
 

 

  

 

 Standardization Sector 

ITU-T Focus Group Deliverable 
(09/2023) 

 

Focus Group on Artificial Intelligence for Health 

(FG-AI4H) 

 
FG-AI4H DEL10.12  

Topic Description Document for the Topic 
Group on AI for radiology (TG-Radiology) 

  

ITUPublications International Telecommunication Union 





 

 DEL10.12 (2023-09) i 

ITU-T FG-AI4H Deliverable 

DEL10.12 – FG-AI4H Topic Description Document for the  

Topic Group on AI for radiology (TG-Radiology) 

 

Summary 

Radiology has been essential to accurately diagnosing diseases and assessing responses to 

treatment. The challenge, however, lies in the shortage of radiologists globally. As a response to 

this, a number of artificial Intelligence (AI) solutions are in development. The challenge AI 

radiological solutions face, however, is the lack of a benchmarking and evaluation standard, and 

the difficulties of collecting diverse data to truly assess the ability of such systems to generalize 

and properly handle borderline cases. 

This topic description document specifies a standardized benchmarking for AI-based symptom 

assessment. It covers all scientific, technical and administrative aspects relevant for setting up this 

benchmarking and describes a radiograph-agnostic platform and framework that would allow any 

AI radiological solution to be assessed on its ability to generalize across diverse geographical 

location, gender and age groups. 
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ITU-T FG-AI4H Deliverable 

DEL10.12 – FG-AI4H Topic Description Document for the  

Topic Group on AI for radiology (TG-Radiology) 

1 Introduction 

An estimated 3.6 billion diagnostic medical examinations, such as x-rays, are performed worldwide 

every year. Advances in radiology technology have improved illness and injury diagnosis and 

treatments. These radiological procedures include x-rays, mammograms, ultrasound, positron 

emission tomography (PET) scans, magnetic resonance imaging (MRI) scans and computed 

tomography (CT) scans. They are used mainly in dealing with a broad range of non-communicable 

or chronic diseases. These are primarily cardiovascular diseases, cancer, chronic respiratory diseases 

and diabetes. Radiology has helped in the rapid non-invasive screening of conditions such as breast 

cancer, which reduces the mortality rate, especially with early detection. 33 Million screening 

mammography examinations are performed each year in the USA alone. Arleo et al. [89] found that 

recommended annual screening starting at age 40 results in a nearly 40% reduction in deaths due to 

breast cancer. Simple radiological procedures like ultrasound can reduce the need for surgical 

interventions. In addition, although clinical judgement may be sufficient, radiological procedures are 

necessary to confirm and properly evaluate the causes of many conditions and responses to treatment. 

1.1 Document structure 

Overview of the whole document. 

1.2 Status update for meeting L 

Between meeting K and L, the Topic Group on AI for Radiology onboarded three new members, 

Renam C. da Silva, Dominik Stosik and Bobby Bhartia. We also had a meeting 2021-04-16. During 

the meeting, we discussed status updates and welcomed new members. We discussed open work 

streams within the topic group to which our members can then lead and collaborate towards 

contributing. Vincent Appiah, minoHealth AI Labs, took Existing work on benchmarking. 

In contributing to this work stream, he reviewed published papers on benchmarking from regulators, 

clinicians, and AI developers. He then contributed a summary of these papers that appears in 

clause 1.9. Darlington Akogo, the Topic Driver, also summarized the work being done by the NHS 

AI Lab in benchmarking AI solutions for corona virus disease-2019 (COVID-19) that appears in 

clause 1.11. Edson Minstu, Renam C. da Silva, and Andrey O. O. dos Reis updated their experiments 

on assessing the effects of various compression techniques and ratio, and scaling on data validity 

during the AI model testing. They compared the performance of various Joint Photographic Experts 

Group (JPEG) compression ratios and portable network graphic (PNG), and contributed the results 

in clause 3.1.1. 

1.3 Status update for meeting M 

Towards meeting M, Samori Issah, minoHealth AI Labs, contributed an overview for ethical 

considerations under AI for radiology (clause 1.6). Judy Wawira Gichoya, Emory University School 

of Medicine, contributed clause 1.6.2 on a study conducted by her and her colleagues that 

demonstrated that AI models have unintended capacity to identify and differentiate between various 

races from the image data alone across various imaging modalities, even though there are no known 

imaging biomarker correlates for racial identity. They then highlight how this present biases and 

dangerous outcomes when such AI systems are deployed without oversight. They also share 

recommendations. Edson Minstu, Renam C. da Silva, and Andrey O. O. dos Reis, Universidade de 

Brasília, expanded their experiments to cover a brain tumour image classification task. The results 

further demonstrate the influence of the compression artefacts in medical image classification. 
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In order to evaluate image compression in the scenario, they developed a library that calculates a set 

of metrics, such as accuracy, sensitivity, specificity and F-score, for testing different compression 

and downsizing in a dataset. Darlington Akogo, minoHealth AI Labs expanded the list of evaluation 

metrics in clause 3.4 to include ten various metrics used for multi-label classification. This includes 

exact match ratio (EMR), Hamming loss, example-based accuracy, macro averaged accuracy, micro 

averaged accuracy, macro averaged precision, micro averaged precision, macro averaged recall, 

micro averaged recall and alpha evaluation score. 

1.4 Status update for meeting R 

Darlington Akogo contributed clause 3.6.3, which covers the first AI clinical study in Africa, 

benchmarking the performance of AI for radiology systems against radiologists. Dominick Romano 

contributed clause 3.1.3, which covers techniques to compress medical images of different 

modalities. Clause 3.1.3 also contains benchmark tests on these different techniques. 

1.5 Topic description 

Challenges facing radiology 

Although radiology is very important, there is a shortage of radiologists globally, especially in 

developing countries. Liberia, for example, only has about two radiologists [99], while Ghana has 34 

and Kenya 200. [101] In the UK, only one in five trusts and health boards has a sufficient number of 

interventional radiologists to run a safe 24/7 service to perform urgent procedures while their 

workload of reading and interpreting medical images has increased by 30% between 2012 and 2017. 

[93] There is a need for scalable and accurate automated radiological systems. Deep learning, 

especially in the form of convolutional neural networks (CNNs), is gaining wide attention for its 

ability to accurately analyse medical images, with the potential to help solve the shortage of 

radiologists. 

Artificial intelligence in radiology 

The re-emergence of artificial intelligence (AI) and deep learning, due to growth in computing power 

and data, has led to advancements in deep CNNs, which has allowed for breakthrough research and 

applications in radiology. AI and deep learning holds a lot of potential in radiology. AI can provide 

support to radiologists and alleviate radiologist fatigue. It can help in flagging patients who require 

urgent care to radiologists and physicians. Deep learning could also help increase interrater reliability 

among radiologists throughout their years in clinical practice. Bien et al. [90] found that Fleiss's kappa 

measure of interrater reliability for detecting anterior cruciate ligament tear, meniscal tear, and 

abnormality were higher with model assistance than without it. Deep learning has achieved 

performances comparable to humans and sometimes better. Liu et al. [117] analysed 14 research 

works done using deep learning to detect diseases via medical images, they found that on average, 

deep learning systems correctly detected a disease state 87% of the time – compared with 86% for 

healthcare professionals – and correctly gave the all-clear 93% of the time, compared with 91% for 

human experts. Deep learning has performed as well as radiologists and sometimes better at detecting 

abnormalities like pneumonia, fibrosis, hernia, oedema and pneumothorax in chest x-rays [100]. It has 

also been used to detect knee abnormalities via MRI at near-human-level performance. [90] 

Researchers have also trained deep learning models that outperformed dermatologists at detecting 

skin cancer. [88][94] 

Research data 

One key focus of deep learning radiological applications is breast cancer detection via mammograms. 

The curated breast imaging subset of digital database for screening mammography [91] is one key 

repository that is publicly available. It contains 10 239 images grouped under the labels: benign; 

benign without callback; and malignant. Another set of focus is the detection of thoracic conditions 

via chest x-rays. One publicly available chest x-ray dataset is CheXpert, [92] which contains 
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224 316 chest radiographs of 65 240 patients. It contains images for 12 different thoracic diseases 

including atelectasis, cardiomegaly, enlarged cardiomegaly, consolidation, oedema, lung lesion, lung 

opacity, pneumonia, pneumothorax, fracture, pleural effusion and pleural other. In addition, it 

contains two other observations. no finding and support devices, making 14 observations in total. The 

radiographs were collected at Stanford Hospital between 2002-10 and 2017-07. Another publicly 

available chest radiograph dataset is MIMIC-CXR, [96] which contains 371 920 chest x-rays 

associated with 227 943 imaging studies. Each imaging study contains a frontal view and a lateral 

view. MIMIC-CXR [96] dataset also contains 14 observations. There is also a chest x-ray dataset 

from the NIH Clinical Center [97] that contains 100 000 x-rays from over 30 000 patients, including 

many with advanced lung disease. The overall total is 696 236 publicly available x-ray images for 12 

thoracic conditions. 

Challenges facing AI in radiology 

The challenge, however, remains in properly testing such systems and ensuring they work in all 

borderline and diverse cases radiologists encounter. Zech et al. [95] found that deep learning models 

that detected pneumonia on chest x-rays performed well on further data from sites they were trained 

on (area under curve (AUC) of 0.93–0.94) but significantly less on external data (AUC 0.75–0.89). 

This demonstrates the challenge of assessing the generality and scalability of deep learning systems. 

Though Liu et al. [117] analysed 31 587 studies, only 69 studies provided enough data to construct 

contingency tables, enabling calculation of test accuracy. In addition, out of those 69 studies, only 25 

did out-of-sample external validations. Further, only 14 of such studies compared model performance 

to that of radiologists. Liu et al. [117] also realized the methodology and reporting of studies 

evaluating deep learning models is variable and often incomplete. This shows the need for 

standardization of evaluation frameworks and benchmarks for AI radiological systems. This is 

essential to assessing the quality of AI solutions, their readiness for deployment and the degree of 

autonomy they should be given. 

1.5.1 Impact of benchmarking 

A large number of publicly available medical image datasets exist online, and there has been a lot of 

research and development with such datasets. By developing frameworks that target these conditions 

first, the standardized benchmarking platform would be made immediately appealing to the AI 

healthcare research and development community. This would also help speed up the deployment of 

AI solutions in radiology globally. AI healthcare system developers and organizations usually have 

to go through the challenge of convincing health facilities to share their private data with them, such 

data unfortunately are not always of high quality and they usually lack the broad demographic 

representations needed to truly assess how well an AI system generalizes. A radiograph-agnostic 

benchmarking platform with data from various facilities across the globe, reviewed by a panel of 

experts to ensure quality and diversity, would drastically simplify the evaluation stage of such AI 

systems. The precision evaluation framework would help fight against demographically biased AI 

systems by ensuring they are tested in great detail across various groups. It would also help in the 

safe scaling of AI systems across different locations. The location sub-categorization of evaluation 

allows for geo-precision evaluation. Developers can tell how well their systems can perform within 

their country or first point of deployment, and should they intend to scale to neighbouring countries 

then eventually have it across the globe, they can tell how well their current version would perform 

at each point of such growth and scaling. 

1.6 Ethical considerations 

1.6.1 Overview 

AI is the development of computer algorithms and models to perform tasks that require human-level 

intelligence. [1] The current trend of AI is based on machine-learning techniques that make intelligent 

predictions based on data. [2] A subset of machine learning algorithms, known as deep learning 
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algorithms, have powered most of the current advances in AI. Deep learning, as a subfield of machine 

learning, is the development of self-learning algorithms. These algorithms use artificial neural 

networks, which have millions of tuneable parameters. [3] 

The complexity of these algorithms makes understanding the reasoning behind an AI model decision 

very difficult, thus making auditing and debugging of its process almost impossible. The ethical 

challenge here is that the biases AI models inherit from their training data and developers are reflected 

in their decisions. [4] Because these models lack transparency, it becomes difficult to correct the 

process that led to the biased decision. When these biased models are deployed, they reinforce the 

existing biases, and this can be detrimental. Studies have shown that AI models deployed in other 

fields have expressed biases against groups that were underrepresented in the training dataset. [5] A 

likely solution to the problem of bias is to train transparent algorithms on well-balanced datasets. 

