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Summary 

This topic description document specifies a standardized benchmarking for artificial intelligence in 

outbreak detection for public health. It covers scientific, technical, and administrative aspects relevant 

for setting up this benchmarking. 

Its primary purpose is to specify a standardized benchmarking framework for artificial intelligence 

algorithms used in public health for detecting disease outbreaks. The document covers various 

essential aspects, including the definition of the AI task, ethical and regulatory considerations, existing 

benchmarking work, and the proposed benchmarking methodology of the topic group, aiming to create 

a basis for evaluating and comparing AI solutions in this critical area of public health. 
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ITU-T FG-AI4H Deliverable 

DEL10.10 – FG-AI4H Topic Description Document for the Topic Group on 

outbreak detection (TG-Outbreaks) 

1 Introduction 

Disease outbreak detection describes a process usually found in the field of epidemiology that uses 

mathematical or computational methods to find salient, unusual patterns in health-related and 

associated data that indicate an outbreak. A disease outbreak is an excess of case numbers compared 

to that expected. These cases can be related to exposure to a common source (e.g., close contact with 

an infected person or vector, exposure to contaminated food or breeding site of disease transmitting 

insects). Early detection and response to outbreaks can substantially reduce their spread. Outbreaks 

that spread quickly and are hard to contain can still come in predictable patterns. Accurate outbreak 

detection helps to detect the build-up of such a wave quickly to ensure appropriate public health 

response. 

Infectious disease outbreaks pose a major risk to public health and are of global concern. Many 

established infectious diseases cause the death of millions of people every year and new infectious 

diseases continue to emerge. The risk and occurrence of infectious diseases is influenced by 

globalization, migration and climate change. According to the World Health Organization (WHO), 

infectious diseases are ranked in the top 10 causes of death worldwide1. 

However, early detection of outbreaks can prompt fast interventions to limit spread of the disease or 

even prevent an outbreak altogether. Improved algorithms for outbreak detection can save lives, 

increase quality of life and will benefit the overall health of the world population. 

The aim of outbreak detection algorithms is to detect aberrant case numbers, trend change, and other 

conspicuous events within data streams, pointing to the emergence of infectious disease outbreaks, in 

a fast and automatic manner. To this end, artificial intelligence (AI) algorithms can increase the 

timeliness and accuracy of outbreak detection. 

Additionally, disease outbreak algorithm development happens mostly in countries with a strong 

research infrastructure. Such algorithms may subsequently be biased towards the environment, 

endemic diseases and infrastructure of these countries. In Europe, for example, an algorithm 

developed in the United Kingdom (UK) (namely the Farrington algorithm) [1] is used across other 

neighbouring countries with no public benchmark assessing them. It is more common to evaluate 

such algorithms on expert-generated synthetic data, which may not be representative. The 

development of disease outbreak detection benchmarking would help to provide a low entry into 

testing and using outbreak detection algorithms regardless of available resources. Not only are 

developments of outbreak detection algorithms unevenly funded, but also systemic disadvantages in 

civil and public health infrastructure place some nations at greater risk of inadequate sanitation and 

poor public health surveillance. This increases the likelihood and likely severity of an outbreak. 

Safe sanitation remains inaccessible to over 50% of the world population, contributing to nearly 

1 million deaths in low- and middle-income countries.[7] Inadequate sanitation and unsafe water 

supply contribute to diarrhoeal disease, which is a leading cause of global childhood mortality and 

morbidity. Poor sanitation is estimated by the World Bank to have cost $260 billion in disruption to 

economic productivity and healthcare costs per year from 2012 to 20152. 

 

1 https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (visited 2025-04-02). 

2 https://blogs.worldbank.org/en/water/what-costs-the-world-260-billion-each-year (visited 2025-04-02). 

https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
https://blogs.worldbank.org/en/water/what-costs-the-world-260-billion-each-year


 

2 DEL10.10 (2023-09) 

A set of public health surveillance efforts designed to use AI informed analytics to detect disease 

outbreaks is highlighted. This Topic Description Document (TDD) specifies standardized 

benchmarking for sanitation systems. It serves as deliverable DEL10.10 of the ITU/WHO Focus 

Group on AI for Health (FG-AI4H). 

2 About the FG-AI4H Topic Group on outbreak detection for public health 

Clause 1 highlights the potential of a standardized benchmarking of AI systems for outbreak detection 

to help solve important health issues and provide decision-makers with the necessary insight to 

successfully address these challenges. 

To develop this benchmarking framework, FG-AI4H decided to create the TG-Outbreaks at meeting 

E in Geneva, Jun 2019. 

FG-AI4H assigns a topic driver (similar to a moderator) to each Topic Group (TG) who coordinates 

the collaboration of all TG members on the TDD. During Meeting G in New Delhi, 14 Nov 2019, 

Stéphane Ghozzi from the Helmholtz Centre for Infection Research and Auss Abbood from the 

Robert Koch Institute (RKI) were nominated as topic drivers for the TG-Outbreaks. During Meeting 

L held virtually, May 2021, TG-Sanitation was established. Khahlil Louisy and Alexander Radunsky 

from ITGH were nominated as co-drivers for the TG-Sanitation by FG-AI4H. 

At meeting N, in Berlin, TG-Outbreaks and TG-Sanitation merged into a single TG with Khahlil 

Louisy and Alexander Radunsky from ITGH and Auss Abbood from RKI remaining co-topic drivers 

and with Alexander Ullrich from RKI replacing Stéphane Ghozzi. 

2.1 Documentation 

This deliverable is the TDD for TG-Outbreaks. It introduces the health topic including the AI task, 

outlines its relevance and the potential impact that benchmarking will have on the health system and 

patient outcome, and provides an overview of the existing AI solutions for outbreak detection for 

public health. It describes the existing approaches for assessing the quality of outbreak detection with 

a focus on sanitation systems and provides the details that are likely to be relevant for setting up new 

standardized benchmarking. It specifies the actual benchmarking methods for all subtopics at a level 

of detail that includes technological and operational implementation. There are individual clauses for 

all versions of benchmarking. Finally, it summarizes the results of the TG benchmarking initiative 

and benchmarking runs. In addition, the TDD addresses ethical and regulatory aspects. 

The TDD will be developed cooperatively by all members of the TG over time and updated TDD 

iterations are expected to be presented at each FG-AI4H meeting. 

The final version of this TDD will be released as deliverable "DEL 10.10 Outbreaks (TG-Outbreaks)". 

The TG is expected to submit input documents reflecting updates to the work on this deliverable 

(Table 1) to each FG-AI4H meeting. 

Table 1 – Topic Group output documents 

Number Title 

FGAI4H-O-028-A01 Latest update of the Topic Description Document of the TG-Sanitation  

FGAI4H-M-028-A02 Latest update of the Call for Topic Group Participation (CfTGP)  

FGAI4H-O-028-A03 The presentation summarizing the latest update of the Topic Description 

Document of the TG-Sanitation  

The working version of this deliverable can be found in the official TG SharePoint directories. 

• https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Sanitation.aspx 

• https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Outbreaks.aspx 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Sanitation.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Outbreaks.aspx
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2.2 Status of this Topic Group 

Clauses 2.2.1 to 2.2.5 describe the update of the collaboration within TG-Outbreaks for the official 

focus group meetings. 

2.2.1 Status update for meeting J 

• Work on this deliverable 

• Work on benchmarking software 

• Progress with data acquisition, annotation, etc. 

• Overview of online meetings including links to meeting minutes 

• Relevant insights from interactions with other working groups or TGs 

• Partners joining the TG 

• List of current partners 

• Relevant next steps 

• Phone meeting with interested parties (Dec 2019) 

• Further acquisition of members (Jan-Feb 2020) 

• Review of existence methods and metrics and in disease outbreak detection and existing 

approaches for benchmarking or similar endeavours (Mar 2020) 

• Survey on how disease outbreak detection is done among our members (Feb-Mar 2020) 

• Implementation of a new metric to test different families of outbreak detection algorithms 

(July 2020 onwards) 

2.2.2 Status update for meeting M 

TG-Sanitation Outreach to potential partners is ongoing. A Call for Participation has been drafted and 

areas of expertise of interest outlined for incorporation into the focus group. Initial TG planning and 

group delegation of initial TDD tasks were done. The TG has researched and written preliminary 

drafts for portions of clauses 1, 2, 3, 4 and 8 of TDD. 

