

 Standardization Sector

ITU-T Focus Group Deliverable
(03/2023)

Focus Group on Artificial Intelligence for Health

(FG-AI4H)

 FG-AI4H DEL7.2

Artificial intelligence technical test
specification

ITUPublications International Telecommunication Union

 FG-AI4H DEL7.2 (2023-03) i

ITU-T FG-AI4H Deliverable DEL7.2

Artificial intelligence technical test specification

Summary

Deliverable 7.2 specifies how an AI can and should be tested in silico. Among other aspects, best

practices for test procedures known from, (but not exclusively,) AI challenges are being reviewed in

this document. Important testing paradigms that are not exclusively related to AI applications are

mentioned too.

Keywords

Artificial intelligence, assessment platform, bias, data preparation, health data, machine learning,

metrics, performance, software testing, test specification, training.

Note

This is an informative ITU-T publication. Mandatory provisions, such as those found in ITU-T

Recommendations, are outside the scope of this publication. This publication should only be referenced

bibliographically in ITU-T Recommendations.

Change Log

This document contains Version 1 of Deliverable DEL7.2 on "Artificial intelligence technical test

specification" approved on 16 March 2023 via the online approval process for the ITU-T Focus Group

on AI for Health (FG-AI4H).

Editor: Auss Abbood

Robert Koch Institute

Germany

E-mail: AbboodA@rki.de

© ITU 2025

Some rights reserved. This publication is available under the Creative Commons Attribution-Non

Commercial-Share Alike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO;

https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

For any uses of this publication that are not included in this licence, please seek permission from ITU

by contacting TSBmail@itu.int.

mailto:AbboodA@rki.de
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-sa%2F3.0%2Figo&data=05%7C02%7Canibal.cabrera%40itu.int%7C0a344a9ab4d94de8688b08dc7a6ac2a4%7C23e464d704e64b87913c24bd89219fd3%7C0%7C0%7C638519846146526208%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=26EPjcaGt0K7Jqk2Sv9QRmEPzfjN0fYKm4xFRdVn0t4%3D&reserved=0
mailto:TSBmail@itu.int

ii FG-AI4H DEL7.2 (2023-03)

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Terms and definitions ... 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Technical Report ... 1

4 Abbreviations and acronyms .. 1

5 State of the art in testing ... 2

5.1 Testing principles ... 2

5.2 Test levels ... 2

5.3 Test types .. 2

5.4 Coverage ... 3

5.5 Verification and validation for machine learning ... 3

6 Identification of gaps needed for the assessment platform ... 4

6.1 Gaps in functional and black-box testing ... 4

6.2 Gaps in non-functional testing .. 5

6.3 Leaderboard probing .. 5

Bibliography... 7

 FG-AI4H DEL7.2 (2023-03) 1

ITU-T FG-AI4H Deliverable DEL7.2

Artificial intelligence technical test specification

1 Scope

This deliverable is part of WG-DAISAM's endeavour to produce an assessment platform for the

Focus Group AI4H. An assessment platform is meant to be a software framework that allows users

from different topic groups to assess AIs in a transparent and standardized fashion on (real) health

data. While such an assessment platform describes a pipeline of several diverse operations that need

to be described, this document focusses on the testing phase, i.e., the part where the AI's performance

is tested and evaluated in a numerical and/or graphical way. This includes the training of the AI on

data that is assumed to be cleared of biases and represents the problem-to-solve appropriately. Data

preparation is outside the scope of this document and can be found in FG-AI4H Deliverable 5. The

test specification then includes the submission of this trained model to the assessment platform, its

run on the undisclosed test data and the calculation of the performance metrics. These metrics need

to give a representative estimate of the AI's performance and need to be well adjusted to detect non-

robust, biased or otherwise flawed AI. How these metrics are defined and chosen is outside the scope

of this document and more closely discussed in Deliverable 7.3.

2 References

[DEL0.1] ITU-T FG-AI4H DEL0.1 (2022), Common unified terms in artificial intelligence

for health, ITU/WHO.

[DEL5] ITU-T FG-AI4H DEL5 (2019), Data Specification.
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL05.docx

[DEL7.3] ITU-T FG-AI4H DEL7.3 (2002), ML4H trial audits–Iteration 2.0 Playbook

(Version 3.0).
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL07_3.docx

3 Definitions

3.1 Terms defined elsewhere

This Technical Report uses the terms defined in [DEL0.1].

3.2 Terms defined in this Technical Report

This Technical Report does not define new terms.

