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Summary 

Deliverable 7.2 specifies how an AI can and should be tested in silico. Among other aspects, best 

practices for test procedures known from, (but not exclusively,) AI challenges are being reviewed in 

this document. Important testing paradigms that are not exclusively related to AI applications are 

mentioned too. 
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ITU-T FG-AI4H Deliverable DEL7.2 

Artificial intelligence technical test specification 

1 Scope 

This deliverable is part of WG-DAISAM's endeavour to produce an assessment platform for the 

Focus Group AI4H. An assessment platform is meant to be a software framework that allows users 

from different topic groups to assess AIs in a transparent and standardized fashion on (real) health 

data. While such an assessment platform describes a pipeline of several diverse operations that need 

to be described, this document focusses on the testing phase, i.e., the part where the AI's performance 

is tested and evaluated in a numerical and/or graphical way. This includes the training of the AI on 

data that is assumed to be cleared of biases and represents the problem-to-solve appropriately. Data 

preparation is outside the scope of this document and can be found in FG-AI4H Deliverable 5. The 

test specification then includes the submission of this trained model to the assessment platform, its 

run on the undisclosed test data and the calculation of the performance metrics. These metrics need 

to give a representative estimate of the AI's performance and need to be well adjusted to detect non-

robust, biased or otherwise flawed AI. How these metrics are defined and chosen is outside the scope 

of this document and more closely discussed in Deliverable 7.3. 

2 References 

[DEL0.1] ITU-T FG-AI4H DEL0.1 (2022), Common unified terms in artificial intelligence 

for health, ITU/WHO. 

[DEL5] ITU-T FG-AI4H DEL5 (2019), Data Specification. 
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL05.docx 

[DEL7.3] ITU-T FG-AI4H DEL7.3 (2002), ML4H trial audits–Iteration 2.0 Playbook 

(Version 3.0). 
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL07_3.docx 

3 Definitions 

3.1 Terms defined elsewhere  

This Technical Report uses the terms defined in [DEL0.1]. 

3.2 Terms defined in this Technical Report  

This Technical Report does not define new terms. 

4 Abbreviations and acronyms  

This Technical Report uses the following abbreviations and acronyms: 

AI Artificial Intelligence 

AI4H Artificial Intelligence for Health 

DAISAM Data and AI Solution Assessment 

FG-AI4H ITU/WHO Focus Group on Artificial Intelligence for Health 

ISTQB International Software Testing Qualifications Board 

ML Machine Learning 

TDD Topic Description Document 

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL05.docx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/Deliverables/DEL07_3.docx
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TG Topic Group 

WG Working Group 

5 State of the art in testing 

Software testing has been a crucial part of software development for several decades. The art of 

software testing by Glenford J. Myers is one such standard reference that was one the first examples 

on how to define software testing which was previously part of software debugging, the removal of 

errors in the code. While debugging is the process of eradicating errors in software, tests help in 

detecting them. The International Software Testing Qualifications Board (ISTQB) is a not-for-profit 

association that certifies competences in software testing and has also published a document that 

defines and describes testing in depth. 

5.1 Testing principles 

Before different established tests are introduced, we may wish to look at the high-level idea of testing 

that can be summarized by seven principles that were established since the emergence of software 

testing and can be found in ISTQB's syllabus for testing software. First, testing shows the presence 

of errors, not their absence. Second, exhaustive testing is impossible which is important to keep in 

mind when we discuss the testing of AI. Third, early testing saves time. Fourth, errors cluster together, 

i.e., a small fraction of the software contains most of the defects discovered through testing. This is 

helpful to optimize testing for which we want to predict and/or find a cluster and focus our testing 

efforts on a module of the software that contains such a cluster. Fifth, new tests and test data needs to 

be included in testing, and test data and tests need to be changed regularly to detect new defects. 

Otherwise, testing suffers from the pesticide paradox, i.e., tests are no longer effective at finding 

defects. Sixth, testing is dependent on the context, e.g., a recreational smartphone app requires another 

intensity of testing compared to a health AI. Seventh, an absence of errors does not mean that the 

user's requirements are met, the software system is better than a competing product or that the 

software is convenient to use. 