Utilizing transparent and easily debuggable algorithms could, however, decrease the performance of 

these AI models. [4] 

Another ethical dilemma worth considering is data ethics and data ownership. [4] Training AI models 

require huge amounts of data, so AI developers use patient data from healthcare institutions. A lot of 

discussions and concerns have sprung up around whether patient consent is needed whenever their 

data is used in training an AI model. Some agree that the consent of patients should be sought while 

others argue that developing AI models for radiology is for the greater good for which no-one's 

consent is needed. 

There are also many unanswered questions around data ownership and how profits derived from using 

patient data will be shared. [4] Whoever is identified as a total or part owner of a dataset deserves a 

share in the profit the dataset generates. So, if it is agreed that patients own the data, then they deserve 

a share in the profit an AI developer will make from a model that was trained on the dataset. 

Just like any technology, AI in its early stages might not be available to all people because of the 

uneven distribution of resources (including financial resources, computational resources and skillset). 

This will further exacerbate the existing inequality in society as only those with the required resources 

can harness the power of AI. [6] 

An AI model cannot be held liable for a mistake, as some standards view an AI model as a tool. It 

becomes crucial to identify who is responsible for the mistakes of an AI model. Will the developer 

who designed the AI model, the radiologist who used it or the hospital that purchased it be responsible 

for any shortcomings on the path of the AI? Answering this question will force regulators to identify 

the key stakeholder in the AI pipeline and what their responsibilities are. [4][6] 

In conclusion, AI can be a very powerful tool in the radiologist's toolbox but has a couple of ethical 

issues that have to be addressed first. These ethical issues have to be taken seriously (especially by 

regulators) in order to prepare the field of radiology for the fourth industrial revolution. 

1.6.2 Reading race: AI recognizes patient's racial identity in medical images 

There are no known imaging biomarker correlates for racial identity [102]; however, medical imaging 

AI models produce racial disparities [103]. There is potential for discriminatory harm if it is assumed 

that AI models are agnostic to race – understanding the relationship between race and medical 

imaging AI models is important [111]. An answer was sought on how AI systems could produce 

disparities across racial groups and determine how AI could predict race from medical images. 

In this study, a large number of publicly and privately available large-scale medical imaging datasets 

are investigated and it was found that self-reported race is trivially predictable by AI models trained 

with medical image pixel data alone as model inputs. Standard deep learning methods are used for 

each of the image analysis experiments, training a variety of common models appropriate to the tasks. 

First, it is shown that AI models can predict self-reported race across multiple imaging modalities, 

various datasets and diverse clinical tasks (given prefix A in Table 1). The high level of performance 

persists during the external validation of these models across a range of academic centres and patient 
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populations in the USA, as well as when models are optimized to perform clinically motivated tasks. 

Ablations were also performed that demonstrate this detection is not due to trivial proxies, such as 

body habitus, age, tissue density or other potential imaging confounders for race such as the 

underlying disease distribution in the population (prefix B in Table 1). Finally, it is shown that the 

features learned appear to involve all regions of the image and frequency spectrum, suggesting that 

mitigation efforts will be challenging (prefix C in Table 1). Table 1 also lists brief descriptions of 

these experiments. 

Table 1 – Reading race – Experiments, methods, and results 

Experiment Description Results 

A.1 Detection of racial 

identity on chest x-ray 

Resnet34 [107] one-vs-all predict black, white, 

or Asian. 

Average AUC across 

races of 0.974 internal 

validation, 0.949 external. 

A.2 Detection of racial 

identity on hand x-ray, 

cervical spine x-ray, chest 

CT, and mammography 

images 

Binary classification one-vs-all, black or white. 

For multi-slice, predictions at slice level 

aggregated at study level. 

Average AUC per study 

of 0.915 internal and 

0.885 external. 

A.3 Train models for 

pathology detection and 

patient re-identification, 

evaluate on ability to 

predict race 

DenseNet-121 [108] models to detect 

pathology on chest x-ray/re-identify unique 

patients. Removed final classifier and used 

model output as input on training to predict 

race. 

Average AUC across 

races of 0.85. 

B.1 Race detection using 

body habitus 

Models predicting based on body mass index 

(BMI), presence of BMI data, and stratification 

of image data by body habitus. 

AUC – BMI data 0.55, 

presence of BMI 0.52, 

and stratified by BMI 

[0.89, 0.98], [0.92, 0.99] 

B.2 Tissue density analysis 

on mammograms 

Multi-class logistic regression model to predict 

race black or white based on breast density and 

age, using one-vs-all approach. 

AUC – density only 0.54, 

age and density 0.61. 

B.3 Race detection using 

disease labels 

Two models – predict only using disease labels 

and image classification only on images with 

'no finding' labels. 

AUC – disease labels 

0.561, no finding 0.937 

average across races. 

B.4 Race detection using 

bone density 

Remove bone density information by clipping 

bright pixels to 60% intensity, then train 

DenseNet-121 [108] model. 

Average AUC of 0.95 

across races. 

B.5 Race detection using 

age and sex 

Two models trained on split data (A1 method) 

– five age groups and male/female. 

No significant deviation 

from A.1. 

C.1 Frequency-domain 

imaging features 

Four new models created on modified datasets 

(A1 method), low-pass filtered (LPF), high-

pass filtered (HPF), bandpass filtered (BPF), 

notch filtered (NF). 

AUC – LPF all 

results >0.5, >0.9 for LPF 

50; HPF all 

results >0.5, >0.9 for HPF 

100; BPF [0.75, 0.91]; NF 

[0.82, 0.91] 

C.2 Impact of image 

resolution and quality 

Three new models created on modified datasets 

(A1 method) – various resolutions and two 

with image perturbations. 

AUC - >0/95 for 160 × 

160 resolution and 0.64 

for 4 × 4 images; average 

of 0.652 for perturbed. 
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Table 1 – Reading race – Experiments, methods, and results 

Experiment Description Results 

C.3 Anatomical 

localization 

Produced saliency maps using grad-cam 

method, five radiologists perform qualitative 

evaluation. Mask regions of interest (ROIs) 

from maps, then test performance of A1 model 

on masked images. Segment lungs and train 

new model on lung only and lung removed 

images. Analysis of CT slice-by-slice error 

distribution for anatomical ROIs. 

No finding of specific 

anatomical segment from 

qualitative evaluation or 

slice-by-slice CT errors. 

average AUC across 

races – masking ROI 

0.82; non-lung 0.863; 

lung only 0.717. 

C.4 Patch-based training 

Train two new models (A1 methodology) on 

datasets – split images into 3 × 3 square cells 

of equal size remove one of nine cells, only use 

one cell. 

Average AUC white vs 

others – cell removed 

0.909; only one cell 

0.796. 

The result that deep learning models can trivially predict the self-reported race of patients from 

medical images alone is surprising, particularly as this task is not possible for human experts. This 

work confirms that model discriminatory performance for racial identity recognition generalizes 

across multiple different clinical environments, medical imaging modalities, and patient populations, 

suggesting that these models do not rely on hospital process variables or local idiosyncratic 

differences in how imaging studies are performed for patients with different racial identities. This 

capability is trivially learned and therefore likely to be present in many medical image analysis 

models, providing a direct vector for the reproduction or exacerbation of the racial disparities that 

already exist in medical practice. 

Human oversight of AI models is of limited use to recognize and mitigate this problem. If an AI 

model relied on its ability to detect racial identity to make medical decisions, but in doing so 

misclassified all black patients, clinical radiologists (who do not typically have access to racial 

demographic information) would not be able to tell. 

It is strongly recommended that all developers, regulators, and users who are involved with 

medical image analysis consider the use of deep learning models with extreme caution. In the 

setting of x-ray and CT imaging data, patient racial identity is readily learnable from the image data 

alone, generalizes to new settings, and may provide a direct mechanism to perpetuate or even worsen 

racial disparities that exist in current medical practice. Our findings indicates that future medical 

imaging AI work should emphasize explicit model performance audits based on racial identity, sex 

and age, and that medical imaging datasets should include the self-reported race of patients where 

possible to allow for further investigation and research into the human-hidden but model-decipherable 

information that these images appear to contain related to racial identity. 

1.7 Existing AI solutions 

1.7.1 Use case descriptors 

To collect existing AI solutions and use cases, the following nine descriptors that would be useful 

have been identified: 

– condition; 

– medical imaging modality; 

– AI task/problem description (e.g., image classification, image segmentation); 

– general algorithm description (if shareable); 

– project goal and current stage (if shareable); 
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– input structure and format; 

– output structure and format; 

– evaluation metrics; 

– explicability and interpretability framework. 

1.7.2 Collected AI solutions and use cases 

1.7.2.1 minoHealth 

Descriptor Description 

Condition Pneumonia, hernia, fibrosis, atelectasis, 

cardiomegaly, enlarged cardiomegaly, consolidation, 

oedema, lung lesion, lung opacity, pneumothorax, 

fracture, pleural effusion and pleural other 

(14 different systems) 

Medical imaging modality Chest x-ray 

AI task/problem description Image classification 

General algorithm description CNNs, transfer learning 

Project goal and current stage Commercial, testing and piloting. 

Input structure and format Two dimensional (2D) image, JPEG (converted from 

digital imaging and communications in medicine 

(DICOM)) 

Output structure and format Sigmoid with range 0 to 1 – 0: negative; 1: positive 

Evaluation metrics Accuracy score, receiver operating characteristic 

(ROC) curve and AUC score 

Explicability and interpretability framework Implementing lightweight interactive multimedia 

environment (LIME) 

1.7.2.2 minoHealth 

Descriptor Description 

Condition Breast cancer 

Medical imaging modality Mammograms 

AI task/problem description Image classification 

General algorithm description CNNs, transfer learning 

Project goal and current stage Commercial, testing and piloting 

Input structure and format 2D image, JPEG (converted from DICOM) 

Output structure and format Softmax with three classes, benign, benign without 

callback and malignant 

Evaluation metrics Accuracy score, ROC curve and AUC score 

Explicability and interpretability framework Implementing LIME 
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1.7.2.3 Braid.Health 

Descriptor Description 

Condition Atelectasis, cardiomegaly, consolidation, oedema, 

effusion, emphysema, fibrosis, hernia, infiltration, 

mass, nodule, pleural thickening, pneumonia, 

pneumothorax, old fracture, new fracture, scoliosis, 

sternotomy, enlarged cardiomedistinum, support 

devices, tuberculosis, bronchiectasis, foreign body 

(22 conditions) 

Medical imaging modality Chest x-rayay 

AI task/problem description Image classification 

General algorithm description CNNs, DenseNet-121, transfer learning, Bayesian 

optimization, strong augmentations 

Project goal and current stage Commercial, testing and piloting 

Input structure and format 2D image, PNG (converted from DICOM) 

Output structure and format Calibrated score from 0.0 to 1.0 representing 

precision of data for the current distribution 

Evaluation metrics ROC curve, AUC ROC score, specificity at 

sensitivity 

Explicability and interpretability framework None currently 

1.7.2.4 Braid.Health 

Descriptor Description 

Condition Fracture, dislocation, oedema, arthritis, osteoarthritis, 

spur (6 conditions) 

Medical imaging modality Foot x-ray 

AI task/problem description Image classification 

General algorithm description CNNs, DenseNet-121, transfer learning, Bayesian 

optimization, strong augmentations 

Project goal and current stage Commercial, testing and piloting 

Input structure and format 2D image, PNG (converted from DICOM) 

Output structure and format Calibrated score from 0.0 to 1.0 representing 

precision of data for the current distribution 

Evaluation metrics ROC curve, AUC ROC score, specificity at 

sensitivity 

Explicability and interpretability framework None currently 
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1.7.2.5 minoHealth 