2.2.3 Status update for meeting N 

Based on interviews, literature reviews and questioners, TG-Outbreaks drafted a preprint and 

developed a software library based on said work that would allow scoring outbreak detection 

algorithms with different aggregation and testing strategies. Since it was found that the approaches 

common in outbreak detection as well as the data that depend on the surveillance strategy and disease 

vary, a method was needed to make algorithm performance comparable in order to properly proceed 

with work in TG-Outbreaks. 

TG-Sanitation has begun 1) community engagement planning with eThakwini communities by the 

University of KwaZulu Natal team and Woodco (an Ireland-based sensor developer); 2) sensor and 

data systems design testing and fielding by Woodco. Availability will also be assessed of current and 

historical manually sampled data from the Palmiet River system as a potential source of training data. 

Potential data collection methods and sources useful to detection of diarrheal disease outbreak will 

also be assessed. Further research has begun into potential sensors in a communal ablution block 

(CAB) (occupation sensors, water meters, and acoustic diarrheal sensors) and in the pyrolysis 

plant (faecal sludge moisture content, calorific values, heavy metal content, presence and severity of 

pathogenic contamination). 
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2.2.4 Status update for meeting O 

TG-Sanitation has identified potential sensors for testing by Woodco, associated with the CAB and 

the pyrolysis waste treatment facility. These are currently undergoing testing in Ireland.  System 

assessment is being planned, including the collection and storage of sensor data and performance 

data.  

2.2.5 Status update for meeting S 

We concluded the merging of both TDDs. It included filling gaps in the document and adopting the 

former TG-Outbreaks and TG-Sanitation objectives under a common narrative. With the Global 

Initiative in mind, exploration of possible partners to conduct implementation work with this TG has 

been started. For benchmarking to be richer, creation of more challenges following a data simulation 

approach was started. Relevant next steps are reaching out and discussing needs and interest for 

potential collaborations with the Global Initiative. Also, to conclude benchmarking work, submission 

of a paper describing our work for a technical audience is planned. 

2.3 Topic Group participation 

• Participation in both FG-AI4H and in a TG is generally open to anyone (with a free ITU 

account). For this TG, applicants respond to the following CfTGP: 

https://www.itu.int/en/ITU-T/focusgroups/ai4h/Documents/tg/CfP-TG-Sanitation.pdf 

Each TG also has a corresponding subpage on the ITU collaboration site: https://extranet.itu.int/

sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Sanitation.aspx 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Outbreaks.aspx 

For participation in this TG, interested parties can also join the regular online meetings. For all TGs, 

the link will be the standard ITU-TG 'zoom' link: 

• https://itu.zoom.us/my/fgai4h 

All relevant administrative information about FG-AI4H – like upcoming meetings or document 

deadlines – will be announced via the general FG-AI4H mailing list fgai4h@lists.itu.int. 

All TG members should subscribe to this mailing list as part of the registration process for their ITU 

user account by following the instructions in the CfTGP and this link: 

• https://itu.int/go/fgai4h/join 

In addition to the general FG-AI4H mailing list, the following dedicated mailing list was used: 

• fgai4htgoutbreaks@lists.itu.int 

Regular FG-AI4H workshops and meetings proceed about every two months at changing locations 

around the globe or remotely. More information can be found on the official FG-AI4H website: 

• https://itu.int/go/fgai4h 

3 Topic description 

This clause contains a detailed description and background information of the specific health topic 

for the benchmarking of AI in outbreak detection and how this can help to solve a relevant real-world 

problem. 

TGs summarize related benchmarking AI subjects to reduce redundancy, leverage synergies, and 

streamline FG-AI4H meetings. However, in some cases, different subtopic groups can be established 

within a TG to pursue different topic-specific fields of expertise. The TG-Outbreaks currently has no 

subtopics. Future subtopics for outbreak detection might be introduced. 

This TG has been approaching the objective of outbreak detection from two sides: TG-Sanitation 

focused on the feasibility and usability of an on-site wastewater surveillance system in South Africa, 

https://www.itu.int/en/ITU-T/focusgroups/ai4h/Documents/tg/CfP-TG-Sanitation.pdf
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Sanitation.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Sanitation.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/SitePages/TG-Outbreaks.aspx
https://itu.zoom.us/my/fgai4h
mailto:fgai4h@lists.itu.int
https://itu.int/go/fgai4h/join
mailto:fgai4htgoutbreaks@lists.itu.int
https://itu.int/go/fgai4h
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highlighting ethical and regulatory considerations. TG-Outbreaks before the merging of both groups 

focused on the technical aspects of outbreak detection. As a result, this deliverable follows two 

narratives in describing TG work. 

3.1 Definition of the AI task 

Community and public data collection in eThekwini 

There were opportunities to focus on planning stages for data collection of health event, 

environmental contamination data, weather and watershed ecological data. Woodco and local partners 

at the University of KwaZulu-Natal, have previously engaged with these communities in a set of 

informal settlements on the outskirts of eThekwini in South Africa. Although the burden of diarrhoeal 

disease is high, current capacity to detect these outbreaks and intervene is severely limited. 

Community engagement and understanding around health and data privacy is a critical step in using 

some public and community sensors and other local sources of data. The ethical and regulatory 

considerations of this collection effort, especially in the context of highly marginalized and 

systematically disadvantaged communities, must be given sufficient consideration. 

The primary output of interest is the incidence of diarrhoeal disease. Data collection is planned to 

include case counts and other local health data, ongoing testing for waterborne pathogens in local 

water systems, CAB sensors and pathogen testing in the waste treatment stream before and after 

pyrolysis treatment. This ground data is complemented by satellite Earth observation (EO) and global 

navigation satellite system (GNSS) data and weather data systems. These are to be collected to 

complement local data to predict and prevent diarrhoeal disease outbreaks. 

Summary of the solution for sanitation 

The AI's ultimate goal is to enable stewardship of diarrhoeal and sanitation-related health problems 

in communities with limited sanitation infrastructure. The system currently in development by our 

field partners will enable the generation of several data streams, whose frequency (weekly, daily, 

near-real time) will evolve progressively as the roll out of the project advances. 

The data thus collected will be – on top of being consolidated for basic analysis – fed into an algorithm 

to predict outbreaks of diarrhoeal disease in the community. As such, the task is expected to be a 

binary prediction. The geographical resolution of the same, the prediction window, and the exact false 

positive/false negative (FP/FN) trade-off are expected to be determined during the course of the 

present FG. See Figure 1. 

 

Figure 1 – Solution architecture blocks 
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To detect signals in data streams like those produced by wastewater surveillance, there is a variety of 

published statistical and machine-learning (ML) methods [1-3]. The RKI applies both classical 

statistical as well as supervised learning methods to the problem of outbreak detection. These ML 

methods use outbreak labels, assigned during and after outbreak investigations by our experts. The 

main methods used by RKI are based on hidden Markov models and the improved Farrington method. 

First improvements have already been observed in the accuracy using ML approaches compared to 

classic statistical approaches [4]. In particular, by maintaining the same sensitivity in outbreak 

detection, the number of false alarms is considerably decreased using supervised learning, reducing 

the need for expert assessment. 

Since the aforementioned approaches are time-series based, it is expected that the relevance of hidden 

Markov models and deep learning-based methods appropriate for sequential data, such as long short 

term memory (LSTM) networks or transformers, to increase for outbreak detection tasks. However, 

other methods like multivariate Bayesian regression or all-purpose deep learning (convolutional 

neural network, recurrent neural network) are conceivable, especially when variety of input 

modalities increases beyond the more common univariate time series. 

Data streams 

Disease surveillance and subsequently outbreak detection, traditionally operate on data created by 

medically sound diagnostic methods. Diagnostic capabilities, country-dependent disease and 

syndrome definitions, as well as the structure of the public health system influence the granularity 

and quality of data sources. It can be said that a combination of different data streams is favourable 

as it allows their strengths to be combined and weaknesses to be counterbalanced. Slow and reliable 

laboratory confirmed data can be combined with fast but informal information like news articles or 

social media activities. The COVID-19 pandemic produced and matured additional data streams such 

as satellite imagery to estimate deaths from graves dug, fitness tracker to track temperature and sleep 

disturbances indicating infections, and wastewater surveillance, allowing for a cheap, non-invasive 

but geographically comprehensive data stream. In TG-Outbreaks, wastewater surveillance in South 

Africa is being piloted using different systems. 