4 Abbreviations and acronyms

This Technical Report uses the following abbreviations and acronyms:

AI Artificial Intelligence

AI4H Artificial Intelligence for Health

DAISAM Data and AI Solution Assessment

FG-AI4H ITU/WHO Focus Group on Artificial Intelligence for Health

ISTQB International Software Testing Qualifications Board

ML Machine Learning

TDD Topic Description Document

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL05.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL07_3.docx

2 FG-AI4H DEL7.2 (2023-03)

TG Topic Group

WG Working Group

5 State of the art in testing

Software testing has been a crucial part of software development for several decades. The art of

software testing by Glenford J. Myers is one such standard reference that was one the first examples

on how to define software testing which was previously part of software debugging, the removal of

errors in the code. While debugging is the process of eradicating errors in software, tests help in

detecting them. The International Software Testing Qualifications Board (ISTQB) is a not-for-profit

association that certifies competences in software testing and has also published a document that

defines and describes testing in depth.

5.1 Testing principles

Before different established tests are introduced, we may wish to look at the high-level idea of testing

that can be summarized by seven principles that were established since the emergence of software

testing and can be found in ISTQB's syllabus for testing software. First, testing shows the presence

of errors, not their absence. Second, exhaustive testing is impossible which is important to keep in

mind when we discuss the testing of AI. Third, early testing saves time. Fourth, errors cluster together,

i.e., a small fraction of the software contains most of the defects discovered through testing. This is

helpful to optimize testing for which we want to predict and/or find a cluster and focus our testing

efforts on a module of the software that contains such a cluster. Fifth, new tests and test data needs to

be included in testing, and test data and tests need to be changed regularly to detect new defects.

Otherwise, testing suffers from the pesticide paradox, i.e., tests are no longer effective at finding

defects. Sixth, testing is dependent on the context, e.g., a recreational smartphone app requires another

intensity of testing compared to a health AI. Seventh, an absence of errors does not mean that the

user's requirements are met, the software system is better than a competing product or that the

software is convenient to use.

5.2 Test levels

Testing can be divided into several levels of testing and forms of testing. Testing levels are component

testing (often referred to as unit testing), integration testing, system testing and acceptance testing.

The lowest level of testing is component testing and tests the functionality of the components of

software which are functions, classes, etc. The overall software might still not be operational, but unit

testing assures that the components a product is composed of are working as intended. Integration

testing tests the interactions between the prior tested components and units or between systems such

as microservices or packages. Such larger systems are tested using system testing. A system can be

the aforementioned microservices but it might also be the overall end-to-end application that either

consists of several components or several smaller systems. The highest level of testing is acceptance

testing and is similar to system testing in that it tests the whole end-to-end application but it does not

look for errors in the sense of software development. This step is rather used to verify that the system

behaves as intended according to customer, system administrators, contracts, regulators, etc.

5.3 Test types

Table 1 contains the several forms of testing. All forms can in general be combined with the

aforementioned levels of testing. However, Table 1 contains a suggestion on which combinations

might be more appropriate. More information on testing can be found in [b-ISO 29119] or

[b-BS 7925].

 FG-AI4H DEL7.2 (2023-03) 3

Table 1 – Forms of testing

Test type Explanation

Functional testing Tests what the system should do by specifying some preconditions, running

code and then comparing the result of this execution with some

postconditions. It is applied at each level of testing although in acceptance

testing most implemented functions should already work. Coverage is a

measure of thoroughness of functional testing.

Non-functional testing Tests how well a system performs. This includes the testing of usability,

performance efficiency or security of a system and other characteristics

found in [b-ISO/IEC 25010]. This test can be performed on all levels of

testing. Coverage for non-functional testing refers to how many such

characteristics were tested for.

White-box testing Tests the internal structure of a system or its implementation. It is mostly

tested in component and system testing. Coverage in this test measures the

proportion of code components that have been tested as part of component

and system testing.

Black-box testing This is the opposite to white-box testing; here, we treat software as a black

box with no knowledge on how software achieves its intended functionality.

Merely the output of this form of testing is compared with the expected

output or behaviour. The advantage of black-box testing is that no

programming knowledge is required and therefore it is well equipped to

detect biases that arise if only programmer write and test software. This test

can be applied at all levels of testing.

Maintenance testing Tests changes of already delivered software for functional and non-

functional quality characteristics.

Static testing Form of testing that does not execute code but manually examines the

system, i.e., through reviews, linters or formal proofs of the program.

Change-related testing Tests whether changes corrected (confirmation testing) or caused errors

(regression testing). Change-related testing can be applied on all levels of

testing.