5.2 Test levels 

Testing can be divided into several levels of testing and forms of testing. Testing levels are component 

testing (often referred to as unit testing), integration testing, system testing and acceptance testing. 

The lowest level of testing is component testing and tests the functionality of the components of 

software which are functions, classes, etc. The overall software might still not be operational, but unit 

testing assures that the components a product is composed of are working as intended. Integration 

testing tests the interactions between the prior tested components and units or between systems such 

as microservices or packages. Such larger systems are tested using system testing. A system can be 

the aforementioned microservices but it might also be the overall end-to-end application that either 

consists of several components or several smaller systems. The highest level of testing is acceptance 

testing and is similar to system testing in that it tests the whole end-to-end application but it does not 

look for errors in the sense of software development. This step is rather used to verify that the system 

behaves as intended according to customer, system administrators, contracts, regulators, etc.  

5.3 Test types 

Table 1 contains the several forms of testing. All forms can in general be combined with the 

aforementioned levels of testing. However, Table 1 contains a suggestion on which combinations 

might be more appropriate. More information on testing can be found in [b-ISO 29119] or 

[b-BS 7925].  
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Table 1 – Forms of testing 

Test type Explanation 

Functional testing Tests what the system should do by specifying some preconditions, running 

code and then comparing the result of this execution with some 

postconditions. It is applied at each level of testing although in acceptance 

testing most implemented functions should already work. Coverage is a 

measure of thoroughness of functional testing. 

Non-functional testing Tests how well a system performs. This includes the testing of usability, 

performance efficiency or security of a system and other characteristics 

found in [b-ISO/IEC 25010]. This test can be performed on all levels of 

testing. Coverage for non-functional testing refers to how many such 

characteristics were tested for. 

White-box testing Tests the internal structure of a system or its implementation. It is mostly 

tested in component and system testing. Coverage in this test measures the 

proportion of code components that have been tested as part of component 

and system testing. 

Black-box testing This is the opposite to white-box testing; here, we treat software as a black 

box with no knowledge on how software achieves its intended functionality. 

Merely the output of this form of testing is compared with the expected 

output or behaviour. The advantage of black-box testing is that no 

programming knowledge is required and therefore it is well equipped to 

detect biases that arise if only programmer write and test software. This test 

can be applied at all levels of testing. 

Maintenance testing Tests changes of already delivered software for functional and non-

functional quality characteristics. 

Static testing Form of testing that does not execute code but manually examines the 

system, i.e., through reviews, linters or formal proofs of the program. 

Change-related testing Tests whether changes corrected (confirmation testing) or caused errors 

(regression testing). Change-related testing can be applied on all levels of 

testing. 

Destructive testing This test aims to make the software fail by proving unintended inputs, which 

tests the robustness of the software. This can be applied on all levels of 

software testing. 

5.4 Coverage 

A reliable measure of testing is test coverage. 100% statements (such as functions) coverage means 

that each statement of code has been executed during test time. The next step of coverage quality is 

the decision coverage which means that each program decision was executed so that each possible 

outcome occurs at least once. This can also be applied for inference of an AI model, e.g., a classifier. 

This becomes particularly interesting for rare classes. Most desirable is the condition coverage where 

each condition of a program takes on all possible outcomes at least once or in multi-condition 

coverage, where all combinations of conditions in a program decision are exercised. 

5.5 Verification and validation for machine learning 

According to the National Institute for Standards and Technology (NIST), benchmarks, metrics and 

the correct data is curated to successfully test an AI (https://www.nist.gov/artificial-intelligence). This 

is described in a concrete example when looking at the testing process for automated face recognition 

for flight boarding described by NIST [b-NIST news]. It becomes clear that the right combination of 

false/true-positives, and negatives plays a role, data curation and non-discriminatory capabilities of 

the AI, which is mostly driven by the data curation for the benchmark. In other cases, collecting a 

representative collection of data that is non-discriminatory and yields a high AI performance may not 

https://www.nist.gov/artificial-intelligence
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be possible or affordable. We deem those non-testable and this also frequently includes cryptographic 

and scientific software, not only machine learning.  