Sensors to detect presence of pathogens in faecal sludge, as well as acoustic-based diarrhoea detectors 

in CABs are planned for deployment in a pilot community in KwaZulu-Natal, South Africa. Signals 

from the sensors are edge processed (using a commercially available miniaturized computer) and 

propagated primarily through standard a long-range wide area network to central processing. These 

features are expected to provide small-scale information about potential outbreaks. In the early stages 

of the project, pathogen-sensing technology will be replaced by frequent laboratory testing and 

manual input into the system. 

EO data from European Space Agency missions Sentinel-5p (atmospheric composition) and 

Sentinel‑3 (vegetation, water and moisture indices) allows the system to assess environmental and 

ecological changes including water chemistry, conditions at dumping sites, temperature changes. In 

combination with terrestrial sources for water level and turbidity at select sampling points of the basin 

and weather observation data, the system is expected to capture weather patterns, water level, 

atmospheric conditions and land use (proxying for factors such as illegal dumping), and model their 

combined impact on disease propagation in the pilot communities. 

Additional to the aforementioned streams, data from a sludge pyrolysis plant (including inflow or 

outflow measures, as well as process key performance indicators), sanitation supply chain 

management data (CAB usage levels, consumables, sludge transport data) will provide a fuller picture 

of the state of the system, and may also be incorporated into the predictive model provided they add 

significant performance. 

The combination of these data streams is expected to be used to identify the presence of disease-

causing pathogens in water bodies in communities and to serve as input for AI models that predict 

possible disease outbreaks based on those observations. 
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The data and findings from the analyses are published on a centralized platform that is accessible to 

health practitioners, equipping them with the knowledge required to make rapid decisions aimed at 

controlling the spread of any disease outbreaks. 

The solution combines repurposed space technology to conduct ecological and environmental 

observations that are then combined with data from Internet of things sensors: acoustic in public 

toilets; from faecal sludge in sewage systems; and in water systems to detect the presence of disease-

causing pathogens. Using these datasets, ML models and AI can be developed and trained to predict 

potential community disease outbreaks, when the conditions that are conducive to these phenomena 

converge. The data and results from the analyses are maintained in a global, centralized, and 

accessible platform with no government intervention, which is an important feature for 

communicating vital and valid information. 

The combination of data from sanitation systems and EO to predict disease outcome is not currently 

practised, yet certain environmental and ecological changes are known to create the conditions 

necessary for diseases to incubate and propagate. Analysing faecal waste in community sewage 

systems also eliminates violation of individual privacy. The availability of both ecological and faecal 

analysis data presents utilization opportunities for researchers and health practitioners in their various 

approaches to understand the nature of disease spread and their effects in communities. 

3.2 Current gold standard 

AI algorithms can increase the timeliness and accuracy of outbreak detection, and further have the 

potential to improve understanding of warning indications and disease spread itself. AI algorithms 

are particularly powerful in incorporating multiple data sources with diverse properties. The 

integration of high-quality data sources, e.g., from mandatory reporting systems and laboratory tests 

or wastewater surveillance is crucial to achieve earlier and more comprehensive detection of 

notifiable and non-notifiable pathogens. Different syndromic surveillance systems and valuable 

external data sources (e.g., web trends, health apps) can be incorporated. The gain of additional 

information on the underlying causes, by using explainable AI approaches, further enables more 

specific actions to be taken for prevention. More specifically, in the field of sanitation, statistical and 

AI methodology need to be linked with a community-wide understanding of prevention that cannot 

be replaced by algorithms. 

Inadequate water, sanitation, and hygiene is linked to water-borne illnesses such as cholera, intestinal 

worms and typhoid: diarrhoeal disease is implicated in the deaths of 297 000 children aged under 

5 years every year [5] and an economic burden estimated at over $12 billion [6]. These diseases are 

especially prevalent in communities with poorly developed sanitation systems and limited access to 

safe drinking water or toilets. Therefore, these communities face constant outbreaks of water-borne 

illnesses, leading to chronic malnutrition and ill health in the local population. To mitigate the effect 

of these outbreaks, the WHO as well as other organizations have published clear guidelines to detect 

and manage outbreaks of water-related infectious diseases (WRIDs) [7][8].These guidelines suggest 

that local health authorities constantly monitor the health of their community using a combination of 

makers directly assessing WRIDs (e.g., reports from healthcare providers) as well as more indirect 

markers (e.g., sale of antidiarrheal drugs, complaints of water quality). Based on these different 

markers, health authorities can rapidly detect and verify the outbreak of disease. Once identified, the 

authorities collect information about the spread of cases and generate hypotheses about the possible 

sources of outbreak. They then collect water or other specimens to validate their hypothesis, helping 

contain an outbreak. 

These methods of detection and management have been successful in helping rapidly identify the 

outbreak of WRIDs. For example, a recent study considering time to detection for any infectious 

disease outbreak in Africa from 2017 to 2019 showed WRIDs have the shortest median time to 

detection of just 2 days [9]. While these methods allow us to rapidly mount a response to disease 

outbreaks, they do not seem to allow predictive modelling of WRID outbreaks. This limitation in the 
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current approach was highlighted in a recent CDC report where it was stated that it would be 

"impossible to predict the type of contamination or illness prior to an outbreak" using our current 

methods [10]. 

3.3 Existing AI solutions 

Currently, outbreaks are detected using statistical models. Usually, input data produced by health 

authorities or hospitals are line lists, which are often too small for AI models. Even when using online 

text data like news articles or blogs, data is transformed into lines lists of numbers of documents 

containing certain keywords [11]. With the increase of large language models, heavier use can be 

expected of AI models, e.g., to analyse text data beyond keyword matching but on a semantic level. 

The situation is similar for sanitation-level outbreak detection. The more traditional monitoring of 

concentration levels of indicators for pathogen is a task that does not require AI models nor does it 

produce enough data for AI models to show their advantage. However, with more sensors and 

secondary data at hand, as described in this TDD, AI models will probably have an advantage in 

detecting alerting changes in data that is otherwise hard to model like acoustic, weather and pathogen 

concentration levels. 

3.4 Subtopic 

Pathogen specialization 

One area of expanded focus is the application of these benchmarking tools for other developed 

algorithms. This expansion should include other datasets, other locations, other pathogens and other 

algorithms. 

Further, because different pathogens are expected to behave differently, it may well be reasonable to 

differentiate food-borne (e.g., salmonella) and vector-borne diseases (e.g., dengue). Potential 

differences in pathogenicity, social factors impactful to outbreak pattern or differential impact on the 

health system, may justify differentiation of benchmarking methodology, standards, algorithms and 

data streams to function well. 

Integrated genomic surveillance 

Clearly missing in this TG is the utilization of genomic data to aid outbreak detection. If the mutation 

rate and quality of a pathogen are well understood, outbreaks can be detected by linking genomic 

markers of pathogens amongst those infected to retrace the course and potentially the source of an 

outbreak. 

More prominently discussed due to COVID-19 is the use of routine sequencing data to detect the 

emergence of variants of concern. International research efforts quickly described the replication 

cycle of SARS-CoV 2 and how the immune response in humans helps avoid infection. This allowed 

bioinformaticians to model the likelihood of a new variant avoiding an immune response or due to 

changes in the genome responsible for the spike protein (an important physiological component for 

infecting a host cell). 

4 Ethical considerations 

The rapidly evolving field of AI and digital technology in the fields of medicine and public health 

raises a number of ethical, legal, and social concerns that have to be considered in this context. They 

are discussed in deliverable DEL1 (see clause 6), developed by the working group on Ethical 

considerations on AI4H (WG-Ethics). This clause refers to DEL1 and should reflect the ethical 

considerations of the TG-Outbreaks. 

Ethical determinations and recommendations for AI in outbreak detection must include ethical 

sustainability of the AI application in health, i.e., the ethical assessment of the risks and benefits 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/_layouts/15/WopiFrame.aspx?sourcedoc=%7B0505B020-362C-45B2-94BF-215D2EBBD8F5%7D&file=DEL01.docx&action=default
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raised by the introduction of the technology to address a public health crisis, e.g., disease outbreak 

detection, analysis, mitigation and communication. 