Destructive testing This test aims to make the software fail by proving unintended inputs, which

tests the robustness of the software. This can be applied on all levels of

software testing.

5.4 Coverage

A reliable measure of testing is test coverage. 100% statements (such as functions) coverage means

that each statement of code has been executed during test time. The next step of coverage quality is

the decision coverage which means that each program decision was executed so that each possible

outcome occurs at least once. This can also be applied for inference of an AI model, e.g., a classifier.

This becomes particularly interesting for rare classes. Most desirable is the condition coverage where

each condition of a program takes on all possible outcomes at least once or in multi-condition

coverage, where all combinations of conditions in a program decision are exercised.

5.5 Verification and validation for machine learning

According to the National Institute for Standards and Technology (NIST), benchmarks, metrics and

the correct data is curated to successfully test an AI (https://www.nist.gov/artificial-intelligence). This

is described in a concrete example when looking at the testing process for automated face recognition

for flight boarding described by NIST [b-NIST news]. It becomes clear that the right combination of

false/true-positives, and negatives plays a role, data curation and non-discriminatory capabilities of

the AI, which is mostly driven by the data curation for the benchmark. In other cases, collecting a

representative collection of data that is non-discriminatory and yields a high AI performance may not

https://www.nist.gov/artificial-intelligence

4 FG-AI4H DEL7.2 (2023-03)

be possible or affordable. We deem those non-testable and this also frequently includes cryptographic

and scientific software, not only machine learning.

However, NIST advertises the concept of metamorphic testing to tackle such a problem, e.g., testing

of autonomous vehicles [b-NIST]. The difficulty with Deep Neural Networks (DNNs) is that

statement coverage does not equate to a full coverage of the network. DeepXplore has a 100%

statement coverage with only 34% of the neurons ever being activated. We can automate the

generation of transformed images, so called pseudo-oracles, when training two DNNs to classify

images. The goal of both DNNs is that they should classify images differently as much as possible,

as well as increasing the neuron activity. A greedy search algorithm can be used to find

transformations that maximize the neuron activity per image.

Combining the information on the type of input transformation, the deviation of the AI from its

expected behaviour and the amount of neuron activity can help technical and domain knowledge

experts estimate the quality of the DNN, as well as the test suite. There are also guidelines that help

teams set up a metamorphic test suite that provides a list of questions to go through to accomplish

verification and validation [b-NIST 2021].

Due to the increasing demand for tested ML systems, the term ML ops (operations) is steadily

increasing. It appreciates the aforementioned tight link between data, model and context. It treats the

whole pipeline of necessary steps that leads to the ML's output as one. The pipeline can be tested and

monitored to achieve a well-functioning AI/ML model [b-ML Ops] [b-ML test score].

There are tools to help make testing easier which we are going to introduce in the next section.

6 Identification of gaps needed for the assessment platform

While there are many suggestions made in clause 5 on how to test software in various depths and

from different perspectives, there are still some omissions which would be recommended to test when

we want to test a health AI. We produce two sets of inputs where we expect similar outputs. When

producing more input is expensive, other techniques can be used such as data transformation methods

(increasing brightness of image data).

6.1 Gaps in functional and black-box testing

Although most software has the possibility to be tested for an output given a predefined input, this

approach proves difficult for AI models.

Most state-of-the-art AI algorithms are tied to a set of training data and AI-specific software-

hardware-combinations. An AI is thus enclosed by several steps of computation that should be viewed

as inseparable from the AI. This process needs to be streamlined to be tested and reproduced (e.g.,

with tools like MLFlow, Sacred, etc.) to build a tight connection between data and AI and

containerization (e.g., Docker) to tie the necessary libraries and software to the AI. One figurehead

for such a pipeline could be the assessment platform of this Focus Group's assessment platform that

will try to find a horizontal solution on how to structure a whole AI-pipeline. In the following, we

will explain why testing AIs together with data, a container and hardware-specifications are important

and not covered by standard testing recommendations.

Certain algorithms rely on assumptions about the (input) data. To assure its functionality, input data

needs to be tested for these assumptions to assure that the output of the AI works as expected,

including edge cases in the input. This assumption might be fuzzier compared to traditional software

testing and thus needs to be viewed slightly differently. However, even for non-AI-based software,

the US Food and Drug Administration (FDA) acknowledges in [b-FDA] that not all types of input

can be tested. When specifying tests for the input, we always need to keep in mind that although all

tests have been passed, our AI might still break in the future due to unforeseen input data. Continued

testing and evaluation for unaccounted input is important.

