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Abstract Instrumental quality assessment of speech en-


hancement algorithms is often conducted with measures such


as speech distortion, the level of noise attenuation, and noise


distortion (e.g., by musical tones). While the first two quan-


tities can be instrumentally measured, noise artifacts such as


musical tones are often still subjectively evaluated. In this pa-


per, we present three independent instrumental quality mea-


sures for the speech component quality, noise attenuation, and


noise distortion. The noise distortion measure focuses on mu-


sical tones, based on the log kurtosis ratio of the noise signal


and the filtered noise signal only. Thanks to independence


among the three measures, they provide a useful means to in-


strumentally assess speech enhancement algorithms. Through


a simulation example and a subjective test, we show that they


can also be successfully applied as optimization criteria for


the parameterization of noise reduction algorithms.


1. INTRODUCTION


Quality assessment plays an important role in the develop-


ment and evaluation phases of speech enhancement systems.


The quality of such speech enhancement algorithms is ty-


pically judged according to human opinion, collected during


subjective tests. However, due to high costs and efforts, instru-


mental quality assessment is preferred in practice. In science,


instrumental quality assessment is conventionally carried


out in an intrusive manner: The noisy microphone signal is


constructed by digitally adding the clean speech signal and


the background noise signal. The speech enhancement sy-


stem shall in our case consist of a discrete-Fourier-transform


(DFT)-based noise reduction scheme applying a spectral


weighting rule. During operation the spectral weights adap-


ted on the basis of the noisy speech signal are logged and then


separately applied to the clean speech signal and the noise


signal, resulting in the filtered clean speech signal and the


filtered noise signal.


Based on the filtered clean speech signal and the filtered


noise signal three measures are of major interest: the quali-


ty of the filtered speech signal, the level of noise attenuation,


and the amount of musical tones, which can be regarded as


a specific type of noise distortion. The first two measures are


commonly evaluated in an instrumental manner in many ap-


plications [1], see also ITU-T Recommendations P.1100 [2]


and P.1110 [3]. However, the amount of musical tones is often


still being subjectively evaluated. Recently, a high correlation


of the perceived level of musical tones with the log kurto-


sis ratio has been reported in [4] by evaluating the spectral


subtraction approach to noise reduction, which opens up per-


spectives to instrumental evaluation of residual noise in terms


of musical tones. However, the noisy microphone signal and


the enhanced signal are used for computing the log kurtosis


ratio in [4], making this ratio dependent on the level of noise


attenuation. Furthermore, only spectral subtraction is investi-


gated in [4] and the kurtosis ratio assumes the squared noise


spectral amplitudes to be gamma distributed. In [5], the kur-


tosis ratio of noise components has been further investigated


with Ephraim and Malah’s MMSE-SA estimator [6]. The kur-


tosis ratio of noise components has been observed to be nearly


unchanged by changing the smoothing factor of the decision-


directed (DD) approach to a priori SNR estimation [6] from


0.5 to 0.99 and by applying white Gaussian noises. However,


it is stated in [7] that with the increment of the smoothing


factor, the amount of musical tones should decrease, which


actually requires a modified definition of the kurtosis ratio.


Motivated by the idea of an instrumental measure for mu-


sical tones being independent of speech distortion and noise


attenuation, we present a modified approach of the log kur-


tosis ratio measure based on the noise-dominant parts of the


filtered noise signal and the noise signal only in this paper,


ensuring independence from absolute signal levels. No extra


assumption on the squared noise spectral amplitude distribu-


tion is taken. Along with the log kurtosis ratio-based musical


tones measure two other quantities are computed evaluating


the quality of the speech component and noise attenuation. In


a further part of the paper, we will present an application ex-


ample of employing the three independent quality measures


combined in a single figure of merit (FoM) to find the opti-


mal parameterization of some state-of-the-art noise reduction


algorithms along with a subjective test.


This paper is organized as follows: In Section 2 we briefly


recapitulate an intrusive instrumental quality assessment fra-


mework for speech enhancement algorithms. The three quan-


tities quality of the speech component, level of noise attenua-


tion, and amount of musical tones are described in Section


3, along with a proof of their independence. As an applicati-


on example, we finally show how to automatically search for


the optimal parameterization of a speech enhancement system


(in our case noise reduction) using the three proposed instru-


mental measures in Section 4. Furthermore, a subjective test


validating the resulting optimal parameterization is presented.
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Fig. 1. Intrusive quality assessment setup of a speech enhancement
system, here: noise reduction system