This project designed an ethical evaluation framework for the full deployment of AI in outbreak 

detection for an existing pathogen that can be applied to a novel pathogen as well. Diverse datasets 

such as largescale standardized population level datasets, as well as publicly available GNSS data, 

local health system community health data and environmental sensors were all considered in the 

ethical analysis of this challenging public health question. The ethical implications are considered of 

proposed data collection and use across these dimensions: 1) the quality of knowledge (evidence); 

2) the quality of data; 3) privacy; and 4) fairness. The framework prioritizes risk assessment in the 

design process. Early detection of potential problems is of high value, but perhaps just as important 

is analysis of risks at different levels. While, indeed, benefits related to the potential of AI for social 

good in sanitation and outbreak detection have been clarified in clause 1, technical risks related to the 

specific ML model in use and the dataset collected need to be anticipated and addressed by the very 

first stage of the project design – and this task specifically pertains to the ethical domain. 

The ethical concerns related to the introduction of benchmarking AI in real-world outbreak detection 

scenarios can be related to 1) the quality of knowledge (evidence) that predictive ML systems can 

produce, i.e., the quality of correlations discovered by AI on the presence of pathogens and their 

relation to certain disease outbreaks, as well as the disclosure of new potential environmental factors 

as specific causes of disease. But ML algorithms are probabilistic and certainly not infallible [12]. 

Overfitting can find patterns where none exist (a phenomenon known as apophenia), and underfitting 

can overlook a pattern where actually there is one [13]. In these cases, the evidence they produce is 

highly vulnerable to inaccuracy and without insight into training data and methods, the ability to 

evaluate this inaccuracy is severely limited. ML knowledge (evidence) can also be limited, as 

inconclusive: indeed, such models are probabilistic and therefore they rarely can posit causal 

relationships. These causal relationships are difficult to determine in almost all non-experimental 

conditions. Focus on non-causal indicators may distract attention from the underlying causes of a 

given disease, leading to focus on inaccurate or completely wrong indicators. 

Beyond the ethical considerations and risks that can be raised by the model itself, another concern is 

the quality of data used to train the ML model and the insurgence of bias. Indeed, algorithmic 

outcomes can only be as reliable as the data on which they are based. The presence of bias in the input 

dataset or in the training dataset [14] of the ML model will produce wrong and misguided evidence. 

Unwanted bias can occur due to improper deployment of an algorithm. Consider transfer context bias: 

the problematic bias that can emerge when a functioning algorithm is used in a new environment. For 

example, if a research hospital's healthcare algorithm is used in a rural clinic and assumes that the 

same level of resources is available to the rural clinic as the research hospital, the healthcare resource 

allocation decisions generated by the algorithm will be inaccurate and flawed [15]. Other biases can 

occur in this context and can undermine correct ML functioning [16]. Biases can emerge from an 

absence of sufficient representativeness of certain diseases for a model to learn the correct statistical 

pattern (minority bias). There are also biases depending on a lack of data of diseases related to 

members of protected groups; lack of data that makes an accurate prediction hard to render (missing 

data bias). Other biases might be due to availability of features that are less informative to render an 

accurate prediction; an example in healthcare ML is the identification of melanoma from an image of 

a patient with dark skin, which may be more difficult than one with light colour (informativeness 

bias). Biases in ML functioning can generate discriminatory knowledge that leads in turn to produce 

disparate impact (positive or negative) on one group of people rather than another (algorithmic 

discrimination and unfairness). This is specifically true when the dataset used to train ML algorithms 

reflect and can unintentionally exacerbate existing inequalities. Such flaws can make the evidence 

produced by ML biased and misguiding. Moreover, such knowledge is very often also opaque and 

therefore inscrutable, due to the complexity of ML (models as black boxes). Indeed, very often, the 

probabilistic path ML develops to reach a certain prediction or decision by analysing data is not 

comprehensible to the human (expert) eye. This makes the detection of biases an extremely difficult 
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task. This would also hamper public health decision-maker validation and audit procedures of 

technology and the evidence it produces. 

If such evidence is used – without precautionary assessment – by policymakers and public institutions 

broadly to make decisions (e.g., how to allocate resources or how to implement measures to prevent 

the spread of certain diseases), it can lead to risks for society at different levels. At the individual 

level, risks related to the previous concerns can be, for example, the wrong identification of certain 

disease causes in reference to a specific person or groups of people (a person or a community using 

public sanitation services can be erroneously identified as connected to the spread of a certain disease 

and be blamed for that). This would cause massive or disproportionate health surveillance for certain 

people rather than others. This would entail privacy and autonomy infringements and also lead to 

phenomena of social injustice towards vulnerable groups, due to more severe profiling towards 

members of low-income communities (e.g., because they use more public toilets). 

At the society level, ethical risks related to the previous concerns can be, for example: excessively 

broad data sharing between public and private entities (privacy issues); waste of funds and resources 

that are not directed to areas of greater need, leading therefore to: poorer public healthcare provision 

and worsening health outcomes due to the use of inaccurate evidence; inequality in outcome due to 

the use on scale of biased evidence; as well as a low adoption and loss of trust in technology and 

public sanitation due to the use of inscrutable (or black box) ML. 

Beyond the ethical implications of proposed data collection and use related to the quality of 

knowledge (evidence) and the quality of data, dimensions are also considered of data privacy and 

fairness. For the next phase of the project, the specific privacy and fairness criteria that need to be 

met for ethical assessment have been identified as critical aspects on which to focus further work in 

this TG. Such criteria are specified and used to develop our ethical framework for AI in outbreak 

detection. 

4.1 Privacy 

Individual privacy is taken into account from the choice of the specific ML model to be deployed for 

the predictive task. Highly advanced privacy-preserving techniques, such as federated or split 

learning, will be deployed to drive ML functioning to safeguard user privacy. Moreover, to be 

ethically justifiable, the project should meet the following privacy enabling factors: 1. the collection 

of user data cannot be mandatory (it is always optional for the members of the communities involved 

accepting or not the profiling); 2. the collection of user data requires the clear consensus of 

participants (the community involved should have choice over which of their data is shared and when, 

as well as having the right to ask for removal); 3. privacy-preserving techniques deployed – like those 

previously mentioned – should ensure that user data is not re-identifiable; furthermore, 4. the purpose 

of the data collection phase should be limited to a clearly defined scope (it can range from the sole 

prevention to a more influencing health-monitoring, but it needs to be declared from the beginning); 

5. the scope definition and communication concern also the data collected and the correlations 

discovered for secondary uses or in combination with other or multiple data sources – these aspects 

should be made transparent and subject to user or a public health ethics board approval. Lastly, health 

data collected will be managed and stored according to the European Union (EU) General Data 

Protection Regulation: as health data is labelled as "special category", its use can be limited to the 

sole scope of the project; this means that, for example, although datasets are anonymized, their sharing 

or selling with third-party entities outside the project is not allowed. 

4.2 Fairness 

A first step to operationalize fairness is based on choosing an ML model able to ensure at a minimum 

threshold three main criteria known as distributive justice options: [17] 1) equal outcomes, i.e., the 

benefits produced from the deployment of ML models in terms of outcomes ought to be the same for 

protected and unprotected groups; 2) equal performance, i.e., performance and results of ML ought 
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to be equally accurate for members belonging to protected and unprotected groups for such metrics 

as accuracy, sensitivity (equal opportunity), specificity (equalized odds), and positive predictive value 

(or predictive parity); and 3) equal allocation, also called as demographic parity, [18] i.e., the 

allocation of resources as decided by the model ought to be equal across groups and especially 

proportionally allocated to members of the protected group. The metric used to evaluate is the rate of 

positive predictions produced by ML for protected and unprotected groups. Further work on fairness 

in AI for sanitation and how to operationalize it will be developed in the next phase of the project. 

These considerations constitute a first ethical compass to acknowledge and systematically analyse the 

major ethical issues connected to the use of AI for outbreak detection that underpin the ethics by 

design approach. In the next phase of the project, such analysis and ethical risk assessment will be 

expanded through the analysis of specific case studies in order to build specific guidelines for the 

responsible use of AI in outbreak detection along with an operationalizable ethical risk. 

5 Existing work on benchmarking 

This clause focuses on existing benchmarking processes in the context of AI and outbreak detection 

for quality assessment. It addresses different aspects of the existing work on benchmarking of AI 

systems (e.g., relevant scientific publications, benchmarking frameworks, scores and metrics and 

clinical evaluation attempts). The goal is to collect all relevant learnings from previous benchmarking 

that could help to implement the benchmarking process in this TG. 