 FG-AI4H DEL7.2 (2023-03) 5

In particular, algorithms that utilize "special" hardware/hardware specification (e.g., graphics

cards/16-bit floating operations) might only run (or produce the exact expected results) on an

exhaustive list of hardware-software combinations. This might be quite prominent in the medical

setting, especially data from the medical setting which produces data that has strong device-specific

properties which can be picked up by the AI. The AI usually cannot easily generalize over these

device-specific differences because the training data, most of the time, is in-house data and therefore

originates from the same data acquisition process. A dataset containing samples with lesser privacy

concerns can be easier crowdsourced/combined assuring that different kinds of hardware/software

combinations were used to produce such data. Thus, it is desirable to test whether an AI performs

equally well on both, different hardware and software (e.g., automatic preprocessing of raw hardware

output before a file is saved) for data acquisition.

Given that we possess a closed unit of all the necessary components to run an AI, the tests to verify

its functionality probably falls into the category of functional black-box testing. We have a clear idea

of what the AI is supposed to do, e.g., to detect cancer in an x-ray which is the functional part, but

we do not necessarily have any insight on the inner workings of the algorithm. When running a

benchmarking challenge on an assessment platform, then there might be the problem that the

algorithm must not be disclosed since it might be part of the company's intellectual property. Or we

have some large machine learning or deep learning model comprising of a large number of parameters

that are only accessible through specialized algorithms that do not necessarily reflect how the

algorithm works. In short, we either must not see how the algorithm works or it is hardly human-

interpretable. Thus, we assume black-box testing.

6.2 Gaps in non-functional testing

While the AI algorithm might run without errors performing the aforementioned testing, we have

certain expectations of how the algorithm should work, e.g., not only to detect cancer in x-rays but

also to detect rare forms equally well as more common ones or to work well independent of the used

machine.

Input data can change in its quality but does not necessarily break the AI. Thus, certain measures need

to be established to detect a concept drift. A learning goal is mostly linked to metrics or other

performance measures. It is important to specify metrics and tests to assess whether an algorithm

and/or dataset achieves the expected performance of the user/stakeholder. Learning goals need to be

tested as well to avoid typical pitfalls such as data leakage, bias, etc. We refer to the deliverable N°

7.3. "Data and artificial intelligence assessment methods (DAISAM) reference" for a thorough

treatise of this topic.

Performance, in some cases, cannot be simply represented by numerical values. Acceptance testing

is equally important in case the output is no simple scalar indicating some classification or regression

performance but consists of a set of interactions with the user (i.e., chatbot). Human evaluation can

lead to ambiguities since different individuals will rate the same AI output differently. It is best to

agree on a number of human testers and how their opinions are blended to achieve comparability

between different AIs.

Each AI should contain a reference paper or implementation that shows that the planned AI system

tackles the problem adequately. Much time can be wasted not handling known problems or using

known solutions.

6.3 Leaderboard probing

From another perspective, when organizing an AI benchmark or challenge, one needs to test how

certain modifications of aggregation, missing data handling and metrics can affect the outcome of the

benchmark or competition. One example is that certain metrics allow the competitors, if probed

correctly, to gain knowledge about the test data. Such vulnerabilities to so-called leaderboard probing

need to be avoided by testing vulnerability to such methods.

6 FG-AI4H DEL7.2 (2023-03)

Another problem with established metrics used in benchmarking is that they don't differentiate

between hard and easy samples when evaluating the AI. A model could have a high accuracy but

make wrong predictions with high confidence. This is problematic in a production environment and

makes it hard to debug the model or develop trust in its predictions. A model with less accuracy but

a more truthful confidence range may be more applicable for a production environment. A way to

weight hard samples higher, e.g., many appearances of the word "not" in text being classified in a

sentiment classification task with an expected positive prediction, could be to weight samples by the

intensity of them being out of distribution [b-AAAI].

Overfitting is also a way of leaderboard training. Depending on how different the training and testing

dataset in a benchmark is, it makes sense to optimize the way an AI overfits. The amount of overfitting

you are willing to make depends on how different the distributions are for your training and test data.

This can be made visible with adversarial validation where you remove labels from training and test

data and train a classifier to distinguish them given new labels. If the AUC is 0.5, the model has a

hard time to differentiate between both proving that their distribution is similar. Otherwise, we need

to accommodate the test distribution [b-Kaggle]. Information on the test data can be retrieved through

dummy models that help you find out the properties of the undisclosed test data.