However, NIST advertises the concept of metamorphic testing to tackle such a problem, e.g., testing 

of autonomous vehicles [b-NIST]. The difficulty with Deep Neural Networks (DNNs) is that 

statement coverage does not equate to a full coverage of the network. DeepXplore has a 100% 

statement coverage with only 34% of the neurons ever being activated. We can automate the 

generation of transformed images, so called pseudo-oracles, when training two DNNs to classify 

images. The goal of both DNNs is that they should classify images differently as much as possible, 

as well as increasing the neuron activity. A greedy search algorithm can be used to find 

transformations that maximize the neuron activity per image. 

Combining the information on the type of input transformation, the deviation of the AI from its 

expected behaviour and the amount of neuron activity can help technical and domain knowledge 

experts estimate the quality of the DNN, as well as the test suite. There are also guidelines that help 

teams set up a metamorphic test suite that provides a list of questions to go through to accomplish 

verification and validation [b-NIST 2021].  

Due to the increasing demand for tested ML systems, the term ML ops (operations) is steadily 

increasing. It appreciates the aforementioned tight link between data, model and context. It treats the 

whole pipeline of necessary steps that leads to the ML's output as one. The pipeline can be tested and 

monitored to achieve a well-functioning AI/ML model [b-ML Ops] [b-ML test score].  

There are tools to help make testing easier which we are going to introduce in the next section. 

6 Identification of gaps needed for the assessment platform 

While there are many suggestions made in clause 5 on how to test software in various depths and 

from different perspectives, there are still some omissions which would be recommended to test when 

we want to test a health AI. We produce two sets of inputs where we expect similar outputs. When 

producing more input is expensive, other techniques can be used such as data transformation methods 

(increasing brightness of image data). 

6.1 Gaps in functional and black-box testing 

Although most software has the possibility to be tested for an output given a predefined input, this 

approach proves difficult for AI models. 

Most state-of-the-art AI algorithms are tied to a set of training data and AI-specific software-

hardware-combinations. An AI is thus enclosed by several steps of computation that should be viewed 

as inseparable from the AI. This process needs to be streamlined to be tested and reproduced (e.g., 

with tools like MLFlow, Sacred, etc.) to build a tight connection between data and AI and 

containerization (e.g., Docker) to tie the necessary libraries and software to the AI. One figurehead 

for such a pipeline could be the assessment platform of this Focus Group's assessment platform that 

will try to find a horizontal solution on how to structure a whole AI-pipeline. In the following, we 

will explain why testing AIs together with data, a container and hardware-specifications are important 

and not covered by standard testing recommendations. 

Certain algorithms rely on assumptions about the (input) data. To assure its functionality, input data 

needs to be tested for these assumptions to assure that the output of the AI works as expected, 

including edge cases in the input. This assumption might be fuzzier compared to traditional software 

testing and thus needs to be viewed slightly differently. However, even for non-AI-based software, 

the US Food and Drug Administration (FDA) acknowledges in [b-FDA] that not all types of input 

can be tested. When specifying tests for the input, we always need to keep in mind that although all 

tests have been passed, our AI might still break in the future due to unforeseen input data. Continued 

testing and evaluation for unaccounted input is important. 
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In particular, algorithms that utilize "special" hardware/hardware specification (e.g., graphics 

cards/16-bit floating operations) might only run (or produce the exact expected results) on an 

exhaustive list of hardware-software combinations. This might be quite prominent in the medical 

setting, especially data from the medical setting which produces data that has strong device-specific 

properties which can be picked up by the AI. The AI usually cannot easily generalize over these 

device-specific differences because the training data, most of the time, is in-house data and therefore 

originates from the same data acquisition process. A dataset containing samples with lesser privacy 

concerns can be easier crowdsourced/combined assuring that different kinds of hardware/software 

combinations were used to produce such data. Thus, it is desirable to test whether an AI performs 

equally well on both, different hardware and software (e.g., automatic preprocessing of raw hardware 

output before a file is saved) for data acquisition. 