RKI has been running a small benchmarking setup occasionally to compare models as follows. 

– Mandatorily reported data in infections and pathogens in Germany were aggregated to 

weekly numbers of infection cases reported and cases being part of an outbreak. 

– Several outbreak detection algorithms operating on univariate data were trained on data of 

the past 5 years per disease (exception may be necessary). 

– Continuing testing was conducted on a protracted data set derived from, for example, a given 

year (e.g., the sixth) following the training data set. Outbreak detection was applied to the 

next week under realistic conditions (prospective 1 week ahead: data available until last 

week). 

– Models were compared using scores that are or comprised of functions using true or false 

positive or negative rates (TP, FP, TN, FN) like sensitivity, specificity, precision, F1-score. 

5.1.1 Publications on benchmarking systems 

Existing work in benchmarking of outbreak detection algorithms in the literature is more closely 

described in How to benchmark disease outbreak detection algorithms: A review; located on the 

TG‑Outbreaks collaboration site. 

5.1.2 Benchmarking by AI developers 

All developers of AI solutions for outbreak detection implemented internal benchmarking systems to 

assess performance. This clause outlines the insights and learning from this work of relevance for 

benchmarking in this TG. 

The most crucial insight in benchmarking outbreak detection is that (labelled) data are rare. First, 

their quantity is low. Opposed to sensor and diagnostic data in medicine, which are indispensable 

tools of the daily work in a medical facility, surveillance of infectious diseases in a public health 

setting is focused on rare and impactful diseases. Thus, by definition, fewer data are expected. 

Second, the ground truth on outbreaks is most likely not known. In individual-level data, there tends 

to be less uncertainty when diagnosing a patient with a notifiable infectious disease. However, 

whether cases were infected by the same event or source and whether all affected by such an outbreak 

have been recorded by the health authorities is unknown. Only on rare occasions are outbreaks well 

investigated and understood. This information, i.e., these labels, are, however, not publicly available. 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/outbreaks/review_benchmark_outbreaks.pdf
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Thus, outbreak detection is often an unsupervised classification. The goal is to detect an anomaly. 

Due to the small number of available data, outbreak detection algorithms are usually more top-down, 

meaning, they have stronger assumptions about the data generation process. This is in stark contrast 

to AI models that will learn this process by being trained on vast amounts of data. 

To bridge the lack of labels on outbreaks and low numbers of data, it is common to simulate time 

series and inject outbreaks using statistical methods. During this work it was realized that this 

procedure is not ideal. The main insight was to use not only the parameters introduced in the literature, 

but also curve fitting to find a parameter set for the simulation models that will be close to the internal 

data. 

As described in How to benchmark disease outbreak detection algorithms: A review; located at the 

TG-Outbreaks collaboration site, it is desired to highlight how important specialized metrics are. 

Good performance tends to be measured much better by timeliness or the detection of prominent 

outbreaks rather than F1-score or accuracy that appear in more classical ML tasks. 

5.1.3 Relevant existing benchmarking frameworks 

Triggered by the hype around AI, recent years have seen the development of a variety of 

benchmarking platforms where AIs can compete for the best performance on a determined dataset. 

Given the high complexity of implementing a new benchmarking platform, the preferred solution is 

to use an established one. This clause reflects on the different existing options that are relevant to this 

TG and includes considerations of using the assessment platform described in DEL7.5 (see clause 6), 

which explores implementation options that can be used to evaluate AI for health for the different 

TGs). 

Given the sensitive nature of the data, it is unlikely that a benchmark will be hosted by a commercial 

platform. Also, most benchmarking platforms lack the possibility to ask for more qualitative features 

of the model. While performance of models can be well described using metrics, especially in a health 

setting, possibly even more so on a population-level, biases are likely to still be present. 

6 Benchmarking by the Topic Group 

This clause describes all technical and operational details regarding the benchmarking process for the 

TG-Outbreaks AI task including clauses for each version of the benchmarking that is iteratively 

improved over time. 

Ethics 

• DEL1 (2022): Ethics and governance of artificial intelligence for health 

Regulatory 

• DEL2 (2022): Regulatory considerations on artificial intelligence for health 

• DEL2.1: Mapping of IMDRF essential principles to AI for health software (Pre-published) 

• DEL2.2 (2022): Good practices for health applications of machine learning: Considerations 

for manufacturers and regulators 

Technical 

• DEL0.1 (2022): Common unified terms in artificial intelligence for health 

• DEL3: AI4H requirement specifications (Pre-published) 

• DEL4: AI software life cycle specification (Pre-published) 

• DEL5.1: Data requirements (Pre-published) 

• DEL5.3: Data annotation specification (Pre-published) 

• DEL5.4: Training and test data specification (Pre-published) 

• DEL5.5: Data handling (Pre-published) 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/tg/outbreaks/review_benchmark_outbreaks.pdf
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/_layouts/15/WopiFrame.aspx?sourcedoc=%7B8BFCFF21-3908-4BAD-AB9C-9814EB3F9B36%7D&file=DEL07_5.docx&action=default
https://handle.itu.int/11.1002/plink/7648953012
https://handle.itu.int/11.1002/plink/9704268351
https://handle.itu.int/11.1002/plink/1720539486
https://handle.itu.int/11.1002/plink/9513084672
https://handle.itu.int/11.1002/plink/4372169058
https://handle.itu.int/11.1002/plink/8759326104
https://handle.itu.int/11.1002/plink/7921680453
https://handle.itu.int/11.1002/plink/1862749350
https://handle.itu.int/11.1002/plink/1450298673
https://handle.itu.int/11.1002/plink/6592438107
https://handle.itu.int/11.1002/plink/1685437902
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• DEL6: AI training best practices specification (Pre-published) 

• DEL7: Artificial intelligence for health evaluation considerations (Pre-published) 

• DEL7.2: Artificial intelligence technical test specification (Pre-published) 

Clinical evaluation and use cases 

• DEL7.4: Clinical evaluation of AI for health (Published) 

• DEL10: AI4H use cases: Topic Description Documents (Pre-published) 

• DEL10.2: FG-AI4H Topic Description Document for the Topic Group on AI-based 

dermatology (TG-Derma) (Pre-published) 

• DEL10.4: FG-AI4H Topic Description Document for the Topic Group on falls among the 

elderly (TG-Falls) (Pre-published) 

• DEL10.6: FG-AI4H Topic Description Document for the Topic Group on malaria detection 

(TG-Malaria) (Pre-published) 

• DEL10.7: FG-AI4H Topic Description Document for the Topic Group on maternal and child 

health (TG-MCH) (Pre-published) 

• DEL10.8: FG-AI4H Topic Description Document for the Topic Group on neurological 

disorders (TG-Neuro) (Pre-published) 

• DEL10.9: FG-AI4H Topic Description Document for the Topic Group on AI for 

ophthalmology (TG-Ophthalmo) (Pre-published) 

• DEL10.10: FG-AI4H Topic Description Document for the Topic Group on outbreak 

detection (TG-Outbreaks) (Pre-published) 

• DEL10.12: FG-AI4H Topic Description Document for the Topic Group on AI for radiology 

(TG-Radiology) (Pre-published) 

• DEL10.14: FG-AI4H Topic Description Document for the Topic Group on symptom 

assessment (TG-Symptom) (Pre-published) 

• DEL10.15: FG-AI4H Topic Description Document for the Topic Group on tuberculosis 

(TG‑TB) (Pre-published) 

• DEL10.17: FG-AI4H Topic Description Document for the Topic Group on dental diagnostics 

and digital dentistry (TG-Dental) (Pre-published) 

• DEL10.20: FG-AI4H Topic Description Document for the Topic Group on AI for endoscopy 

(TG-Endoscopy) (Pre-published) 

• DEL10.21: FG-AI4H Topic Description Document for the Topic Group on musculoskeletal 

medicine (TG-MSK) (Pre-published) 

• DEL10.23: FG-AI4H Topic Description Document for the Topic Group on AI for traditional 

medicine (TG-TM) (Pre-published) 

• DEL10.24: FG-AI4H Topic Description Document for the Topic Group on AI-based point-

of care diagnostics (TG-POC) (Pre-published) 