 FG-AI4H DEL7.2 (2023-03) 7

Bibliography

[b-AAAI] Swaroop Mishra, Anjana Arunkumar (2021), How Robust are

Model Rankings: A Leaderboard Customization Approach for

Equitable Evaluation, The Thirty-Fifth AAAI Conference on

Artificial Intelligence (AAAI-21). https://arxiv.org/pdf/2106.05532.pdf

[b-Anderson] Anderson‐Cook et al. (2019), How to host an effective data

competition: Statistical advice for competition design and analysis,

Statistical Analysis and Data Mining: The ASA Data Science

Journal, 12(4), 271-289. https://doi.org/10.1002/sam.11404

[b-BS 7925] BS 7925 (1998), Software testing.

[b-FDA] FDA (2002), General Principles of Software Validation; Final

Guidance for Industry and FDA Staff.

[b-ISO 29119] ISO/IEC/IEEE 29119 (2022), Software and systems engineering –

Software testing.

[b-ISO/IEC 25010] ISO/IEC 25010 (2011), Systems and software engineering –

Systems and software Quality Requirements and Evaluation

(SQuaRE) – System and software quality models.

[b-Kaggle] The Kaggle Book (2022). https://www.kaggle.com/discussions/general/320574

[b-ML Ops] MLOps Principles. https://ml-ops.org/content/mlops-principles

[b-ML test score] Breck, S., et al. (2017), The ML test score: A rubric for ML

production readiness and technical debt reduction, IEEE

International Conference on Big Data (Big Data), Boston, MA,

USA, 2017, pp. 1123-1132, doi: 10.1109/BigData.2017.8258038.
https://ieeexplore.ieee.org/document/8258038

[b-NIST] NIST (2021), From Neuron Coverage to Steering Angle: Testing

Autonomous Vehicles Effectively.
https://csrc.nist.gov/csrc/media/Projects/automated-combinatorial-testing-for-
software/documents/FromNC2SA_IEEEComp_SI_Auton_Veh_Aug2021.pdf

[b-NIST news] NIST news (2021), Evaluates Face Recognition Software's

Accuracy for Flight Boarding.
https://www.nist.gov/news-events/news/2021/07/nist-evaluates-face-recognition-softwares-accuracy-

flight-boarding

[b-NIST 2021] NIST (2021), Metamorphic Testing on the Continuum of

Verification and Validation of Simulation Models.
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931851

[b-Reinke] Reinke et al. (2018), How to exploit weaknesses in biomedical

challenge design and organization, International Conference on

Medical Image Computing and Computer-Assisted Intervention

(pp. 388-395). Springer, Cham. https://doi.org/10.1007/978-3-030-00937-3_45

[b-Wiegand] Wiegand, T., Krishnamurthy, R., Kuglitsch, M., Lee, N., Pujari, S.,

Salathé, M., Wenzel, M. and Xu, S. (2019), WHO and ITU

establish benchmarking process for artificial intelligence in health.

The Lancet, 394(10192), 9-11.
https://doi.org/10.1016/S0140-6736(19)30762-7

https://arxiv.org/pdf/2106.05532.pdf
https://doi.org/10.1002/sam.11404
https://www.kaggle.com/discussions/general/320574
https://ml-ops.org/content/mlops-principles
https://ieeexplore.ieee.org/document/8258038
https://csrc.nist.gov/csrc/media/Projects/automated-combinatorial-testing-for-software/documents/FromNC2SA_IEEEComp_SI_Auton_Veh_Aug2021.pdf
https://csrc.nist.gov/csrc/media/Projects/automated-combinatorial-testing-for-software/documents/FromNC2SA_IEEEComp_SI_Auton_Veh_Aug2021.pdf
https://www.nist.gov/news-events/news/2021/07/nist-evaluates-face-recognition-softwares-accuracy-flight-boarding
https://www.nist.gov/news-events/news/2021/07/nist-evaluates-face-recognition-softwares-accuracy-flight-boarding
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931851
https://doi.org/10.1007/978-3-030-00937-3_45
https://doi.org/10.1016/S0140-6736(19)30762-7

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Technical Report

	4 Abbreviations and acronyms
	5 State of the art in testing
	5.1 Testing principles
	5.2 Test levels
	5.3 Test types
	5.4 Coverage
	5.5 Verification and validation for machine learning

	6 Identification of gaps needed for the assessment platform
	6.1 Gaps in functional and black-box testing
	6.2 Gaps in non-functional testing
	6.3 Leaderboard probing

	Bibliography

