for image-based models has been recently 

demonstrated if they are used correctly for text-based models. Recent studies include easy data 

augmentation (EDA) techniques [b-Wei] that could be deployed for text-based deep learning models, 

such as synonym replacement, random insertion, random swap and random deletion.  

8 Best practices for model training 

Model training is not a linear process. Many iterations are required to properly train and optimize 

before the model sufficiently performs its intended functions. The international research community 

has explored countless aspects of model training over the past decades, but what is important to note 

is that the benefits of these developed techniques, tools, takeaways and conclusions from various 

studies are very dependent on the use cases and settings, context or environment they are applied to. 

As such, this section will only broadly focus on common basic best practices that help to bring a 

potential user up to speed on how to train and deploy an AI model.  

8.1 Model architecture 

The wide spectrum of AI models available is daunting, and the complexity, number and types of 

models will only proliferate further over time. It would be laborious for users with little background 

in AI to even begin to understand which types of models to use for a particular use case, much less 

evaluate their performance.  
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For experimentation purposes, it is advisable to start with AI models readily available and updated 

on open-source libraries (e.g., ResNet-152, GoogLe-Net19, BERT) that have been trained on similar 

datasets to achieve similar objectives, and conduct transfer-learning techniques to adapt them to the 

defined use case. A survey of open-sourced deep learning architectures for various use cases provides 

some basic evaluations of each architecture, their strengths and their limitations [b-Alom]. 

Additionally, for more advanced models, there have been recent works summarizing different neural 

network architectures and their limitations for the health-care domain based on their general use cases 

for bioinformatics, medical informatics, medical imaging and public health [b-Zion].  

While most of this document focuses on the basic application of AI, it is important to consider 

throughout the AI pipeline the scalability implications of factors such as model architecture. Where 

scalability becomes an issue, it may become necessary to adopt advanced techniques that could help 

to reduce model complexity while preserving model fidelity [b-Xu-1].  

8.2 Model ensembles 

It is a common misconception that AI applications are one singular AI model working behind the 

scenes. Experimentation during the model training pipeline will show that some models are inherently 

better at certain tasks than others. Each model has its own strengths and weaknesses. It is difficult to 

optimize a model that is good at everything, as this is usually limited by either an unfeasibly large 

amount of data required for it to learn from, or an unrealistic amount of time needed to train it.  

As such, the principle of model ensembles is to build multiple, smaller, implementable models and 

combine them together based on a set of decision-making or learning strategies. Multimodel 

ensembles have been demonstrated to achieve equal, if not better, performance than individual models 

for the detection of cancer [b-Xiao] and heart disease [b-Mienye] and for diabetes prediction 

[b-Akula]. Here, basic decision-making techniques for model ensembles are summarized, and 

reference is made to more advanced techniques on ensemble learning [b-Dong].  

– Maximum or majority vote. Maximum or majority vote is employed by counting the 

prediction of each model. The prediction with the highest or majority vote will be used as the 

eventual ensemble prediction.  

– Average or weighted vote. Average or weighted vote is employed by summing each models’ 

output probabilities and averaging them either uniformly (average vote) or based on a defined 

weightage (weighted vote). The output class with the highest probability will be used as the 

eventual ensemble prediction.  

The type of ensemble methods to be used depends on factors such as model learning characteristics 

and domain knowledge. A study comparing the effectiveness of various ensemble methods and 

summarizing the strengths and weaknesses of each type can be found in Ref. [b-Ju]. 

8.3 Model hyperparameters 

Hyperparameters are a set of parameters that cannot be learned by the model, and whose values are 

specified before model training begins to control the training process, such as learning rates, dropout 

rates, batch sizes and epochs. Control over these hyperparameters throughout the model training 

process is crucial to ensuring model accuracy, generalizability and training stability (convergence). 

For example, high values for the learning rate at the start of the model process may lead to divergence, 

while low values of the learning rate increase the resource cost of model training. As such, it is 

common to see learning rate annealing techniques being used for better control over the training 

process. 

Optimization of these hyperparameters ensures that the resultant model optimally minimizes the 

predefined loss function for a given set of data. For professionals with little or no experience in 

machine learning, the process of optimizing these hyperparameters may be challenging. Furthermore, 

it becomes increasingly resource-intensive to carry out hyperparameter optimization as the datasets 



 

6 FG-AI4H DEL6 (2023-03) 

increase in volume and complexity. Here some common manual and automated techniques used for 

hyperparameter optimization which could be used are discussed. 

– Grid search. Grid search conducts an exhaustive search of a manually specified subset of the 

hyperparameter space. This is one of the simplest techniques and is easy to implement. 