• TG-Dental Output 1: Artificial intelligence in dental research: A checklist for authors and 

reviewers (Pre-published) 

• TG-Dental Output 2: Artificial intelligence for oral and dental healthcare: Core education 

curriculum (Pre-published) 

• TG-Dental Output 3: Ethical considerations on artificial intelligence in dentistry: A 

framework and checklist (Pre-published) 

• DT4HE Output 1: Guidance on AI and digital technologies for COVID health emergency 

(Pre-published) 

https://handle.itu.int/11.1002/plink/5413709268
https://handle.itu.int/11.1002/plink/9402678513
https://handle.itu.int/11.1002/plink/8079263541
https://handle.itu.int/11.1002/plink/2956871304
https://handle.itu.int/11.1002/plink/4613079258
https://handle.itu.int/11.1002/plink/7024835691
https://handle.itu.int/11.1002/plink/2094536817
https://handle.itu.int/11.1002/plink/3176502894
https://handle.itu.int/11.1002/plink/4596172083
https://handle.itu.int/11.1002/plink/1583796240
https://handle.itu.int/11.1002/plink/0817439652
https://handle.itu.int/11.1002/plink/8235917046
https://handle.itu.int/11.1002/plink/6587190423
https://handle.itu.int/11.1002/plink/7469210835
https://handle.itu.int/11.1002/plink/5238490716
https://handle.itu.int/11.1002/plink/1269408753
https://handle.itu.int/11.1002/plink/0132856749
https://handle.itu.int/11.1002/plink/4937286015
https://handle.itu.int/11.1002/plink/5639478201
https://handle.itu.int/11.1002/plink/4379680251
https://handle.itu.int/11.1002/plink/1465370892
https://handle.itu.int/11.1002/plink/3874965210
https://handle.itu.int/11.1002/plink/2580463179
https://handle.itu.int/11.1002/plink/9867214530
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The benchmarking of TG-Outbreaks will be further developed and improved continuously to reflect 

new features of AI systems or changed requirements for benchmarking. This clause outlines all 

benchmarking versions that have been implemented thus far and the rationale behind them. It serves 

as an introduction to clause 6.1.1, where the actual benchmarking methodology for each version is 

described. 

Benchmarking in this deliverable is more focused on identifying the right data acquisition processes 

and metrics than on introducing a powerful algorithm. The task of outbreak detection is quite diverse. 

For example, data quality and the feasibility to achieve good results in outbreak detection will heavily 

depend on the disease and how data is obtained for this disease. (Public) health systems may monitor 

different diseases with different methods, which would lead to an algorithm performing well in one 

setting not doing so in another. 

6.1.1 Benchmarking version 1 

This clause includes all technological and operational details of the benchmarking process for 

benchmarking version 1. 

6.1.1.1 Overview 

This clause provides an overview of the key aspects of this benchmarking iteration, version 1. 

In this iteration, a very basic reimplementation of a benchmarking setup used in the literature is 

applied [19]. Later, a variant is introduced on how to obtain data for benchmarks that utilize real data 

that cannot be shared. 

6.1.1.2 Benchmarking methods 

This clause provides details about the methods of benchmarking version 1. It contains detailed 

information about the benchmarking system architecture, the dataflow and the software for the 

benchmarking process (e.g., test scenarios, data sources and legalities). 

At present, outbreak detection algorithms are commonly parametrized and benchmarked on small 

sets of data or on simulations. These simulations mimic infection counts with outbreak and capture 

only a few, well-known aspects of disease transmission, and often reduce benchmarking to the task 

of detecting elevated case count levels. By creating solutions for using real outbreak data from 

mandatory surveillance system, e.g. by sending the algorithm to the place of the data, algorithms 

could be benchmarked on the actual task of detecting real world outbreak events. 

The topic of outbreak detection is of national and international concern. Most detection algorithms 

are, however, naturally developed at the national level. Thereby, each country relies on individual 

national disease surveillance systems. 

To create standardized benchmarking for output detection algorithms, this TG aims to address all 

aspects that are relevant and shared across countries. 

The architecture, data flow and other technical details are described within the focus group since the 

internal health.aiaudit platform was adhered to for the work. An example benchmark is uploaded and 

can be checked out at health.aiaudit.org. 

6.1.1.3 AI input data structure for the benchmarking 

This clause describes the input data provided to AI solutions as part of the benchmarking of 

TG‑Outbreaks. It covers the details of the data format and coding at the level of detail needed to 

submit an AI for benchmarking. This is the only TDD clause addressing this topic. Therefore, the 

description needs to be complete and precise. This clause does not contain the encoding of the labels 

for the expected outcomes. It is only about the data the AI system will see as part of the benchmarking. 

There are different potential data sources that can be used for outbreak detection and serve as input 

for the detection algorithms. Possible data input sources can be based on different surveillance 
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systems, such as national mandatory reporting systems or syndromic surveillance systems. Further 

input data sources, particularly accessible in near real-time, are online sources (such as Wikipedia, 

Google Trends, HealthTweets, X) or data from symptom‑assessment apps, healthcare providers, 

hotlines etc. Real time data sources have high potential significantly to improve outbreak detection 

particularly in accuracy or timeliness.  

Outbreak detection traditionally happens as part of indicator-based surveillance (IBS). According to 

WHO, it is defined as the "systematic collection, monitoring, analysis, and interpretation of structured 

data, i.e. indicators, produced by a number of well-identified, predominantly health-based formal 

source''. The complementing form of surveillance to IBS is called event-based surveillance (EBS) 

and can be understood, according to WHO, as "the organized collection, monitoring, assessment and 

interpretation of mainly unstructured ad hoc information regarding health events". Since 

benchmarking relies somewhat on a pre-specified data model to easily run different algorithms that 

are in focus, describing benchmarking on IBS data. EBS data lack structure by definition and 

therefore, it is hard to adjust benchmarking to all possible forms they can assume. 

Although more structured, IBS data still come in different shapes that might be relevant for the later 

use of algorithms. For example, it might be important to have a long history of data, since some 

algorithms require data to have been collected for at least 5 years. Furthermore, almost any 

surveillance system that reports notifiable diseases does so by providing the date of infection or report 

and cases numbers aggregated to weeks, months or quarter and a location of varying precision (street 

address, county, region, federal state, etc.). The choice of algorithms here, however, depends on the 

available granularities of the former properties. For example, to detect whether two cases are part of 

an outbreak, the Knox statistic can be used where closeness is evaluated given a pre-specified critical 

distance and time span. This makes it desirable to have a more exact location than using the former 

method. Most algorithms can incorporate spatial information given there is a meaningful metric for 

distance and a sufficiently strong spatial resolution like SaTScan. Others, such as CUSUM or 

regression models, operate on aggregated time series. 

If a data format were agreed upon, it would still be necessary to determine the source of these data. It 

is not, as obviously assumed, the best way to benchmark using real data from a public health institute. 

There are studies that use wholly simulated data, real data with simulated outbreaks and other artificial 

alterations of real data to ascertain where an outbreak is situated, and only real data where outbreak 

labels are known form the evaluations of epidemiologists. All these different approaches have their 

advantages and disadvantages. 

The main motivation to evaluate outbreak detection algorithms using simulated data is that it provides 

a ground truth about the outbreaks injected into the (often also simulated) endemic baseline. Since 

disease dynamics, such as seasonality, reporting behaviour and trends, are known, a good estimate of 

realistic data can be formulated. The ground truth knowledge about outbreaks might be missing in 

real data and therefore makes it impossible to calculate several performance scores such as specificity 

and sensitivity. 

One approach for such a simulation is to produce a linear model that generates mean outbreak cases 

per week, which are then used as an input for a negative binomial model to introduce some natural 

variance. The model parameters are chosen to mimic characteristics of time series for different 

pathogens. Outbreaks are then generated using a Markov process to selected weeks as outbreak 

weeks. In such outbreak weeks, a realization of a Poisson distribution with a mean equal to a chosen 

constant is added. The added cases are distributed over the outbreak week given a log-normal 

distribution. 