Descriptor Description 

Condition Chest_AP, Chest_LAT, Chest_PA, Foot_AP, 

Foot_LAT, Foot_OBL, Ankle_AP, Ankle_LAT, 

Ankle_OBL, Hand_LAT, Hand_OBL, Hand_PA, 

Knee_AP, Knee_LAT, Knee_OBL, Knee_SUNRISE, 

Wrist_LAT, Wrist_OBL, Wrist_PA, 

Wrist_SCAPHOID, Abdomen_AP, 

Abdomen_SUPINE, Finger_LAT, Finger_OBL, 

Finger_PA, Toe_AP, Toe_LAT, Toe_OBL, 

Shoulder_AP, Shoulder_EXTERNAL, 

Shoulder_INTERNAL, Shoulder_Y-VIEW, 

Elbow_AP, Elbow_LAT, Elbow_OBL, Forearm_AP, 

Forearm_LAT, Ribs_AP, Ribs_LOWER, 

Ribs_UPPER, Lumbar_Spine_AP, 

Lumbar_Spine_L5-S1, Lumbar_Spine_LAT, 

Cervical_Spine_AP, Cervical_Spine_LAT, 

Cervical_Spine_ODONTOID, Thoracic_Spine_AP, 

Thoracic_Spine_LAT, 

Thoracic_Spine_SWIMMERS, Clavicle_AP, 

Hip_AP, Hip_LAT, Pelvis_AP, Humerus_AP, 

Humerus_LAT, Unknown (56 classes) 

Medical imaging modality x-Ray 

AI task/problem description Image classification 

General algorithm description CNNs, DenseNet-121, transfer learning, Bayesian 

optimization, strong augmentations 

Project goal and current stage Commercial, testing and piloting 

Input structure and format 2D image, PNG (converted from DICOM) 

Output structure and format Calibrated score from 0.0 to 1.0 representing 

precision of data for the current distribution 

Evaluation metrics ROC curve, AUC ROC score, specificity at 

sensitivity 

Explicability and interpretability framework None currently 

1.8 Imaging modalities 

Table 2 lists the various medical imaging modalities. The goal of this work is to identify each imaging 

modality, address how AI can be used with such modality towards diagnosis, triage, forecasts, 

prognosis or treatment of certain conditions. 

Each modality has descriptions of the following details: 

– Description: Description of imaging modality. 

– Conditions: Conditions modalities are applied to. 

– Data structure: Data structure of images from modality. This describes details of the type of 

images generated from each modality. These details include whether it is a single/multiple 

2D image or three-dimensional (3D) image, DICOM or some other format. 

– AI applications: How AI is used with modality. 
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Table 2 – Imaging modalities 

Conventional radiography (plain x-rays) 

Description  Radiography is the use of x-rays to visualize the internal structures of a 

patient. x-Rays are a form of ionizing electromagnetic radiation, produced 

by an x-ray tube using a high voltage to accelerate the electrons produced 

by its cathode. The produced electrons interact with the anode, thus 

producing x-rays. The x-rays are passed through the body and captured 

behind the patient by a detector, film sensitive to x-rays or a digital 

detector. Different soft tissues attenuate x-ray photons differently, 

depending on tissue density; the denser the tissue, the whiter (more 

radiopaque) the image. The range of densities, from most to least dense, is 

represented by metal (white, or radiopaque), bone cortex (less white), 

muscle and fluid (grey), fat (darker grey), and air or gas (black, or 

radiolucent). This variance produces contrast within the image to give a 

2D representation of all the structures within the patient. [112]. 

Conditions Typically, conventional radiography is the first imaging method indicated 

to evaluate the extremities, chest, and sometimes the spine and abdomen. 

Chest: to assess lung pathology, e.g., atelectasis, pneumonia, pulmonary 

oedema, heart failure, solitary pulmonary nodule, lung masses, diffuse 

lung diseases, pleural diseases. 

Skeletal: to examine bone structure and diagnose fractures, dislocation or 

other bone pathology. 

Abdomen: can assess abdominal obstruction, free air or free fluid within 

the abdominal cavity. [113] 

Data structure Single/multiple 2D image. 

AI applications – Different AI approaches have been proposed to segment chest 

anatomical structures such as lungs, heart, and clavicle bones, for 

diagnostic purposes. [10] 

– AI has also been developed to classify normal and abnormal results 

from chest radiographs with major thoracic diseases including 

cardiomegaly, pulmonary malignant neoplasm, active tuberculosis, 

interstitial lung diseases, pneumothorax, pulmonary oedema, 

emphysema, pneumonia and paediatric pneumonia. [5–15] 

– For COVID-19 patients, new AI approaches focusing on detection, 

classification, segmentation, stratification and prognostication are 

showing encouraging results. [16–22] AI has been proposed to allow 

for lung disease severity staging. Deep-learning CNN accurately stages 

disease severity on portable chest x-ray of COVID-19 lung infection. 

[23] It has also been proposed that deep learning can thus help support 

the diagnosis of heart failure using chest x-ray images. [24] 

– Bone suppression techniques based on artificial intelligence have been 

developed to avoid overlooking lung nodules because of bones 

overlapping the lung fields. [25] 

– AI has been used for analysis and features extraction of spine x-ray 

images, which may allow prediction of high-risk populations with 

abnormal bone mineral density. [26] Application prospects have also 

been described in bone age assessment [14][27]. 
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Table 2 – Imaging modalities 

– In the field of orthopaedics, an AI model can automatically measure 

Sharp's angle as observed on pelvic x-ray images to aid diagnosis of 

developmental dysplasia of the hip. [28] It has also been shown the 

utility of deep learning in detecting hip, pelvic and acetabular fractures 

with pelvic radiographs. [29] Collection, processing, and integration of 

pre-, intra-, and postoperative multimodal imaging data could be 

performed in a more efficient and accurate manner, which has been 

proposed could then be incorporated into robot-assisted orthopaedic 

surgery system, [30] as well as for numerous x-ray-guided procedures. 

[31] 

Fluoroscopy 

Description 

Fluoroscopy is a technique, usable as a standalone technique or in concert 

with others, that utilizes a continuous x-ray beam throughout a target in a 

subject's body to study both its structure and movement and can be applied 

to single organs or a system of them. [35-37] 

Conditions 
This modality is commonly applied to conditions that involve foreign 

bodies, obstruction or modification of fluid transport, or fractures. [35-37] 

Data structure 
Images generated through fluoroscopy can be produced in single-plane 2D 

images as well as multi-plane 3D images. [35-37] 

AI applications 
AI is being used to simplify and optimize presentation of imaging, as well 

as reduce radiation exposure to patients. [38] [39] 

Angiography 

Description 

Angiography is a medical imaging modality that focuses on imaging the 

inside of blood vessels and organs. In angiography, a contrast medium is 

injected into the blood vessel and the path of the tracer or contrast medium 

is imaged using x-ray. [57] [58] 

Conditions 

Some conditions angiography is applied to are: diagnosis of obstructive 

vascular disease, diagnosis of aneurysms, diagnosis of arteriovenous 

malformations, diagnosis of bleeding vessels, and assessment of 

vascularity of malignant tumours. [57] 

Data structure Angiograms can be 2D or 3D image files. 

AI applications 

AI is used in post processing tasks like segmentation. 

Also AI is used to perform certain calculations like calculating calcium 

score and fraction flow reserve. [59] 
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Table 2 – Imaging modalities 

Mammography 

Description 

Mammography is a medical imaging modality that uses low energy x-rays 

to image the human breast. Mammography is mostly used for early 

detection of breast cancer. Its mode of operation is very similar to that of 

the conventional x-ray machine, except that it employs low power 

radiation. [49][50] 

Conditions 

Mammography can be used as a tool for screening or diagnosis tool. 

– As a screening tool, mammography is used for the early detection of 

breast cancer. 

– As a diagnostic tool, mammography is used to investigate abnormal 

clinical findings in the breast, like breast lumps and nipple discharge. 

[50] 

Data structure Mammograms may be 2D or 3D image files. [50] 

AI applications 
AI, in combination to radiologists, is used to improve the accuracy of 

breast cancer screening. [51] 

Computed tomography 

Description 

CT also called computed axial tomography, is a non-invasive imaging 

method that uses x-rays, combined with computing to produce cross-

sections of subjects, allowing for highly detailed models of patients or 

areas of interest to study; patients are sometimes given a contrasting 

material to improve image quality [72] [73]. 

Conditions 

CTs are used in multiple diagnostic works and therapies, and have 

additional value in that full body scans are possible. [72][73] Examples of 

uses include disease diagnosis and prognosis, guidance of medical 

procedures, and treatment monitoring across a wide spectrum of disorders 

from problems with vasculature, bone fractures, investigations in 

oncology, psychiatry and more. [72-75]. It has even found use in 

investigating complications associated with COVID-19 within patients 

[76] [77]. 

Data structure 
CT scans take numerous 2D images, and these can be used to make 3D 

representations, thus allowing 2D and 3D formats [72][84]. 

AI applications 

Current AI uses extend from use of CT-images, but is also expanding 

through investigation of AI-Assisted smart tools to guide and upgrade the 

use of Ct scans through improved diagnosis, measurements, and 

prognoses. [78-82] It is believed that future uses can entail more 

comprehensive reconstructions of scanned areas and less radiation use 

through less coregistration of CTs with other imaging means, helping to 

reduce patient fatigue and exposure; more may result as this area of 

research, i.e., the combination of AI and CT scanning, is still new. [83] 
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Table 2 – Imaging modalities 

Single-photon emission computed tomography 

Description 

Single photon emission computed tomography (SPECT) is a technique 

that allows nuclear medicine studies, which would otherwise be 

represented in 2D, to be rendered in 3D. Photons emitted by injected 

radiopharmaceuticals are detected by gamma cameras that rotate around 

the patient to provide spatial information on tissue distribution. The data 

are then reconstructed into 3D images. SPECT can also be combined with 

conventional CT (SPECT-CT) to allow accurate attenuation correction for 

the purposes of reconstruction, and to provide additional anatomical 

information. 

Conditions 

The technique can theoretically be applied to any nuclear medicine 

studies, but it is not required in every situation. SPECT is commonly used 

in the context of technetium-99m sestamibi scans when evaluating the 

perfusion of the cardiac myocardium or the function of parathyroid glands. 

It is also used in the context of technetium methylene diphosphonate bone 

scans that provide information about bone perfusion and turnover.  

Data structure  

AI applications  

Ultrasonography and Doppler 

Description 

Ultrasonography (US) is an imaging modality that uses ultrasound (sound 

waves with frequencies greater than frequencies that are audible to the 

human ear) to create images of internal body parts. The ultrasound is sent 

into the body by a transducer and echoes from tissue interference are 

recorded to create an image of the structure under examination. [40] 

Conditions 

Ultrasound imaging is used to examine an organ whenever there is a 

symptom of pain, swelling or infection in that organ. US can be used to 

image the liver, kidney, heart, pancreas, etc. [41] [42] 

Another common use case for US is real-time imaging of developing 

foetuses in pregnant mothers. 

Data structure 

Sonograms may be stored as a single layer 2D image. 

Multiple 2D sonograms may also be projected into a 3D image. 

An additional time dimension can be added to a 3D sonogram to create a 

4D sonogram. [43] 

AI applications 

AI is used to perform a wide range of tasks in US. These tasks include 

image classification, segmentation, detection, registration, biometric 

measurements and quality assessment. [44] 
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Table 2 – Imaging modalities 

Magnetic resonance imaging 

Description 

MRI is a modality that uses a strong magnetic field to create images of the 

internal structures of the body. The strong magnetic field forces protons of 

water molecules in the body to align with the field. When a 

radiofrequency current is passed through the patient, the alignment of the 

protons is disturbed. When the radiofrequency current is turned off, the 

protons return to equilibrium with the magnetic field and the MRI sensors 

detect the energy released by the protons as they return to equilibrium. 

Unlike CT or conventional x-ray, MRI does not employ any ionizable 

radiation, so it is safer and can be taken more frequently. [52] [53] 

Conditions 

MRI is suitable for imaging soft tissues like muscles, tendons, ligaments, 

brain, joints and the abdomen. 