However, it spends substantial time evaluating hyperparameter combinations which are 

unpromising and is therefore less efficient that random Search. 

– Random search. Like grid search, random search evaluates random combinations of 

hyperparameters within the search space and within a defined number of iterations. As not 

all combinations are evaluated over the search space, this makes hyperparameter optimization 

computationally less demanding when optimizing for higher dimensions of hyperparameters 

as compared with Grid Search.  

– Bayesian optimization. Bayesian optimization is a commonly adopted optimization 

framework for many automated machine learning (AutoML) systems [b-Waring]. It is an 

approach to optimizing objective functions that take a long time (minutes or hours) to 

evaluate. It is best suited for optimization over continuous domains of less than 20 

dimensions and tolerates stochastic noise in function evaluations. It builds a surrogate for the 

objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning 

technique, Gaussian process regression, and then uses an acquisition function defined from 

this surrogate to decide where to sample [b-Frazier]. The difference between Bayesian 

optimization methods from grid search or random search is that it uses past evaluation results 

to determine the subsequent values to evaluate. In essence this makes the optimization 

process more efficient as it limits iterations with poor hyperparameter combinations while 

focusing on promising hyperparameter combinations obtained from past results.  

8.4 Model validation 

Validating the AI model is a crucial step within the model training pipeline and occurs as the model 

trains. In this clause, discusses knowing how well the model is performing to its intended objective 

based on a dataset that has not yet been seen by the model. It gives an indication of the model's 

performance (how accurate are these decisions based on the input dataset?) and generalizability (how 

accurate are these decisions based on another unseen dataset?). To do so, instances of overfitting or 

underfitting within the AI model must be considered.  

Overfitting occurs when the AI model or algorithm fits the data too well and unnecessarily captures 

the noise present within which affects the performance of the model when generalizing to data beyond 

that used in its training. Underfitting, on the contrary, is when the AI model or algorithm cannot 

capture the trends or features of the data well enough. Both overfitting and underfitting result in poor 

model performance and could occur due to factors related to model parameters/weights, algorithm 

and model selection.  

– Selection of model or algorithms. It is impossible to represent a sine function well with a 

linear equation. Similarly, ensuring that the complexity of the model is befitting of the dataset 

affects how good the model outputs will be. In general, using models or algorithms which 

are overly restrictive limits the learning of the dataset, and is likely to lead to an underfit, 

while using models or algorithms which are overly complex captures unnecessary 

randomness within the training data and is likely to produce an overfit.  

– Recognizing the warning signs. Knowing when the data is overfitted or underfitted is crucial 

in addressing the issue. Often, an overfit more frequent than an underfit. There are two quick 

ways to identify overfit-underfit:  

o Bias-variance trade-off is one of the ways to know when the best fit can be achieved for 

a given setting. Bias is an error due to erroneous assumptions and is an indication of a 

possible underfit. Conversely, variance refers to the model or algorithm's sensitivity to 

perturbations within the datasets. High variance generally occurs when the model or 
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algorithm is overly complex and captures the randomness with the sample, giving an 

indication of a possible overfit. To ensure a well- performing model, one needs to find 

the right balance between bias and variance which minimizes the total error function.  

o Training and validation performance plots over the training cycles are another common 

indicator to look at to determine whether an AI model is overfitting its data. The 

performance (accuracy or loss) plots indicate how well the model is performing at that 

given training cycle. One clear indication of overfitting is when the validation 

performance starts to deteriorate (accuracy decreases or loss increases) and deviate from 

its converged training performance over the number of training cycles.  

– Cross-validation to prevent overfits. While there are other methods which could detect and 

prevent overfitting such as back-testing or regularization, one of the more popular methods 

is cross-validation. Though there are many different variations of cross-validation methods 

such as k-fold or stratified k-fold cross-validation, the underlying principles are the same, 

which are to partition the data into:  

1) training subset; and  

2) validation subset. At any iteration, the model only trains and tunes on the training subset. 

The validation on the validation subset gives an indication of the performance on unseen 

(test) data. The final evaluation of the model on the completely unseen test dataset gives 

an unbiased assessment of its performance. If the model outperforms on the training data 

subset compared with the test set, it is likely to be an indicator that the model is producing 

an overfit.  

– Number of model parameters/weights. The number of parameters affects the resulting 

performance of the model. Having too few leads to underfitting, while conversely having too 

many may lead to an overfit. It is recommended for parameter optimization to be carried out 

to determine what is the optimal number to be used to train the model. Underfitting can be 

resolved by increasing the number of parameters or using weaker regularization during model 

training.  