Even though the usage of real data might have clear disadvantages, such as being incomplete, which 

motivated the development of disease outbreak simulations, it is still desirable to utilize real data for 

the evaluation and training of disease outbreak algorithms, as these are the data on which outbreak 

detection algorithms will later be applied. 
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A straightforward approach to train or test an outbreak detection algorithm is to use real data where 

outbreaks are labelled by epidemiologists. Downsides of this method are that not all outbreaks are 

recognized by epidemiologists, sometimes only the reporting data and not the data of infection is 

known, or the data are subject to reporting delays that can degrade the performance of an algorithm. 

Another approach is to select the 20% highest values from a time series and subtract them to create 

an endemic time series on which outbreak detection happens in the form of aberration detection. Due 

to down-weighting of high baseline values of algorithms trained on synthetic data, one alternative is 

to take real data, train a generalized linear model or, given seasonality, a generalized additive model, 

let the model detect extreme values, and then replace them with the realization of a negative binomial 

distribution using a lower expected value than those removed. This way, extreme values, considered 

as outliers, are removed and we get two time series, one with and one without outliers or /extreme 

values. These two time series of endemic and epidemic case counts are reunited with the epidemic 

outbreak time series being shifted by 1 year into the future, incorporating knowledge about the 

seasonality of the disease of interest, to create new labelled time series from real data. 

6.1.1.4 AI output data structure 

Similar to the input data structure for benchmarking, this clause describes the output data the AI 

systems are expected to generate in response to those input. It covers the details of the data format, 

coding and error handling at the level of detail needed for an AI to participate in benchmarking. 

The output may be binary (outbreak or not) or a probability (like) score indicating the chance of an 

outbreak. It could also be a probability distribution if a Bayesian approach is used. In any case, the 

output will need to be created for a meaningful temporal, spatial, and demographic stratification. Most 

commonly, predictions are desired for each disease, per week, and on the smallest geographical unit 

a country usually uses (e.g., a county). 

6.1.1.5 Test data label or annotation structure 

While AI systems can only receive the input data described in previous clauses, the benchmarking 

system needs to know the expected correct answers (sometimes called labels) for each element of the 

input data, so that it can compare the expected with the actual AI output. Since this is only needed for 

benchmarking, it is encoded separately. The details are described in clause 6.1.1.6. 

Labels in this task usually indicate the occurrence of an outbreak. Individuals affected by the same 

outbreak may be assigned a common outbreak identifier (ID). These IDs can be assigned after experts 

have investigated an outbreak, conducted interviews or even performed genomic sequencing on the 

pathogens that cause infection in the affected individuals. 

Labels can also be generated automatically using statistical methods that detect strong increases of 

case counts, bell-like curves in the data, or similar. The goal in this approach is to develop early 

warning systems that are faster than traditional surveillance, such as the laboratory system. Detecting 

a strong increase in counts in laboratory-confirmed cases of influenza is well understood. Running an 

outbreak detection algorithm on influenza case counts is not a real advantage, since the onset of an 

influenza wave is easily spotted, even without algorithmic help. Other data sources can, however, 

offer a time advantage. To then save time by labelling easily identifiable peaks in public health data, 

labels can be produced automatically. 

6.1.1.6 Scores and metrics 

Scores and metrics are at the core of the benchmarking. This clause describes the scores and metrics 

used to measure the performance, robustness and general characteristics of submitted AI systems. 

When measurement of the performance of an algorithm is desired, criteria might be sought, such as 

usefulness, cost, sensitivity, representativeness, timeliness, simplicity, flexibility and acceptability. 

These are measures that include not only statistical algorithms, but also the more general criteria for 
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public health systems. Common measures for the comparison of statistical algorithms (more closely 

described in [20]) are as follows. 

– Sensitivity. 

– Specificity. 

– Precision. 

– Negative predictive value. 

– F1-score. 

– Receiver operating characteristic (ROC)/area under curve. 

– ROC using a timeliness measure where a minimum timeliness D is specified such that 

outbreaks must be detected within t + D with t being the time point when an outbreak starts. 

Let s be the time point where an outbreak starts, then 1 − s/D replaces the false positive rate 

in our ROC curve. This timeliness measure is specified to be not less than 0. 

– ROC where a normalized measure is used to correct time elapsed since the start of an 

outbreak. This might be important to compare time series with various time granularity 

measures. Such a method could be used to count the time steps elapsed since an outbreak, 

where a time step is determined by granularity or some other criterion. 

– Instead of replacing an axis on the ROC, we can add a third dimension such as timeliness and 

calculate a volume under the curve to measure the performance of an algorithm. 

– Matthews correlation coefficient. 

– Scaled probability of detection (POD), where the proportion is calculated of counts detected 

by an algorithm within an outbreak as being extreme. 

– One extension of the POD is the scaled POD, which takes the size of the outbreak detected 

into account by weighting its amount with its size, i.e. the number of cases belonging to an 

outbreak. 

– Another timeliness measure is the average time before detection. It is the sum of all outbreaks 

detected by an algorithm multiplied by the time elapsed since an outbreak, normalized by the 

overall number of outbreaks. 

– A variation of the average time before detection that corrected absolute delays in detection 

of an outbreak is the relative size before detection. This metric consists of the sum of detected 

outbreaks multiplied by the deviation of the epidemic time series from the endemic time 

series, i.e. the fraction of cases during the detection of the outbreak divided by the number of 

cases not part of an outbreak. This metric is then normalized by the overall number of 

outbreaks. 

– Hit rate: If forecast-based outbreak detection is applied, the number of equals signs between 

forecasts and real data can be calculated, i.e., by looking at the sign of the difference of the 

last forecast to its predecessor and vice versa for the real data. 

6.1.1.7 Test dataset acquisition 

Test dataset acquisition includes a detailed description of the test dataset for the AI model and, in 

particular, its benchmarking procedure including quality control of the dataset, control mechanisms, 

data sources and storage. 

Data from the German mandatory reporting system, collected since 2001 at the RKI, contains 

8 million infectious disease cases and undergoes constant data quality checks by data engineers and 

review by epidemiologists. The data contain expert labels indicating which cases are related to 

specific disease outbreaks. All data are collected via a web service and stored in a structured relational 

structured query language database. The data arrives pseudonymized from about 400 local health 

agencies. For each case, information is given on the pathogen, demographics (age, sex), location 

(Nomenclature of Territorial Units for Statistics-3 level, county) and additional features such as 
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hospitalization, fatality and affiliation with care facilities and others. Some data are publicly available 

in an aggregated form, e.g. by counts for a specific disease, by week and county. However, details 

and single cases are not published. Most importantly, the expert outbreak labels have not been 

disclosed so far. In this deliverable, this set is referred to as German SurvNet data. 

6.1.1.8 Data sharing policies 

This clause provides details about legalities in the context of benchmarking. Each dataset that is 

shared should be protected by special agreements or contracts that cover, for instance, the data sharing 

period, patient consent, and update procedure (see also DEL5.5 and DEL5.6 in clause 6). 

In Germany, there is no framework on how to share data. Acquiring data on notifiable diseases is 

regulated by a specific law. It is not like a clinical trial that has clear frameworks for data sharing, 

e.g., of anonymized data. In practice, the situation seems to be similar in other countries since there 

are hardly any labelled data sets on case count numbers and corresponding outbreak labels. A possible 

alternative is the aforementioned method of fitting a simulation model to non-sharable internal data. 

This possibility is under exploration at RKI at the time of publication. Promising preliminary results 

have been achieved by running a non-linear fitting algorithm (using the lmfit Python library) of 

labelled case count data on the simulation model described by Noufaily et al. [19]. The fitting is 

conducted in two steps. First, data without outbreak cases is fitted to the simulation model to find the 

best parameters describing the real data. To increase the chance to find a good fit, the trend is 

estimated from the data using a linear model and used as an initial value for the fitting routine. Second, 

the parameters from step one are used to run a second fit, this time, however, only the outbreak-

scaling factor is tuned. Outbreaks are seeded using a Markov chain. Whenever an outbreak occurs, 

the scaling factor determines how many more cases are observed compared to the number of endemic 

cases. Once the optimal parameters for the simulation models are found, data for the benchmarking 

can be produced. 

Experiments to scale this approach have not yet been successful. In Germany, almost 100 pathogens 

and diseases are notifiable to authorities. There are 412 counties in Germany, which means that there 

are 41 200 time series that could possibly be used to curate a diverse data set for the benchmarking 

challenge. We have been experimenting with clustering to identify around 30 time series that best 

describe the set of time series to be expected in the German public health setting. However, results 

were not satisfactory before the submission deadline of this TDD. Therefore, the proposed parameters 

for the simulation model from Noufaily et al. [19] were used instead. 