MRI is also employed in image guided interventional procedures. [52] 

[54] 

Data structure MRI images can be 2D or 3D image files 

AI applications 

AI is used to correct artefacts in MRI scans. [55] 

AI is also used to classify MRI scans as depicting healthy or diseased 

tissue. [56] 

Nuclear medicine imaging 

Description 

Nuclear medicine imaging is an imaging modality that involves the 

injection or inhalation of small amounts of radioactive compounds (called 

radiotracers) into the body to visualize organs in the body. The 

radiotracers are organ specific and they emit gamma-rays when they arrive 

at the target organ. The emitted gamma-rays are captured and visualized 

using a gamma camera. Nuclear medicine imaging is considered as an 

"inside out" radiology, because it records radiations generated from the 

body rather than an external source like an x-ray. [45-47] 

Conditions 

This modality is applicable to conditions that require an assessment of the 

physiology of organs. Some organs that are commonly assessed using 

nuclear imaging are kidneys, lungs, heart, thyroid gland and bone. [45] 

Data structure 

Nuclear images can be 2D (scintigraphy) or 3D (SPECT). Some modern 

nuclear imaging equipment is hybrid and allows for a fusion between CT 

and nuclear imaging. [45] [47] 

AI applications 

In nuclear imaging, AI is commonly used for radiomics. 

AI can potentially be used to detect artefacts and noise in nuclear images 

and correct them by applying the appropriate algorithm. 
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Table 2 – Imaging modalities 

Positron emission tomography 

Description 
PET is an imaging modality that uses tracers or radioactive drugs to image 

the function of tissues of organs. [32] 

Conditions 
PET is used for diagnosis and staging in oncology, in addition to 

observing specific neurological and cardiovascular issues. [33] 

Data structure Images can come in 2D or 3D modalities. [34] 

AI Applications 

AI has been documented in use with PET for distinguishing between 

benign and malignant nodules, as well as detection and quantification of 

nodules [35] [60].Future developments may improve correlation of image 

features with clinical end points, correction of images, reduction of doses 

needed for reliable scans, guided use, and improved reconstructions [83] 

[85]. These together can result in savings and improved patient outcomes, 

with more to abound as research in this area is still new. 

Interventional radiology 

Description 

Interventional radiology (IR) is a means of radiology that uses current 

imaging methods, such as CT, MRI, x-rays, PET and ultrasound, led by 

teams of professionals to treat the source of diseases in a non-invasive or 

minimally invasive manner. A subset, interventional oncology is used to 

address cancer [61] 

 [Conditions 
IR is used for diagnosis and guiding of treatment across cardiology, 

neurology, nephrology, oncology, and more. [61] 

Data structure 
Image modalities from IR depend on the imaging method combinations as 

described in previous entries. 

AI applications 

AI has been used in IR to predict outcomes for treatments like 

chemoembolization, incidents like a post-treatment stroke, or offer 

prognostic information on brain malformations [63-65]. Gesture capture, 

voice recognition, implement/tool guidance, and augmented reality have 

been employed to assist efforts across various tasks [66-69]. A smart 

assistant has been trialled, but more details await. [70] [71] Applications 

that improve features such as segmentation of subjects, improved lesion 

detection, prognostic information gathering, interpretation, reduction of 

waste, and improved cost-benefit analyses are imagined in the future of IR 

with AI. [62] [70] [71] 

1.9 Existing work on benchmarking 

Benchmarking work includes: 

– papers on existing attempts to benchmark solutions on the topic; 

– clinical evaluation attempts, randomized controlled trials, etc; 

– existing numbers. 
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1.10 Benchmarking overview 

AI is considered to be one of the key driving forces of the fourth industrial revolution. This has led 

to the adoption of national AI strategies by many countries. [110] However, there is the lack of a 

consensus on how to measure the success of AI models. A brief non-exhaustive list is therefore given 

of activities that could be performed as part of benchmarking AI models. Benchmarking may include 

measurement of the predictive performance of AI models. Several performance metrics have been 

proposed and a few are listed; AUC; accuracy; F1-score; and sensitivity and specificity. [109] Model 

performance should be measured for both validation and test data. Benchmarking should also take 

into account the annotation of data – whether the data are labelled, unlabelled or semi-labelled. This 

will determine what AI models and performance metrics to use. Appropriate models should also be 

used in AI-based solutions. Many factors should be considered when applying AI models; type of 

data, sample size, computational cost, etc. [106] It is also important to assess the documentation of 

data analysis pipelines in order to determine the level of reproducibility of the methods. 

1.11 The NHS AI Lab – Call for AI driven COVID-19 models: Performance assessment 

using the national COVID-19 chest imaging database 

The NHS AI Lab created the National COVID-19 Chest Imaging Database (NCCID), currently with 

over 40 000 images. The majority of scans collected by the NCCID are chest x-rays and come from 

people with and without COVID-19. They provide a platform that allows for AI solutions within the 

UK to be assessed based on the NCCID dataset, in order to reduce the potential for bias and provide 

NHS commissioners and healthcare regulators with the evidence to judge the safety, efficacy and 

generalizability of AI models before they are used in clinical practice. [98] 

Before an AI system can be assessed on their platform, AI developers have to fill an application form. 

They ask technical and clinical questions within the application form in order to understand the 

processes used in training and evaluating the AI system. Independent assessors with expertise in AI, 

technology and medicine are used to assess responses provided with a focus on NHS importance, 

technical feasibility, and financial viability. These external assessors prepare analysis plans, covering 

performance criteria and tailored to each AI solution. The AI system is then validated on the unseen 

NCCID dataset via an Amazon AWS cloud-computing infrastructure provided by the NHS 

Transformation Directorate (formerly NHSX) [114]. The NCCID unseen dataset is then accessed in 

the form of an S3 bucket. AI developers are never given access to the NCCID unseen dataset. 

The whole process takes 12-16 weeks to complete, and is done at no cost to AI developers. To ensure 

intellectual property (IP) protections, all people involved in the AI model assessment, including 

external assessors will be bound to confidentiality by contractual agreements. Non-disclosure 

agreements are also used where need be. 

At the end, an AI developer receives a written report with the assessment of the AI system against 

defined performance criteria. This covers model performance using metrics including sensitivity, 

specificity, as well as the clinical validity of the solution. The process is meant to be a validation 

study and does not qualify as a clinical investigation. However, this report can be used as evidence to 

support applications to the Medicines and Healthcare products Regulatory Agency, the United 

Kingdom's healthcare products regulatory agency, for derogation of UK Conformity Assessed 

(UKCA) or European Conformity (CE) marking or via standard conformance assessment processes. 

The UKCA marking is a new UK product marking that is used for goods being placed on the market 

in Great Britain (England, Wales and Scotland). It covers most goods that previously required the CE 

marking. 
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2 AI4H Topic Group 

– Topic Group (TG) structure 

• Subtopic 1 

• Subtopic 2 

– TG participation 

– Tools/process of TG cooperation: Slack, Zoom, Google Docs, Github 

– TG interaction with other FG-AI4H working groups: WG-DAISAM and WG-DASH to test 

frameworks in a sandbox environment 

– Current topic group and topic status 

– Contributors so far 

– Next meetings 

– Next steps for the work on this document. 

3 Method 

– Overview of the benchmarking. 

3.1 AI input data structure 

– possible inputs for benchmarking; 

– ontologies, terminologies; 

– data format. 

3.1.1 Image conversion considerations 

See Table 3. 

Table 3 – Image conversion considerations 

Conversion Approach Advantages Disadvantages 

Integrating an automated 

conversion programme into AI 

software 

It is also possible to use Python 

tools pydicom and opencv-python 

to automate the process of 

converting DICOM to JPEG 

within the software platform, in 

that case, the users would not 

have to worry about the 

conversion. 

– Easier for users in clinical 

settings. 

– Conversion cannot be easily 

interfered with. 

– Leaves little room for error on 

the part of users. 

– Requires further development 

by manufacturers. 

– Subjected to the quality of 

manufacturer software 

development. 

Using a separate software 

There is MicroDicom, a free 

Windows tool, and a number of 

others that are either free or 

require payment. 

– Easier for manufacturer since 

it requires no to little 

additional development. 

– Can allow for reliance on 

already established and trusted 

high-quality tool. 

– Requires additional 

procedures from users to use 

AI software. 

– Prone to errors and incorrect 

input data if misused. 

– Creates avenue for third party 

interference. 
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Table 3 – Image conversion considerations 

Conversion Approach Advantages Disadvantages 

– If offline, it can ensure data 

privacy better than an online 

tool. 

Using an online tool 

There are also online free tools, 

like [118] 

– Easier for manufacturer since 

it requires no to little 

additional development. 

– Can allow for reliance on 

already established and trusted 

high-quality tool. 

– Requires additional 

procedures from users to use 

AI software. 

– Prone to errors and incorrect 

input data if misused. 

– Creates avenue for third party 

interference. 

– Can allow online tool 

manufacturers to have 

unauthorized access to data. 

3.1.2 Image compression and other artefacts considerations 

For use cases that require image conversions like DICOM to other formats before being used as input 

for an AI system, manufacturers should ensure input data integrity and quality are maintained. This 

is significant as DICOMs usually use 16 bit depth raw images and would be converted into 12 bit or 

even 8 bit depth images in JPEG, JPEG 2000 or PNG format. 

This depth precision reduction may be negligible if it is considered that: 

– the higher pixel depth cannot be perceived by the human eye; 

– regular monitors do not use high-range depths; 

– ground truths are usually made by physicians using regular monitors. 

Another issue is related to the JPEG and JPEG 2000 image codec formats, which are lossy 

compression algorithms. These codecs, respectively, introduce compression artefacts such as 

blocking and ringing. These artefacts may reduce AI system performance and should also be taken 

into consideration in the system design. 

In order to show the relevance of the compression in medical images in the performance of AI-based 

classification, we run a set of tests. Our baseline is COVID-Next, [119] a COVID-19 classifier, 

inspired by the COVID-Net proposed by Wang et. al., [16] based on ResNext50. 

This model was trained using chest radiography with different resolutions, qualities and artefacts. The 

test accuracy of this model is 94.76%. However, if the test dataset is compressed with different quality 

parameters simulating a scenario where the image is compressed to reduce bandwidth before 

transmission to a classifier in the cloud for inference. It was observed that it is possible to achieve 

significant bandwidth reduction with a negligible accuracy reduction. 

Examining the cyan and red curves in Figure 1, it is evident that the accuracy can be significantly 

reduced due to compression. In this case, accuracy notably drops when the compression ratio falls 

below 0.10. 

Despite visual quality reduction due to compression, the effect of compression artefacts (blocking or 

ringing) is substantially reduced due to resizing of the compressed image before feeding to 

COVID-Net. 
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In an extreme case, referring to the green (JPEG) and blue (JPEG 2000) curves in Figure 1, the images 

in the dataset are resized to 256 × 256 pixels using a Lanczos-4 filter before performing the 

compression. In this scenario, the bitstream is outstandingly reduced, but the accuracy is significantly 

reduced, showing that severe compression is detrimental to COVID-Net as the image quality 

degrades. This image size was chosen due to the COVID-Net input architecture. 

A similar test was conducted with a brain tumour image classifier in2021. [120] The results are shown 

in Figures 2 and 3 where accuracy and F1-score are calculated for different compression ratios and 

different curves are obtained for each codec configuration. 

The results show that, in both cases, there is a combination (between scaling and compression quality) 

where it is possible to achieve a large reduction in the transmission rate without impairing accuracy. 

The difference observed in the behaviour of the models can be associated with the amount of pre-

compressed images present in the data. 

These results cannot be extended to other cases, but can show the influence of the compression 

artefacts in medical image classification. 

In order to evaluate image compression in the scenario, a library was developed that calculates a set 

of metrics, such as accuracy, sensitivity, specificity and F-score, for testing different compression 

and downsizing in a dataset. 

Figure 4 shows an example of the confusion matrix for a given compression configuration. The library 

saves different matrices for each configuration parameter tested. 