Given that we possess a closed unit of all the necessary components to run an AI, the tests to verify 

its functionality probably falls into the category of functional black-box testing. We have a clear idea 

of what the AI is supposed to do, e.g., to detect cancer in an x-ray which is the functional part, but 

we do not necessarily have any insight on the inner workings of the algorithm. When running a 

benchmarking challenge on an assessment platform, then there might be the problem that the 

algorithm must not be disclosed since it might be part of the company's intellectual property. Or we 

have some large machine learning or deep learning model comprising of a large number of parameters 

that are only accessible through specialized algorithms that do not necessarily reflect how the 

algorithm works. In short, we either must not see how the algorithm works or it is hardly human-

interpretable. Thus, we assume black-box testing. 

6.2 Gaps in non-functional testing 

While the AI algorithm might run without errors performing the aforementioned testing, we have 

certain expectations of how the algorithm should work, e.g., not only to detect cancer in x-rays but 

also to detect rare forms equally well as more common ones or to work well independent of the used 

machine. 

Input data can change in its quality but does not necessarily break the AI. Thus, certain measures need 

to be established to detect a concept drift. A learning goal is mostly linked to metrics or other 

performance measures. It is important to specify metrics and tests to assess whether an algorithm 

and/or dataset achieves the expected performance of the user/stakeholder. Learning goals need to be 

tested as well to avoid typical pitfalls such as data leakage, bias, etc. We refer to the deliverable N° 

7.3. "Data and artificial intelligence assessment methods (DAISAM) reference" for a thorough 

treatise of this topic. 

Performance, in some cases, cannot be simply represented by numerical values. Acceptance testing 

is equally important in case the output is no simple scalar indicating some classification or regression 

performance but consists of a set of interactions with the user (i.e., chatbot). Human evaluation can 

lead to ambiguities since different individuals will rate the same AI output differently. It is best to 

agree on a number of human testers and how their opinions are blended to achieve comparability 

between different AIs. 

Each AI should contain a reference paper or implementation that shows that the planned AI system 

tackles the problem adequately. Much time can be wasted not handling known problems or using 

known solutions. 

6.3 Leaderboard probing 

From another perspective, when organizing an AI benchmark or challenge, one needs to test how 

certain modifications of aggregation, missing data handling and metrics can affect the outcome of the 

benchmark or competition. One example is that certain metrics allow the competitors, if probed 

correctly, to gain knowledge about the test data. Such vulnerabilities to so-called leaderboard probing 

need to be avoided by testing vulnerability to such methods. 
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Another problem with established metrics used in benchmarking is that they don't differentiate 

between hard and easy samples when evaluating the AI. A model could have a high accuracy but 

make wrong predictions with high confidence. This is problematic in a production environment and 

makes it hard to debug the model or develop trust in its predictions. A model with less accuracy but 

a more truthful confidence range may be more applicable for a production environment. A way to 

weight hard samples higher, e.g., many appearances of the word "not" in text being classified in a 

sentiment classification task with an expected positive prediction, could be to weight samples by the 

intensity of them being out of distribution [b-AAAI].  

Overfitting is also a way of leaderboard training. Depending on how different the training and testing 

dataset in a benchmark is, it makes sense to optimize the way an AI overfits. The amount of overfitting 

you are willing to make depends on how different the distributions are for your training and test data. 

This can be made visible with adversarial validation where you remove labels from training and test 

data and train a classifier to distinguish them given new labels. If the AUC is 0.5, the model has a 

hard time to differentiate between both proving that their distribution is similar. Otherwise, we need 

to accommodate the test distribution [b-Kaggle]. Information on the test data can be retrieved through 

dummy models that help you find out the properties of the undisclosed test data. 
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