6.1.1.9 Baseline acquisition 

The main purpose of benchmarking is to provide stakeholders with the numbers they need to decide 

whether AI models provide a viable solution for a given health problem in a designated context. To 

achieve this, the performance of the AI models needs to be compared with available options achieving 

the same clinically meaningful endpoint. This, in turn, requires data on the performance of the 

alternatives, ideally using the same benchmarking data. As the current alternatives typically involve 

doctors, it might make sense to combine the test data acquisition and labelling with additional tasks 

that allow the performance of the different types of health workers to be assessed. 

The baseline in this TDD is the set of time series proposed by Noufaily et al. [19]. It is a set of 

univariate time series. Thus, it fails to take into account the spatiotemporal nature of infectious 

diseases. Also, the parameters were chosen based on case counts observed in the UK. They may miss 

patterns observed for other countries and infectious diseases not notifiable or endemic in the UK. 

Using the simulation approach described in clause 0, more diverse time series could be submitted to 

the benchmark chosen. 
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6.1.1.10 Reporting methodology 

This clause discusses how the results of benchmarking runs will be shared with the participants, 

stakeholders and the general public. 

The native reporting output of the health.aiaudit platform of this Focus Group is used. 

6.1.1.11 Result 

This clause gives an overview of the results from runs of this benchmarking version of this topic. 

Even if this TG prefers an interactive drill-down rather than a leaderboard, a context of common 

interest is chosen to give some examples. 

Data simulation was still ongoing during final submission for the TDD. Furthermore, approval to 

share simulated data has also not yet been legally cleared. Thus, results will be shared after 

publication. 

7 Regulatory considerations 

For AI-based technologies in healthcare, regulation is not only crucial to ensure the safety of patients 

and users, but also to accomplish market acceptance of these devices. This is challenging because 

there is a lack of universally accepted regulatory policies and guidelines for AI-based medical 

devices, though significant progress has been made within the last year, with the passing of legislation 

and agreements by the EU and USA. To ensure that the benchmarking procedures and validation 

principles of FG-AI4H are secure and relevant for regulators and other stakeholders, the working 

group on "Regulatory considerations on AI for health" (WG-RC) compiled requirements that consider 

these challenges. 

The deliverables with relevance for regulatory considerations (see clause 6) are DEL2, DEL2.1, and 

DEL2.2 (which provides a checklist to understand expectations of regulators, promotes step-by-step 

implementation of safety and effectiveness of AI-based medical devices, and compensates for the 

lack of a harmonized standard). DEL4 identifies relevant standards and best practices for AI software 

lifecycle specification. Clause 7.1 discusses how the different regulatory aspects relate to 

TG‑Outbreaks. 

7.1 Existing applicable regulatory frameworks 

Most AI systems that are part of the FG-AI4H benchmarking process can be classified as software as 

medical device (SaMD) and are eligible for a multitude of regulatory frameworks that are already in 

place. In addition, these AI systems often process sensitive personal health information that is 

controlled by another set of regulatory frameworks. This section summarizes the most important 

aspects that AI manufacturers need to address if they are developing AI systems for outbreak 

detection. 

The US Food and Drug Administration (FDA), Health Canada, and the UK Medicines and Healthcare 

products Regulatory Agency have jointly issued 10 guiding principles to inform the development of 

what they call good machine-learning practice, to help promote safe, effective and high-quality 

medical devices that use AI and ML (AI-ML): 

– multi-disciplinary expertise is leveraged throughout the total product life cycle; 

– good software engineering and security practices are implemented; 

– clinical study participants and data sets are representative of the intended patient population; 

– training data sets are independent of test sets; 

– selected reference datasets are based upon best available methods; 

– model design is tailored to the available data and reflects the intended use of the device; 

– focus is placed on the performance of the human-AI team; 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/wg/SitePages/WG-RC.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/_layouts/15/WopiFrame.aspx?sourcedoc=%7BF2F46A99-7457-4BC8-81A3-0E1E63D6072A%7D&file=DEL02.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/_layouts/15/WopiFrame.aspx?sourcedoc=%7B6AF7C004-8BCE-4151-9F44-45F041A1EB1D%7D&file=DEL02_1.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/_layouts/15/WopiFrame.aspx?sourcedoc=%7B1ED0D4D1-876C-4A0F-AEF7-06D3F445F5E6%7D&file=DEL02_2.docx&action=default
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/_layouts/15/WopiFrame.aspx?sourcedoc=%7BC68833D1-9B31-4E8E-8A4A-3939D7DEA56F%7D&file=DEL04.docx&action=default
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– testing demonstrates device performance during clinically relevant conditions; 

– users are provided with clear, essential information; 

– deployed models are monitored for performance and re-training risks are managed. 

The use of AI-ML and devices utilizing these advanced technologies may be exempt from FDA 

oversight under the 21st Century Cures Act which was enacted in December 20163 and which 

modified the Federal Food, Drug, and Cosmetic Act to create the exemption. Clinical decision 

support (CDS) software that meets the following criteria (under 21 USC § 360j(o)(1)(E)4): 

– is not "intended to acquire, process, or analyse a medical image or a signal from an in vitro 

diagnostic device or signal acquisition system"; 

– is intended for the purpose of "displaying, analysing, or printing medical information about 

a patient or other medical information (such as peer-reviewed clinical studies and clinical 

practice guidelines)"; 

– is intended for the purpose of "supporting or providing recommendations to a health care 

professional about prevention, diagnosis, or treatment of a disease or condition"; 

– is intended for the purpose of "enabling such health care professional to independently review 

the basis for such recommendations that such software presents so that it is not the intent that 

such health care professional rely primarily on any of such recommendations to make a 

clinical diagnosis or treatment decision regarding an individual patient". 

To meet the scope of this statutory CDS exemption, the software must be intended for use by a 

healthcare professional (HCP) – software intended for patient or consumer use is outside the scope 

of the exemption. For HCP applications, software must be FDA approved for premarket 501(k) safety 

and effectiveness assessment. 

This FDA Framework for Modifications to AI-ML-based SaMD5 is an internationally harmonized 

framework drawing from: the International Medical Device Regulators Forum (IMDRF) risk 

categorization principles, FDA benefit-risk framework, risk management principles in the software 

modifications guidance and the organization-based total product life cycle approach as envisioned in 

the Digital Health Software Pre-Certification (Pre-Cert) Program6. 

  

 

3 https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/21st-century-cures-act 

(visited 2025-04-02). 

4 https://uscode.house.gov/view.xhtml?req=granuleid:USC-1994-title21-

section360j&num=0&edition=1994 (visited 2025-04-02). 

5 https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-

Learning-Discussion-Paper.pdf (visited 2025-04-02). 

6 https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-

precertification-pre-cert-pilot-program (visited 2025-04-02). 

https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/21st-century-cures-act
https://uscode.house.gov/view.xhtml?req=granuleid:USC-1994-title21-section360j&num=0&edition=1994
https://uscode.house.gov/view.xhtml?req=granuleid:USC-1994-title21-section360j&num=0&edition=1994
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
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Annex A 

 

Glossary 

Table A.1 lists all the relevant abbreviations, acronyms and uncommon terms used in this deliverable. 

Table A.1 

Acronym/Term Expansion Comment 

AI Artificial intelligence  

AI4H Artificial intelligence for health  

CAB Community Ablution Block  

CDS Clinical Decision Support  

CfTGP Call for Topic Group participation  

DEL Deliverable   

EBS Event-Based Surveillance  

EO Earth Observation  

FDA Food and Drug Administration  

FGAI4H Focus Group on AI for Health  

FN False Negative  

FP False Positive  

GNSS Global Navigation Satellite System  

HCP Healthcare Professional  

IBS Indicator-Based Surveillance  

ID Identifier  

IMDRF International Medical Device Regulators 

Forum 

 

ITU International Telecommunication Union  

ML Machine Learning  

POD Probability Of Detection  

RKI Robert Koch Institute  

ROC Receiver Operating Characteristic  

SaMD Software as a Medical Device  

TDD Topic Description Document  

TG Topic Group  

TN True Negative  

TP True Positive  

WG Working Group  

WHO World Health Organization  

WRID Water-Related Infectious Disease  

_____________ 
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