 

Figure 1 – Impact of the compression in the test dataset accuracy  

of the COVID-Next classifier 
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The blue (JPEG) and red (JPEG 2000) plots show cases where dataset images were compressed with 

different compression rates. In the green (Interpolative JPEG) and cyan (Interpolative JPEG 2000) 

plots, the images were downsized to 256 × 256 pixels before compression. Without compressing the 

images (PNG), the accuracy is 94.76%, as shown in magenta. 

 

Figure 2 – Impact of the compression in the test accuracy of the brain tumour classifier 
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Figure 3 – Impact of the compression in the test accuracy of the brain tumour classifier 

 

Figure 4 – Confusion matrix of the brain tumour classifier test accuracy  

of a JPEG compression scenario 
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Another artefact that may also be taken into consideration is the Moiré pattern. This kind of artefact 

can occur when a picture is taken from a screen. In this case, the pattern of the pixels in the screen is 

overlaid with the capturing pattern of a camera. Developers must consider that users may not use the 

AI solution properly and taking pictures may be a possible input of a proposed system. 

3.1.3 Lossless medical image compression for radiology 

Background 

Loading, storing and visualizing large neuroinformatics files (NII) commonly used in CT and MRI 

are costly and time consuming. To process and transfer files across systems is extremely time 

consuming. As more medical samples are accumulated and used to train AI models, file storage and 

processing must be rethought. A form of lossless Hilbert compression is introduced using neuro-

symbolics to decrease times for processing, transfer and training for medical AI models through pre-

vectorization. 

Representation phases 

In working with multimedia, it is important to follow steps of standardization in which all new data 

that enter a system are bound. This process diverges data by collecting the data points, re-converges 

the data, and allows for novel trends to emerge. See Figure 5. 

 

Figure 5 – Multimedia representation phases for radiology images 

1) Diverse types of raw data and medical records enter a system. 

2) The representation of diverse data is unified in representation by answering common 

questions of it. What is it? Where did it come from? When did it happen? 

3) The data is then aggregated by following the same processing protocols. 

4) The aggregation of this data enables situational localization in which converged points begin 

to emerge as trends. 
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Vectorizing medical imagery 

In building databanks of medical samples and records, it is important to efficiently store the 

multimedia, which is usually large in size, and sometimes sparse in situation. For training AI models, 

these data must be vectorized in order to train ontologies of disease and diagnosis. Figure 6 shows 

early research found from the NIST Medical Databank which used MRI records as a basis for the 

example and diagram. This same process of vectorizing multimedia is still relevant to leading research 

across a range of disciplines today. 

 

Figure 6 – Early example of vectorizing medical imagery (Source: [86]) 

Hilbert symbolics 

A method of lossless Hilbert compression is introduced using neuro-symbolics as an effective strategy 

for parallel computation of medical imagery, as illustrated in Figures 7 and 8. An image, or slice, is 

broken down recursively across threads and systems into Hilbert spaces, which form the bounds for 

hash symbolics as unique floating-point signals. 

Each space can be simultaneously processed as its representation is uniformly computed across 

multiple threads, nodes or systems to form a hierarchy of which each space originates. Each segment 

is processed down to the individual pixel, forming a high-resolution hash table of features within a 

slide or sequence of slides, which is calculated concurrently. 

The computed features are bound to a vector index, using buckets which scale up or down with a 

given system's memory footprint. If a system is large and can handle a large memory footprint, then 

the bucket size may be larger; however, it is not required, as when buckets are full they simultaneously 

write to file, regardless of order, as the file can be read back and the contained features and positions 

are retained, therefore preserving the sanity of the data being ingested. See Figure 9. 

 

Figure 7 – Illustration of lossless Hilbert compression – partitioning 
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Figure 8 – Illustration of lossless Hilbert compression – flow 
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NIST Medical Databank 

  

Figure 9 – Example of interconnection network topologies (Source: [87]) 

Early network topology is referenced as validation of such interconnected systems computing features 

in parallel. These early network topologies utilize computation formulas also found in neural network 

models. This was the basis for industrial supercomputers used in early iterations of the NIST Medical 

Databank for storing large quantities of medical samples. 

Performance Benchmarks: 

In testing benchmarks, the standard file size is shown of an .NII file containing a chest CT scan of a 

COVID positive patient and 512 slices. We compress this to .NII.GZ and .NII.BZ2, respectively, and 

the following results indicate a compression of 24.9% for GZIP and 51.5% for BZ2. The processing 

time for GZIP taking 3.811 s, and BZ2 taking 10.578 s. 

We compare this with the process for compressing the same .NII file with Hilbert symbolics, which 

indicates an 87.4% compression rate taking 664.062 ms to process. The performance benefit being in 

ability to distribute the computation of each slice across 256 threads where each thread computes two 

slides. The total results of the benchmark are as shown in Table 4 and Figure 10. 
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Table 4 – Compression performance comparison for various compression methods 

 Standard GZIP BZ2 Hilbert symbolics 

Size (MB) 134.2 100.7 65 16.8 

Time (s)  3.811 621 189 10.578 860 28 0.664 062 5 

 

Figure 10 – Compression performance comparison for various compression methods 

Further analysis is provided of the processing time, and of the storage requirements of resulting files, 

as illustrated in Figure 11. 

 

Figure 11 – Processing time and storage requirement for various compression methods 

3.2 AI output data structure 

– outputs to benchmark; 

– ontologies, terminologies; 

– data format. 
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3.3 Test data labels 

– label types; 

– ontologies, terminologies; 

– data format. 

3.4 Scores and metrics 

The taxonomy used in grouping these evaluation metrics is that proposed by Ferri et al: [105] 

– threshold; 

– ranking; 

– probability. 

3.4.1 Threshold metrics 

3.4.1.1 Accuracy metrics 

Classification accuracy 

This is the fraction of correct predictions of a model. It is not, however, suitable for imbalanced 

classification because a poorly fitted model that simply predicts the majority class would end up 

having a misleading high score. 

Accuracy =
Correct predictions

Total predictions
 

Classification error 

This measure is the inverse of classification accuracy. It is the fraction of incorrect predictions of a 

model. It is also not suitable for imbalance classification. 

Classification error =
Incorrect predictions

Total predictions
 

Patient level accuracy and image level accuracy 

The patient level accuracy metric is determined as follows. For each patient, let Nt be the total number 

of images and Nc the number of images correctly classified, then patient score S can be defined as: 

𝑆 =
𝑁c

𝑁t
 

Therefore, the patient level accuracy can be calculated as 

Patient level accuracy =  
𝛴𝑖=1

𝑇  𝑆𝑖

𝑇
 

Where T is the total number of patients. 

The image level accuracy measures the rate of correctly classified images to the total number of 

images in the dataset. Let N be the total number of images in testing data and C the number of correctly 

classified images. 

Image level accuracy =  
𝐶

𝑁
 

Pixel accuracy 

In instance segmentation, pixel accuracy is used to evaluate the percentage of pixels in an image that 

were correctly classified. This is usually reported for each class separately and then across all classes. 
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This metric can be misleading in scenarios where the class representations are small within the image, 

as the measure will be biased in mainly reporting how well negative cases are identified. 

Exact match ratio 

The EMR metric extends the accuracy metric from single-label classification tasks to multi-label 

classification tasks. One of the drawbacks of EMR is that it does not account for partially correct 

labels. 

Mathematically, 

EMR =
1

𝑛
∑  [𝐼(𝑦(𝑖) == �̂�(𝑖))]

𝑛

𝑖=1

 

Where: 

 n  is the number of training examples 

 𝑦(𝑖)  are the true labels for the ith training example 

 �̂�(𝑖)  are the predicted labels for the ith training example. 

Example-based accuracy 

This extends the accuracy metrics to multi-label classification. The overall accuracy is the average of 

accuracy across training instances. 

Macro averaged accuracy 

This extends the accuracy metric to multi-label classification. This metric computes the accuracy of 

individual class labels and then averages over all classes. 

Mathematically, 

𝜆 –  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑀𝑎𝑐𝑟𝑜
𝑗

)  =  
∑  [𝑦𝑗

(𝑖)
 ∧  �̂�𝑗

(𝑖)
]𝑛

𝑖=1

∑  [𝑦𝑗
(𝑖)

 ∨  �̂�𝑗
(𝑖)

]𝑛
𝑖=1

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑀𝑎𝑐𝑟𝑜  =
1

𝑘
∑(𝑨𝑀𝑎𝑐𝑟𝑜

𝑗
)

𝑘

𝑗=𝟏

 

Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class 

 ∧  is the logical AND operator 

 ∨  is the logical OR operator 

 k  is the number of classes. 

Micro averaged accuracy 

This extends the accuracy metric to multi-label classification. This label based metric computes the 

accuracy globally over all instances and all class labels. 

Mathematically, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑀𝑖𝑐𝑟𝑜  =  
∑ ∑  [𝑦𝑗

(𝑖)
 ∧  �̂�𝑗

(𝑖)
]𝑛

𝑖=1
𝑘
𝑗=1

∑ ∑  [𝑦𝑗
(𝑖)

 ∨  �̂�𝑗
(𝑖)

]𝑛
𝑖=1

𝑘
𝑗=1
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Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class 

 ∧  is the logical AND operator 

 ∨  is the logical OR operator 

 k  is the number of classes. 

3.4.1.2 Sensitivity-specificity metrics 

Sensitivity 

This is the true positive rate (TPR). It measures the proportion of positive samples correctly predicted 

by a model. 

Sensitivity =
True positive

True positive +  False negative
 

Specificity 

This is the true negative rate. It measures the proportion of negative samples correctly predicted by a 

model. 

Specificity =
True negative

True positive +  False negative
 

Geometric mean (G-mean) 

The geometric mean metric is the square root of the product of the sensitivity (TPR) and specificity 

(true negative rate) scores of a model. 

𝐺‐ mean = √sensitivity ∗ specificity 

3.4.1.3 Precision-recall metrics 

Precision 

Precision is a metric that computes the fraction of true positive predictions among the outcomes that 

the model classified as positive. 

Precision =
True positive

True positive +  False positive
 

Recall 

Recall, also known as sensitivity, is the fraction of examples classified as positive, among all total 

numbers of positive examples. In other words, the number of true positives divided by the number of 

true positives plus false negatives. 

Recall =
True positive

True positive +  False negative
 

F-measure 

The F-measure provides a way to combine precision and recall into a single score. It is the harmonic 

mean of two fractions. It is sometimes called the F- or F1-score. It is the most popular metric for 

working with imbalanced datasets. 
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𝐹 − measure =  
(2 ∗  Precision ∗  Recall)

(Precision +  Recall)
 

Fβ-measure 

Fβ measure is an abstraction of F-measure score. A coefficient called beta is used to control the 

calculation of the harmonic mean of the precision and recall. 

𝐹𝛽‐ measure =  
((1 +  β2)  ∗  Precision ∗  Recall)

(β2  ∗  Precision +  Recall)
 

Matthews correlation coefficient (MCC) 

The Matthews correlation coefficient (MCC) or phi coefficient is a measure of the quality of binary 

(two-class) classifications. MCC according to Chiccoand Jurman [104] is more informative than F1-

score and accuracy score in evaluating binary classification problems, because it produces a high 

score only if the prediction obtained good results in all of the four confusion matrix categories (true 

positives, false negatives, true negatives, and false positives), proportionally both to the size of 

positive elements and the size of negative elements in the dataset. 

MCC =  √
𝑥2

𝑛
 

where 𝑛is the total number of observations. 

MCC can also be calculated directly from the confusion matrix as: 

MCC =  
TP ∗  TN −  FP ∗  FN

√(TP +  FP)(TP +  FN)(TN +  FN)
 

where TP is the number of true positives, TN is the number of true negatives, FP is the number of 

false positives, FN is the number of false negatives. 

Macro averaged precision 

This extends the precision metric to multi-label classification. This metric computes the precision of 

individual class labels and then averages over all classes. 