Overfitting is often encountered during model training, compared to underfitting. Underfitting is 

generally an easier issue to tackle with simple solutions such as increasing model complexity, 

increasing model training over more epochs. However, tackling overfitting requires a greater depth 

of understanding in both the dataset and the model algorithms. Below are a few fundamental strategies 

that could be employed, as well as references to more advanced techniques [b-Moradi]. 

– Simplifying model complexity. Neural networks can sometimes be prone to overfitting. 

While there is no single hard rule or guideline to follow, in instances of an overfit, one should 

aim to reduce the complexity of the network, such as reducing the number of hidden layers 

or reducing the number of neurons.  

– Employing regularization techniques. There are many different types of regularization 

techniques developed for different types of AI models, but their main objective is to limit the 

capacity of the AI by penalizing the model training loss functions (e.g., L1 or L2 

regularization) or by reducing the complexity of the algorithm through dropouts 

[b-Srivastava]. Recent work around some common and novel regularization techniques for 

computer vision applications and their effectiveness can also be found here [b-Xu-2].  

– Early stopping. As discussed in the previous section, one of the common indicators of 

overfitting is when the validation performance deteriorates and deviates from the converged 

training performance. As such, early stopping of model training (or rolling back of model 

weights to a saved point before overfitting occurs) is a strategy that is always used due to its 

simplicity.  
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– Data augmentation. Highly unbalanced datasets with disproportionate distribution of classes 

(e.g., in applications where patients at high risk of a disease belongs to a minority class) 

should be carefully managed to prevent overfitting. One common best practice is to increase 

the training samples through data augmentation.  

8.5 Model generalizability 

So far, the various best practices for model training have been discussed. As model training is a highly 

iterative process, there is the need to identify useful and significant metrics to evaluate its performance 

besides model accuracy, i.e., accuracy of the model predictions with the ground truth. In the health-

care context, due to complexities across populations (e.g., some population groups are more 

susceptible to certain types of diseases), disease progressions (e.g., differing disease progression 

across various geographical regions) and health-care infrastructure among other factors, it is also 

critical to test the AI model on its generalizability across various factors before deployment and 

address them accordingly in the training process.  

The generalizability of AI models has always been a key challenge in the community, and many are 

far from achieving reliable generalizability. In the health-care context, AI models are relatively 

constrained in their deployment to populations and settings to those similar to those they were trained 

on. For example, diseases may manifest themselves slightly differently across ethnicities. What 

happens if the AI models were trained on a particular ethnic distribution but tested on a different one? 

While there has been research showing some success in developing limited generalizable AI models 

across ethnic distributions [b-Bellemo], this remains a key concern for health-care professionals in 

ensuring that the diagnosis made by the AI model is as accurate as it is expected to be.  

– Generalizability across different populations. Several measures have been proposed to help 

overcome the issue of AI generalizability across different populations [b-Kelly]:  

o Site-specific training to adapt an existing system for a new population, particularly for 

complex tasks such as EHR predictions. Methods to detect out-of-distribution inputs 

[b-Liang], [b-Hendrycks] provide a reliable measure of model confidence to prevent 

clinical decisions being made on inaccurate model outputs. For medical image 

classification, this problem may overcome by the curation of large, heterogenous, multi-

centre datasets. However, the limitation to this method is that retraining becomes 

computationally demanding and expensive should the number of out-of-distribution 

cases far exceed a certain threshold.  

– Generalizability across different settings. Health-care institutions around the world vary in 

their protocols, hardware such as medical equipment and medical equipment software. This 

results in vastly different health-care data being generated by each unique health-care 

institution, which makes it challenging to generalize AI systems from one institution to 

another. While there have been efforts by organizations such as Observational Health Data 

Sciences and Informatics (OHDSI) to standardize a common data model called the 

Observational Medical Outcomes Partnership (OMOP) for electronic health-care recording, 

this remains a barrier to the interoperability of AI models across institutional and 

international boundaries.  

o One possible way of overcoming this issue lies with the design of the AI model and 

training. Splitting a disease diagnosis step into segmentation and measurement may 

enable easier generalization to new imaging hardware by retraining only the 

segmentation model, which is more data- efficient [b-De Fauw]. 