Mathematically, 

𝜆 –  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑀𝑎𝑐𝑟𝑜
𝑗

)  =  
∑  [𝑦𝑗

(𝑖)
 ∧  �̂�𝑗

(𝑖)
]𝑛

𝑖=1

∑  [ �̂�𝑗
(𝑖)

]𝑛
𝑖=1

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑐𝑟𝑜  =  
1

𝑘
∑(𝑃𝑀𝑎𝑐𝑟𝑜

𝑗
)

𝑘

𝑗=1

 

Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class 

 ∧  is the logical AND operator 

 𝑃𝑀𝑎𝑐𝑟𝑜
𝑗

  is the precision for label/class k 

 k  is the number of classes. 
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Micro averaged precision 

This extends the precision metric to multi-label classification. This label-based metric computes the 

precision globally over all instances and all class labels. 

Mathematically, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑖𝑐𝑟𝑜  =  
∑ ∑  [𝑦𝑗

(𝑖)
 ∧  �̂�𝑗

(𝑖)
]𝑛

𝑖=1
𝑘
𝑗=1

∑ ∑  �̂�𝑗
(𝑖)𝑛

𝑖=1
𝑘
𝑗=1

 

Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class 

 ∧  is the logical AND operator 

 k  is the number of classes 

Macro averaged recall 

This extends the precision metric to multi-label classification. This metric computes the precision of 

individual class labels and then averages over all classes. 

Mathematically, 

𝜆 –  𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑀𝑎𝑐𝑟𝑜
𝑗

)  =  
∑  [𝑦𝑗

(𝑖)
 ∧  �̂�𝑗

(𝑖)
]𝑛

𝑖=1

∑  [ 𝑦𝑗
(𝑖)

]𝑛
𝑖=1

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑎𝑐𝑟𝑜  =  
1

𝑘
∑(𝑅𝑀𝑎𝑐𝑟𝑜

𝑗
)

𝑘

𝑗=1

 

Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class 

 ∧  is the logical AND operator 

 𝑅𝑚𝑎𝑐𝑟𝑜
𝑗

  is the Recall for label/class k 

 k  is the number of classes 

Micro averaged recall 

This extends the precision metric to multi-label classification. This label-based metric computes the 

precision globally over all instances and all class labels. 

Mathematically, 

𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑖𝑐𝑟𝑜  =  
∑ ∑  [𝑦𝑗

(𝑖)
 ∧  �̂�𝑗

(𝑖)
]𝑛

𝑖=1
𝑘
𝑗=1

∑ ∑  𝑦𝑗
(𝑖)𝑛

𝑖=1
𝑘
𝑗=1
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Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class 

 ∧  is the logical AND operator 

 k  is the number of classes 

Negative predictive value 

The negative predictive value (NPV) is a metric that computes the fraction of true negative predictions 

among the outcomes that the model classified as negative. 

This is useful for use cases where the false negative predictions are costly. 

NPV =
True negative

True negative +  False negative
 

3.4.2 Ranking metrics 

Receiver operating characteristic curve 

The ROC curve is a graphical plot used to summarize the diagnostic ability of a classification model. 

It is created by plotting the TPR (sensitivity) against the false positive rate (FPR, 1 − specificity). It 

was created primarily for binary classification, but it can be generalized for multiclass classification. 

The AUC can be calculated and used as a single score to summarize the performance of a model. 

Precision-recall curve 

The precision-recall curve is also a graphical plot used to summarize the diagnostic ability of a 

classification model. ROC curves can be misleading with an imbalanced dataset, especially when the 

number of negative samples is small. A poorly fitted model that simply predicts positive can end with 

a high AUC score, which would be misleading. In such a scenario, the precision-recall curve and 

AUC could be used. It is created by plotting the precision score against the recall score (sensitivity). 

Average precision 

Average precision (AP) is the area under the precision-recall curve (AUC-PR). Precision recall curves 

are not monotonically decreasing curves, so they are often made so using interpolation methods. 

Some of the interpolation methods used include 11-point interpolation method and all-point 

interpolation method. 

Mean average precision 

Average precision is calculated individually for each class. In an objection task with many classes, 

mean average precision (mAP) is the average of all the AP values over all the classes. mAP is defined 

as: 

mAP =
1

𝑁
∑ AP𝑖

𝑁

𝑖=1

 

where N is the number of classes. 
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3.4.3 Probability metrics 

Logarithmic loss or cross-entropy 

Cross-entropy is a measure of the difference between two probability distributions. A lower score 

implies a better model, with 0.0 being the best. Log-loss is defined as: 

cross entropy =  − ∑ 𝑡𝑖log(𝑠𝑖)

𝐶

𝑖

 

where ti and si are the ground truth and the model's score for each class i in C. 

Brier score 

The Brier score is calculated as the mean squared error between the expected probabilities for the 

positive class (e.g., 1.0) and the predicted probabilities. It ranges between 0.0 and 1.0. 

Brier score =  
1

𝑁
∑(𝑔𝑖  −  𝑝𝑖)

2

𝑁

𝑖

 

where expected values are 𝑝𝑖 and the predicted values are 𝑔𝑖. 

Brier skill score 

In order to more appropriately compare the Brier score of different models, the Brier score can be 

scaled against a reference, such as the score of no skill model. 

Brier skill score = 1 − (
Brier score

Brier score reference
) 

Intersection over union 

Intersection over union (IoU) evaluates the intersection between the predicted bounding box of an 

object detection model, and the ground truth bounding box. It is calculated as the area of overlap 

between the ground truth bounding box (gt) and the predicted bounding box (pb), divided by the area 

of the union of gt and pb. IoU metric ranges from 0 and 1 with 0 meaning no overlap and 1 implying 

a perfect overlap between gt and pb. 

IoU =
area(𝑔𝑡 ∩  𝑝𝑏)

area(𝑔𝑡 ∪  𝑝𝑏)
 

Hamming loss 

Hamming loss is used to calculate the proportion of incorrectly predicted labels to the total number 

of labels. When applied to multi-label classification, it is used to calculate the number of false 

positives and false negative per instance and then average it over the total number of training samples. 

Mathematically, 

Hamming Loss =  
1

𝑛𝐿
∑ ∑  [𝐼(𝑦𝑗

(𝑖)
 ≠  �̂�𝑗

(𝑖)
)]

𝐿

𝒋=1

𝑛

𝑖=1

 

Where: 

 n  is the number of training examples 

 𝑦𝑗
(𝑖)

  are the true labels for the ith training example and jth class 

 �̂�𝑗
(𝑖)

  are the predicted labels for the ith training example and jth class. 
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α-Evaluation score 

Alpha evaluation score is a generalized form of the Jaccard similarity for evaluating each multi-label 

prediction. The α-evaluation score provides a flexible way to evaluate multi-label classification 

results for both aggressive as well as conservation tasks. 

Mathematically, 

𝛼–  evaluation score = (1 −
|𝛽𝑴𝒙 + 𝛾𝑭𝒙|

|𝒀𝒙 ∨ 𝑷𝒙|
)

𝛼

 

(𝛼 ≥ 0, 0 ≤ 𝛽, 𝛾 ≤ 1, 𝛽 = 1|𝛾 = 1) 

Where: 

 𝑴𝒙  is the number of missed labels/ false negatives 

 𝑭𝒙  is the number of false positives  

 𝒀𝒙  is the number of positive samples in the true labels (TP+FN) 

 𝑷𝒙  is the number of positive samples in the predicted labels (TP+FP) 

 ∨ i s the logical OR operator 

3.5 Undisclosed test data set collection 

Undisclosed test data was provided by Vasantha Kumar Venugopal. The use case was the diagnosis 

of COVID-19 via chest x-ray. The dataset contained 917 cases, with 436 Real-Time Reverse 

Transcription Polymerase (RTPCR) confirmed positive cases, and 481 COVID negative cases. The 

dataset was collected from Mahajan Imaging in India. 

– raw data acquisition/acceptance; 

– test data source(s): availability, reliability; 

– labelling process/acceptance; 

– bias documentation process; 

– quality control mechanisms; 

– discussion of the necessary size of the test data set for relevant benchmarking results; 

– specific data governance derived by general data governance document [115]. 

3.6 Benchmarking methodology and architecture 

– technical architecture; 

– hosting; 

– possibility of an online benchmarking on a public test dataset; 

– protocol for performing the benchmarking (who does what when etc.); 

– AI submission procedure including considerations on contracts, rights, intellectual property, 

etc. 

3.6.1 Audit trial 

An audit trial was conducted using the undisclosed test data for the diagnosis of COVID-19 via chest 

x-ray. The machine learning auditing platform from the Open Code Initiative; health.aiaudit.org was 

used. This platform will automate the assessment of AI systems. See Figure 12. 
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Figure 12 – Model results after trial audits using the benchmarking platform, health.aiaudit.org 

3.6.2 Audit trial checklist 

An audit checklist was adapted from the FG, as part of the audit trial. 

Descriptions of items on the checklist follow. 

Working draft 

Table 5 consists of a minimum viable set of audit verification checklist items. This checklist is 

basically derived from the FG-AI4H standardized model survey questionnaire [116]. It is evident 

from Table 5 that the checklist items are categorized on the basis of their respective Machine Learning 

for Health (ML4H) lifecycle stage, the applicable assessment criteria and the assessment type they 

signify. 

NOTE – Each audit team is free to expand, extend and modify the existing set of checklist items based on their 

TG or use-case specific considerations and relevance. 

Task description 

1. Please perform an expert review of the given checklist items and possibly try to provide 

expert assessment feedback based on the following questions: 

NOTE – All your expert responses can be marked directly on to the editable working document in the 

'Remarks' column of the table. 

a) Is the given set of checklist items comprehensive enough and does it cover all the relevant 

ML4H lifecycle requirements (ML technology, clinical, regulatory and ethical). If "No", 

please indicate the missing aspects. 
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b) From the given set, are there any checklist items that are conflicting or ambiguous to the 

determining context and hence need further clarification, correction, modification or 

substitution? If "Yes", please indicate them. 

c) From the given set, are there any checklist items that identify as not applicable or not valid 

to a particular TG or use case? If "Yes", please indicate them along with the respective 

exclusion criteria. 

d) Are any additional checklist items proposed? If "Yes", please indicate them along with the 

respective inclusion criteria. 

2. Based on expert assessment, please in column 6 assign a significance level or conformance 

priority to each of the checklist items listed. A first level criterion could be to assess the expected 

conformance significance of a particular checklist item with respect to the applicable ML4H 

regulations, laws, standards, guidelines and best practices. 

The significance level may be assigned a categorical label from among the following four types: 

mandatory; preferred; conditional; or optional based on its TG or use-case specific significance. 

Purpose 

This set of verification checklists is reviewed, finalized, vetted and approved by the audit experts. 

This approved set of checklists then serves as a questionnaire for TG use case developers to fill in 

their response. The response or results are verified (with the help of quantitative and qualitative 

records, proofs or evidence) and validated (by applicable test cases) for conformity assessment to 

generate a final audit report. 

NOTE – Since this set of checklists serves as a common interface to both use case developers and the audit 

experts for the process of designing the check list or questionnaire, both parties (audit experts and TG or 

domain experts) are encouraged to collaborate on this so that there is consensus and less confusion at the real 

audit time. 
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Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Planning Regulatory 

assessment 

Qualitative Product name and version Intended use or product 

specification 

Mandatory  

Planning Regulatory 

assessment 

Qualitative Target clinical intervention area of the product, e.g., 

– prevention 

– screening 

– diagnosis 

– treatment 

– triage 

– prognosis 

– other. 

Intended use or product 

specification 

Mandatory  

Planning Regulatory 

assessment 

Qualitative Primary product function 

− primary function 

− secondary function (if applicable), e.g., 

– classification 

– prognosis 

– matching 

– labelling 

– detection 

– segmentation 

– recommendation 

– data modelling 

– other. 

Intended use or product 

specification 

Mandatory  

Planning Regulatory 

assessment 

Qualitative Product category 

− software-as-a-medical device (SaMD) 

− software-as-a-medical service (SaMS) 

− software-in-a-medical device (SiMD) 

− mobile medical applications (MMA) 

− medical device data systems (MDDS) 

− other. 

Intended use or product 

specification 

Preferred  
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Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Planning Regulatory 

assessment 

Qualitative Product user group 

− primary 

− secondary( if applicable) 

Intended use or product 

specification 

Mandatory  

Planning Regulatory 

assessment 

Qualitative Product operational mode 

− fully automatic 

− semi-automatic 

Intended use or product 

specification 

Mandatory  

Planning Regulatory 

assessment 

Qualitative Product autonomy level (based on IMDRF - risk acceptance 

criteria & criticality of the clinical use case or any other 

standard control baselines for clinical system level risk 

assessment) 

Intended use or product 

specification 

Mandatory  

Data collection Technical 

validation 

Qualitative From where and when was the training dataset collected? 

Place: 

Time Period: 

− Social 

representation bias 

− Historical data bias 

Preferred  

Data collection Technical 

validation 

Quantitative How many total data samples does the source dataset contain?  Sampling bias Preferred  

Data collection Technical 

validation 

Quantitative Did you encounter any missing data in the source dataset? If 

yes, please specify affected variables, missing fraction relative 

to all entries. 

Sampling bias Preferred  

Data collection Technical 

validation 

Quantitative Whether the data acquisition modality, the data inclusion and 

the data exclusion criteria were properly validated to find if 

there is any mismatch between 'reported' sample size and 

'actual 'reproduced' sample size? 

Data reproducibility   

Data collection Regulatory 

assessment 

Qualitative Does the data identify any subpopulations Or Does the dataset 

contain confidential/personal information? (age-group, 

gender, ethnicity, religion, etc.)? If yes, specify the type 

Data privacy Mandatory  

Data collection Regulatory 

assessment 

Qualitative Did you obtain consent from individuals who are represented 

in this data to use their information for this purpose? If "Yes", 

were they provided with any mechanism to revoke their 

consent in the future or for specific uses? 

Data privacy and 

protection 

Patient safety 

Mandatory  



 

39 DEL10.12 (2023-09) 

Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Data collection Regulatory 

assessment 

Qualitative Whether any due diligence and processes were followed in 

conformance to institutional review and ethical review 

policies when input datasets were de-identified or 

anonymized? Or were any exemptions obtained under special 

conditions?  

Data privacy and 

protection 

Mandatory  

Data 

preparation 

Technical 

validation 

Quantitative How many instances of each label class were present in the 

training dataset? (e.g., proportionate sample size of different 

classes) 

Sampling bias Preferred  

Data 

preparation 

Technical 

validation 

Quantitative If ground truth annotation was used as the basis for data 

labelling quality control, how did you evaluate the quality of 

ground truth annotation? 

Data labelling bias Mandatory  

Data 

preparation 

Technical 

validation 

Quantitative For data labelling, how were the perceptual errors and biases 

accounted for? Was inter-annotator reliability measured as 

part of a quality check and what is its specification? 

Data labelling bias Preferred  

Data 

preparation 

Technical 

validation 

Quantitative By which proportion did you split the preprocessed data 

samples into a training set, the validation (tuning) set and the 

test set? 

Data bias leading to 

ML model under- or 

over-fitting 

Mandatory  

Data 

preparation 

Technical 

validation 

Qualitative Do you ensure that there is no patient sample overlap among 

the training, the validation (tuning) and the test datasets? 

Sampling bias Mandatory  

Data 

preparation 

Regulatory 

assessment 

Qualitative Is it possible to identify individuals from the dataset? Were 

the datasets de-identified or anonymized? (Yes or No) 

Data privacy  Mandatory  

Data 

preparation 

Regulatory 

assessment 

Qualitative Type and level of de identification used like complaint 

removal under the US Health Insurance Portability and 

Accountability Act of 1996 of private DICOM elements, 

image cropping to avoid identification from reconstructed 

images, etc. 

Data privacy Mandatory  

Data 

preparation 

Regulatory 

assessment 

Qualitative How do you justify the selection of ground truth? Data labelling quality Preferred  
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Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Data 

preparation 

Technical 

validation 

Qualitative Is the prevalence of the real world disease types or conditions 

reflected in the configuration of train datasets? (e.g., relative 

frequency of disease and non-disease types in the dataset)  

Data bias Preferred  

Model training Technical 

validation 

Qualitative Have you evaluated the influence of particular input data 

features that positively affects the model performance scores?  

Model performance Mandatory  

Model tuning Clinical 

evaluation 

Quantitative Are decision thresholds being used for classification? If yes, 

specify the thresholds and the thresholding rule. Can you also 

state the clinical significance of the selected operating 

threshold, if any? 

Technical vs clinical 

accuracy equivalence 

Mandatory  

Model tuning Regulatory 

assessment 

Qualitative Is your ML model optimized for a specific local or clinical 

setting (e.g., a specific clinical department, country)? 

Model generalizability Mandatory  

Model tuning Technical 

validation 

Qualitative Does your use case give high importance to the most 

prevalent output class types and thus optimize the model 

performance? Alternatively, does your use case give equal 

prominence to each output class type? 

Model optimization Preferred  

Model 

evaluation 

Clinical 

evaluation 

Qualitative Were patients and clinicians involved or consulted during the 

ML algorithm selection stage, algorithm development stage or 

algorithm acceptance and adoption stage? 

Model explicability Mandatory  

Model 

evaluation 

Technical 

validation 

Quantitative Are there output classes or disease types for which the ML 

model performed worse than others? Provide the confusion 

matrix results. 

Model performance Mandatory  

Model 

evaluation 

Technical 

validation 

Quantitative Is there an interpretability-performance trade-off observed. If 

yes, provide the comparative analysis results. 

Model interpretability 

and model performance 

tradeoff 

Preferred  

Model 

evaluation 

Technical 

validation 

Quantitative Specify the guarantees and limits of the performance metrics 

used for model evaluation 

Model performance Preferred  

Model 

evaluation 

Technical 

validation 

Quantitative Specify the guarantees and limits of the gold or reference 

standard against which the performance metrics are evaluated 

Model performance Preferred  
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Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Model 

evaluation 

Clinical 

evaluation 

Qualitative Specify the selection criteria of the performance metrics used 

for model evaluation. 

– clinical significance 

– optimization 

– specialization 

– generalization 

– other. 

Technical accuracy vs 

clinical effectiveness 

equivalence 

Mandatory  

Model 

evaluation 

Clinical 

evaluation 

Quantitative Whether any comparative analysis was done over the model 

safety risks with that of the alternative technologies (both ML 

and non-ML based) 

Patient safety Preferred  

Model 

evaluation 

Clinical 

evaluation 

Qualitative Have you used any methods that are specific or agnostic to the 

model for interpretability? 

Model interpretability Mandatory  

Model 

evaluation 

Technical 

validation 

Quantitative Have you estimated the risk probabilities associated with 

model performance variability when tested against the 

following conditions: 

– non-specified use environment 

– non-specified hardware and software configurations 

– patients of different age, sex, race, co-morbidities 

– patients with different severity of disease type 

– other. 

Model uncertainty and 

robustness 

Mandatory  

Model usage or 

deployment 

Clinical 

evaluation 

Quantitative Specify the computational efficiency of the model in terms of 

the response time 

Clinical efficiency Preferred  

Model usage or 

deployment 

Clinical 

evaluation 

Qualitative How does the ML model adoption reduce the overall clinical 

practice cost (or enhance the clinical practice savings)? 

– faster patient diagnosis or treatment 

– percentage reduction in clinician cognitive workload 

– degree of automation or semi-automation introduced 

– degree of smartness or intelligence augmentation 

– new knowledge discovery 

– enabling replacement or redefinition of existing gold 

standard 

– other. 

Clinical integration Mandatory  
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Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Model usage or 

deployment 

Clinical 

evaluation 

Qualitative What is the care quality impact delivered by the ML model? 

– early detection and lowering of disease severity levels 

– increased coverage under screening programs 

– workflow efficiency 

– reliability and reproducibility of outcomes 

– increased accessibility 

– increased patient and clinician satisfaction 

– other 

Clinical effectiveness Mandatory  

Model usage or 

deployment 

Clinical 

evaluation 

Qualitative How does the model fit into the intended health intervention 

workflow? 

– autonomous tool 

– assistive tool 

– augmentative tool 

– add-on unit to existing system/workflow 

– replacement unit for existing – system/workflow component 

– new stand-alone application 

– other 

Clinical integration Mandatory  

Model usage or 

deployment 

Clinical 

evaluation 

Qualitative Have you estimated the risk probabilities associated with the 

potential hazards and harms as a consequence of a model not 

meeting the expected or desired performance specification? In 

addition, have you specified the values or ranges for 

performance metrics in order to avoid unacceptable risks? 

Patient safety Mandatory  

Model usage or 

deployment 

Clinical 

evaluation 

Qualitative Was input data feature importance validated for its 

significance in the clinical setting by the clinician or 

specialist? Which features were ranked as most important? 

Model interpretability Preferred  

Model usage or 

deployment 

Clinical 

evaluation 

Qualitative Did the model fail to address any relevant clinically important 

findings?  

Clinical effectiveness Preferred  

Model usage or 

deployment 

Clinical 

evaluation 

Quantitative Is there a comparative analysis done on the patient outcomes 

for (1) patients on whom the ML model is applied versus (2) 

patients on whom the ML model is not applied? 

Clinical effectiveness Mandatory  
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Table 5 – Draft audit verification checklist 

ML4H process 

lifecycle stage 

Assessment 

criteria 

Assessment 

type 
Audit verification checklist item 

Assessment attribute 

or metric 

Significance 

level 

Verification and 

validation record 

or proof 

Model usage or 

deployment 

Regulatory 

assessment 

Qualitative Whether any safety control measures were incorporated to 

deal with unintended consequences (if any) of ML model 

intervention in the clinical setting? 

Operating environment 

risks or patient safety 

Mandatory  

Model 

maintenance 

and versioning 

Regulatory 

assessment 

Qualitative Is the ML model maintained as (a) a static system or (b) a 

continuously learning system? I 

Model maintainability Mandatory  

Model 

maintenance 

and versioning 

Regulatory 

assessment 

Quantitative If the ML model is attributed to a continuous learning system , 

specify the algorithm change or update cycle 

Model maintainability Mandatory  

Model 

maintenance 

and versioning 

Regulatory 

assessment 

Quantitative Has there been a proper plan for test data quality and 

correctness assessment after model deployment (i.e., concept 

drift, training/test data distribution mismatch, etc.)? 

Model maintainability Mandatory  
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3.6.3 Audit trial: minoHealth.ai: A clinical evaluation of deep learning systems for the 

diagnosis of pleural effusion and cardiomegaly in Ghana, Vietnam and the USA 

Background: A rapid and accurate diagnosis of cardiomegaly and pleural effusion is of the utmost 

importance to reduce mortality and medical costs. AI has shown promise in diagnosing medical 

conditions. The aim of this study is to evaluate how well AI systems, developed by minoHealth AI 

Labs, will perform at diagnosing cardiomegaly and pleural effusion, using chest x-rays from Ghana, 

Vietnam and the USA, and how well AI systems will perform when compared with radiologists 

working in Ghana. 

Method: The evaluation dataset used in this study contained 100 images randomly selected from 

three datasets. Twenty images were selected from the VinBig Data Chest x-ray dataset [48], another 

21 images were selected from the CheXpert [92] dataset and 59 images were selected from the 

Euracare dataset, an in-house dataset collected by minoHealth AI Labs from Euracare Advanced 

Diagnostics and Heart Centre, Accra, Ghana. The deep learning models were further tested on a larger 

Ghanaian dataset containing 561 samples. Two AI systems were then evaluated on the evaluation 

dataset, while the same chest x-ray images within the evaluation dataset to were given to four 

radiologists, with 5-20 years experience, to diagnose independently. 

Results: For cardiomegaly, minoHealth.ai systems scored AUC-ROC values of 0.90 and 0.97, while 

the AUC-ROC of individual radiologists ranged from 0.77 to 0.87. For pleural effusion, the 

minoHealth.ai systems scored 0.97 and 0.91, whereas individual radiologists scored between 0.75 

and 0.86. On both conditions, the best performing AI model outperforms the best performing 

radiologist by about 10%. We also evaluate the specificity, sensitivity, NPV and positive predictive 

value between the minoHealth.ai systems and radiologists. 