– Generalizability across time. Besides the issue of adapting an AI system to new populations, 

one must also consider the temporality and everchanging nature of diseases. Diseases are 

always progressing and changing over time in a non-deterministic way [b-Miotto]. However, 

many existing deep learning models, including those already proposed in the medical domain, 

assume static vector-based inputs, which cannot handle the time factor in a natural way.  
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o To address this, it is recommended to design deep learning approaches that can handle 

temporal health care data. In this aspect, recurrent neural networks (RNN) are a good 

choice when health-care data is sequentially ordered, as they are well designed to handle 

temporal dependencies [b-Schickel].  

8.6 Other important considerations 

Beyond that however, there are other important considerations that should be considered as well 

throughout the model training pipeline. 

– Trust in AI model and systems. Deep learning has been extensively explored in the medical 

imaging space; however, not many AI systems have been deployed in the real-world context. 

Despite showing high performance during model evaluations, a lack of trust by clinicians 

towards these systems still exists. More recent works documenting proposals to address this 

include using techniques such as incorporating uncertainty modelling into the AI system [b-

Lim] so that clinicians are better informed of how certain the AI system is when deriving a 

certain decision outcome. Other techniques include using frameworks to provide patient-

level interpretation derived from AI model features to help with patient management, as well 

as feature-level interpretation derived from aspects within the datasets, which could help with 

medical research [b-Zheng].  

– Model validation source. Not all data are created equal. How a model was validated may be 

a factor to consider in the health-care context. Health-care data from prospective studies 

generally have fewer biases and are more favourable for model validation than that from 

retrospective studies. This, however, remains a challenge, as the number of established 

prospective studies are limited. Models that are trained and validated from clinical studies 

spanning multiple centres are also more likely to be generalizable, allowing the model to be 

adopted for a different population group significant model retraining effort.  

– Workflow integration and implementation. Developing a superior but overly complex AI 

model is worthless if it does not fit well within a clinician's workflow and eventually ends up 

being side-lined, i.e., requiring additional user interface, software or hardware to integrate 

the AI solution within the hospital. If the AI model excessively prompts the clinician with 

alarms, it may lead to alarm fatigue, leading to these alerts being ignored or switched off.  

– Clinical applicability and impact. AI models are typically assessed against a baseline 

performance. However, for the health-care context, such systems should be evaluated against 

a human clinician to determine if it does indeed result in an impact to the level of care 

received by a patient. Even so, a well performing model may not necessarily translate to an 

overall higher clinical impact. The system must be assessed prospectively in practice to 

determine the level of impact it can deliver to clinicians and patients.  

While there are many other important aspects that need to be considered, such as model privacy, 

security and especially ethical considerations, these will not be discussed in detail here.  

8.7 Model reporting 

Given the pipeline for AI model training described in clause 7, responsible development protocols 

dictate that proper recording and accounting framework be in place to ensure that the AI model is 

used within its boundaries and limitations. This ensures that users fully appreciate the AI models' 

purpose, performance and, in particular, its limitations, so that they are appropriately deployed.  

Proper accounting and reporting procedures are critical for the deployment of AI models in health 

care, where model failures or misuse can lead to serious ramifications. As best practice, this should 

be done to encompass important information throughout the AI pipeline, rather than covering only 

model training.  
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This section describes a framework based on model cards [b-Mitchell] proposed recently to encourage 

transparent reporting about a trained machine learning model. The purpose of this reporting 

framework is to enable those considering the use of a specific trained model in a particular context to 

better understand the systematic impacts of the model before deploying it. A standardized reporting 

format not only makes it easier for different stakeholders to assess and compare candidate models but 

also encourages forward-looking model analysis in the development phase. An extract from the paper 

is summarized below:  

– Model details. Basic information about the model, e.g., persons and/or organization 

developing the model, funding, model development date, model version (and change log), 

model type, model outputs, sources and references, citation details, licence details and 

feedback channels. 

– User case and users. Use cases that were envisioned during development, e.g., primary 

intended uses, primary intended users as well as out-of-scope uses. 

– Factors. Factors could include demographic or phenotypic groups, environmental conditions, 

technical attributes or others. 

– Metrics. Metrics should be chosen to reflect potential real-world impacts of the model, e.g., 

model performance measures, decision thresholds and approaches towards uncertainty and 

variation. 

– Training and evaluation data. Details on the dataset(s) used for the quantitative analyses, e.g., 

datasets, motivations and pre-processing.  

– Quantitative analyses. This provides the analyses and results of the model evaluation 

according to the metrics, and its corresponding confidence intervals, e.g., unitary analyses 

and intersectional analyses. 

– Ethical considerations. Provide information on ethical considerations that informed the 

model development, surfacing ethical challenges and solutions to stakeholders on issues such 

as data, risk management, risks and harms, use cases and the review processes. 
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