Conclusion: In regions like Sub-Saharan Africa, where radiologists are scarce and are also 

overloaded with other clinical responsibilities, solutions like the minoHealth.ai systems will be of 

great utility. These solutions can achieve the performance of multiple radiologists working together 

to complement the efforts of radiologists and ease the burden on them. 

3.6.4 Benchmarking solution 

A radiograph-agnostic benchmarking platform and framework are proposed that would allow for the 

evaluation of AI radiological systems for various conditions and serve as a standard. This would 

require registered developers and organizations seeking to evaluate their AI system to download the 

test images and a comma-separated values (CSV) file with two columns: ID – containing the unique 

Identification of each test image; and class – that would be left blank in order to be populated by the 

outputs of an AI system. Developers are then to submit the fully populated CSV file, which would 

then provide outputs of the model to be evaluated with the true labels. Tutorial scripts in popular 

machine learning libraries and frameworks would be provided to developers on how to correctly get 

model outputs to be populated in the CSV file. 

See Figures 13 and 14. 
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Figure 13 – A prototype of the radiograph-agnostic precision evaluation platform 

 

Figure 14 – The location category with its sub-categories and the metrics used 



 

46 DEL10.12 (2023-09) 

3.6.5 Evaluation metrics 

All our supported condition tests on the platform would be image classification tasks and therefore 

evaluation metrics would be used for classification. Some of the conditions and tests would be binary 

while others would be multi-class classification tasks, therefore metrics would be used that are 

suitable for both. As shown in Figures 1 and 2, the evaluation metrics to be used would be the ROC 

curve, its AUC score and the accuracy score. The ROC curve and AUC score would help to identify 

the model's TPR (sensitivity) and its FPR (1 − specificity). Though originally for binary classification, 

the ROC curve and AUC score can be generalized to multi-class classification. 

The performance of an AI system would be compared with radiologists using the various metrics. 

This would help developers see how well their models perform compared to the current popular 

approach, standalone radiologists. Benchmarking vis-à-vis radiologists would also help in assessing 

the level of autonomy that should be given to each AI system. See Figure 15. 

 

Figure 15 – Each sub-category would feature demographics intersection performances too 
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3.6.6 Benchmark categorizations 

The evaluation results would be divided into location, gender and age, as shown in Figure 16. Under 

location, the performance of the AI model would be shown under the sub-categories: country; 

continent; region; and global. The country sub-category shows the performance of the AI system 

within the nation in which it was developed. The continent sub-category would show how well the 

model performs on data from the continent in which it was developed; this would help the developers 

know how well they can scale the current version of their AI system. Region specifically focuses on 

the performance of the AI system within the sub-continental region in which it was developed 

(e.g., West Africa, South East Asia, Northern Europe). This would help the developers see how ready 

their AI system is to be deployed in neighbouring countries. Finally, global shows how well the model 

performs on data from across the world, showing its ability to truly generalize. Each sub-category 

under location would also feature an AUC score for each gender and age group, as shown in Figures 1 

and 3. This would allow developers to tell specifically how well their AI system generalizes across 

gender and age within each geographical area. 

Under Gender, there would be two main sub-categories, male and female, as shown in Figures 16 

and 4. This would show how well the AI system performs on radiographs of male and female patients. 

Each of the two sub-categories would also feature AUC scores for various age groups. This would 

show how well the AI system performs on male and female patients of different age groups. 

Conditions that, however, only affect one gender would not feature in the gender category. 

The age category would feature various age groups as sub-categories. Age groups that are not featured 

within certain datasets and conditions would not be shown for those specific conditions. Similar to 

the other categories, AI system performance on each of the age groups would be shown and it would 

also feature male and female AUC score under each age group. 

This concept of precision evaluation is to precisely assess how well an AI system generalizes across 

demographics. 

 

Figure 16 – The gender category 

3.6.7 Evaluation data 

The goal is to ensure a proportional amount of the diverse demographics and their intersections. With 

diverse evaluation data, the generality of an AI system can truly be assessed. The platform would be 

open to facilities to register, and submit images and demographical data. Facilities with approved 

images would be credited with contributing to the set-up of such dataset. This would hopefully serve 

as an incentive to facilities to contribute more data to the platform. Submitted radiographs should be 

accompanied by a CSV file with information about patient gender, age and imaging facility location. 

This would allow for the proposed precision evaluation framework. 
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3.6.8 Panel of expert radiologists 

To ensure quality, submitted images and data would be reviewed by a panel of expert radiologists. 

This panel of expert radiologists would also ensure that borderline cases and diversity are represented 

in each evaluation set. The panel would be open to qualified radiologists to join and participate in. 

Each evaluation set and condition would have its own panel of expert radiologists. Radiologists who 

are part of the panel would be credited on the platform for the evaluation sets to which they contribute. 

This would also hopefully serve as an incentive for more radiologists to join the panel of expert 

radiologists. 

3.6.9 Test radiologists 

Beyond the panel of expert radiologists, ideally radiologists from different parts of the world would 

be available who would be asked to classify the test images without access to their true labels. The 

goal would be to get as many testing radiologists as possible from each continent, region or possibly 

country. These radiologists would also be ideally given test images from within their region. This 

would allow a comparison of AI system performance on test images within each location sub-

category with radiologists also within such geographical regions. This would more appropriately help 

to estimate how well an AI system performs when compared with the level of performance of 

standalone radiologists within each specific region. 

3.7 Evaluation data availability 

minoHealth AI Labs is currently working with institutions in Ghana, including Christian Health 

Association of Ghana (CHAG), National Catholic Health Service (NCHS), Euracare Advanced 

Diagnostic Center and Paradise Diagnostic Center in order to collect mammograms and chest 

radiographs. Some of those data can be made available to the benchmarking platform. With the 

collaboration of various members and organizations affiliated with FG-AI4H, more radiographs can 

be collected from around the world. Also as explained earlier, the platform would be open to 

registered facilities to contribute data. 

3.8 Feasibility 

Though the proposed radiograph-agnostic framework and platform has several moving parts and 

complexities, it is possible to modularize it and build with different levels of complexity. It is also 

possible for the categories and sub-categories to adjust based on the number and diversity of samples 

as well as the radiologists available. If the evaluation data for a particular condition is not large enough 

to support all four location sub-categories, it can be limited to just region or continent and global. If 

there were not enough test radiologists within a specific country where an AI system was developed, 

the regional, continental or global average performance of radiologists would be used. A similar 

principle can apply to the sub-categories of gender and age. Implementation of the platform would 

be started with chest x-rays for 12 different thoracic diseases supported in MIMIC-CXR, [96] 

CheXpert [92] and NIH CXR 8 [97] datasets. 

3.9 Privacy and security 

Anonymized data can be de-anonymized using techniques like linkage attacks, which involve 

combining data from multiple sources in order to form a whole picture about targets. It is then possible 

to use the demographics data (date of birth, gender and location) of an anonymized patient whose 

medical image is available and cross-reference with public voter lists in order to identify who the 

patient is. This is because there are very few individuals likely to have the same data of birth and 

gender, and live in the same location. To prevent linkage attacks, developers and testing radiologists 

are only given access to test images without demographics data. To further defend against this attack, 

date of birth is abstracted to just age (in years) of the patient when they were imaged, and location to 

country. To add additional security measures as long as the panel of expert radiologists has access to 

such demographics data, variations of differential privacy can be explored. 
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Also, we are ensuring a secure system by demanding that developers and organizations that require a 

standardized evaluation of their AI systems register before they would be allowed to. The registration 

process can include an in-person assessment by their local World Health Organization (WHO) or 

International Telecommunication Union (ITU) branch office, just to ensure they are a valid 

institution, start-up or developer. A moderate fee can be charged for the registration, which could 

then serve as funds to support the maintenance of the platform. Equally, health facilities seeking to 

donate medical images and data must register and be assessed. In addition, even the images and data 

they submit to the platform would be evaluated before being added to the system. All radiologists, 

both in the expert panel and the testing community would have to register and be verified before being 

allowed to contribute to the platform. 

In order to not infringe upon their IP rights, AI developers and organizations would not be required 

to submit their AI system itself, but only the output (CSV files) of their AI system, which would then 

be used for its evaluation. 

3.10 Impact 

There is a large number of publicly available medical image datasets online, into which there has 

been a lot of research and development. By developing frameworks that target these conditions first, 

the standardized benchmarking platform would be made immediately appealing to the AI healthcare 

research and development community. This would also help speed up the deployment of AI solutions 

in radiology globally. AI healthcare system developers and organizations usually have to go through 

the challenge of convincing health facilities to share their private data with them; such data 

unfortunately are not always of high quality and they usually lack the broad demographic 

representations needed to truly assess how well an AI system generalizes. A radiograph-agnostic 

benchmarking platform with data from various facilities across the globe, reviewed by a panel of 

experts to ensure quality and diversity, would drastically simplify the evaluation stage of such AI 

systems. The precision evaluation framework would help fight against demographically biased AI 

systems by ensuring they are tested in great detail across various groups. It would also help in the 

safe scaling of AI systems across different locations. The location sub-categorization of evaluation 

allows for geo-precision evaluation. Developers can tell how well their systems can perform within 

their country or first-point of deployment, and should they intend to scale to neighbouring countries 

then eventually have it across the globe, they can tell how well their current version would perform 

at each point of such growth and scaling. 

3.11 Reporting methodology 

– Report publication in papers or as part of ITU documents 

– Online reporting 

– Public vs private leaderboards 

– Approval like a credit check for sharing with selected stakeholders 

– Report structure including an example 

– Frequency of benchmarking. 

4 Results 

– Insert here the reports of the different benchmarking runs. 

5 Discussion 

– Discussion of the insights from executing the benchmarking on 

• external feedback on the whole topic and its benchmarking 

• technical architecture 
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• data acquisition 

• benchmarking process 

• benchmarking results 

• field implementation success stories. 
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Annex A 

 

Glossary 

Table A.1 lists all the relevant abbreviations and acronyms used in the document. 

Table A.1 –Abbreviations and acronyms used in this document 

Acronym/Term Expansion Comment 

2D two Dimensional  

3D three Dimensional  

AI Artificial intelligence  

AI4H  Artificial intelligence for health  

AI-MD AI based medical device  

API Application programming interface  

AUC Area Under the Curve  

BMI Body Mass Index  

BPF Bandpass Filtered  

CE European Conformity  

CfTGP Call for topic group participation  

COVID-19 Corona Virus Disease-2019  

CSV Comma-Separated Values  

CT Computed Tomography  

DEL Deliverable  

DICOM Digital Imaging and 

Communications in Medicine 

 

EMR Exact Match Ratio  

FDA Food and Drug administration  

FGAI4H Focus Group on AI for Health  

GDP Gross domestic product  

GDPR General Data Protection Regulation  

HPF High-Pass Filtered  

IMDRF International Medical Device 

Regulators Forum 

 

IP Intellectual Property  

IR Interventional Radiology  

ISO International Organization for 

Standardization 

 

ITU International Telecommunication 

Union 

 

JPEG Joint Photographic Experts Group  

LIME Lightweight Interactive Multimedia 

Environment 

 

LMIC Low-and middle-income countries  
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Table A.1 –Abbreviations and acronyms used in this document 

Acronym/Term Expansion Comment 

LPF Low-Pass Filtered  

MDR Medical Device Regulation  

ML4H Machine Learning for Health  

MRI Magnetic Resonance Imaging  

NCCID National COVID-19 Chest Imaging 

Database 

 

NF Notch Filtered  

NPV Negative Predictive Value  

PET Positron Emission Tomography  

PII Personal identifiable information  

PNG Portable Network Graphic  

ROI Region Of Interest  

SPECT Single Photon Emission Computed 

Tomography 

 

TG Topic Group  

TPR True Positive Rate  

UKCA UK Conformity Assessed  

US Ultrasonography  

WG Working Group  

WHO World Health Organization  
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