2. INTRUSIVE QUALITY ASSESSMENT


METHODOLOGY


In a laboratory setup for quality assessment of a noise re-


duction system, it is assumed that the clean speech signal


s(n) with time index n and the background noise signal n(n)
are separately available. The noisy speech signal y(n) can


then be generated as y(n) = s(n) + n(n). Intrusive quali-


ty assessment can be performed based on the enhanced si-


gnal ŝ(n), the filtered clean speech signal s̃(n), and the filte-


red noise signal ñ(n) of the noise reduction system in offline


operation. The detailed setup of this quality assessment me-


thodology is shown in Fig. 1. After analysis windowing, the


noisy speech signal, the clean speech signal, and the noise si-


gnal are subject to a discrete Fourier transform (DFT). The


resulting noisy speech DFT coefficients can be expressed as


Y (ℓ, k) = S(ℓ, k) + N(ℓ, k), where ℓ is the frame index, and


k is the frequency bin. The noise reduction system is adap-


ted on the basis of Y (ℓ, k) to compute the spectral weights


G(ℓ, k) with ℓ=1, ...,L, and k =0, ...,K−1, which are log-


ged and later applied to S(ℓ, k) and N(ℓ, k) separately. The


enhanced speech signal Ŝ(ℓ, k), the filtered clean speech si-


gnal S̃(ℓ, k), and the filtered noise signal Ñ(ℓ, k) can be com-


puted by using these spectral weights G(ℓ, k). The respective


time domain signals ŝ(n), s̃(n), and ñ(n) are computed by


subsequent IDFT, synthesis windowing and overlap-add, re-


spectively. Due to the linearity property of frequency domain


processing with overlap-add, we get the following relation-


ship in the time domain: ŝ(n) = s̃(n) + ñ(n).


3. INDEPENDENT INSTRUMENTAL MEASURES


3.1. Proposed Instrumental Measures


We measure the performance of the noise reduction system


in three terms: the speech component quality, noise attenuati-


on, and noise distortion in terms of musical tones. Firstly, the


preservation of the speech component quality is assessed by


means of the perceptual evaluation of wideband speech quali-


ty (PESQ) mean opinion score (MOS), named MOSLQO (li-


stening quality objective, LQO) [8]. Please note that only the


speech component, i.e., the filtered clean speech signal s̃(n)
relative to the clean speech signal s(n) is used for the eva-


luation with MOSLQO (see [2], [3]). The MOSLQO measure


compensates for a possible time lag and a fullband amplitude


scaling between both signals under consideration.


As a second measure, the signal-to-noise ratio (SNR) im-


provement ∆SNR is employed to evaluate the effective noi-


se attenuation performance. If both noise and speech com-


ponents are attenuated, this measure shall only capture the ef-


fective relative improvement of the speech level vs. the noise


level. Having the clean speech signal s(n) and the noise signal


n(n) separately at our disposal, the input signal-to-noise ratio


can be calculated as SNRin = ASLs−ASL(RMS)
n with ASLx


being the active speech level of x(n) in dB. Note that ASLx is


computed using ITU-T Recommendation P.56 [9], using the


root mean square option for ASL(RMS)
n . In analogy, SNRout


is computed based on the filtered clean speech signal s̃(n) and


the filtered noise signal ñ(n). The term ∆SNR representing


the SNR improvement in dB is subsequently determined as


∆SNR = SNRout − SNRin.


Uemura et al. have shown on signals y(n) and ŝ(n) that


the lower a certain log kurtosis ratio is, the less musical tones


will be perceived [4]. Please note, this correlation is investiga-


ted in [4] for spectral subtraction by changing the subtraction


coefficient, which controls how much of the estimated noise


power spectrum will be subtracted from the noisy microphone


signal power spectrum. It may not be necessarily applicable


for all noise reduction algorithms and all noise types. Uemu-


ra et al. have shown in [5] that the kurtosis ratio of the noise


components is shown to be nearly unchanged when modify-


ing the smoothing factor of the decision-directed approach to


a priori SNR estimation from 0.5 to 0.99 (Ephraim and Ma-


lah’s MMSE-SA estimator, white Gaussian noises). This is in


contradiction to [7], stating that increasing the smoothing fac-


tor means less musical tones. We now propose a modified log


kurtosis ratio
∆Ψlog = log


(


Ψñ


Ψn


)


, (1)


where Ψn and Ψñ are kurtosis related to the noise signal and


to the filtered noise signal, respectively. We use ∆Ψlog de-


fined in (1) to quantify noise distortion in terms of musical


tones. Different from [4], where |N(ℓ, k)|2 are assumed to be


gamma distributed in the power spectral domain, no such as-


sumption is needed in this paper. In the theory of higher-order


statistics [10], the kurtosis Ψx of a random variable x is defi-


ned as
Ψx =


E{[x − µ]4}


(E{[x − µ]2})2
, (2)


where E{·} is the expectation operator and µ = E{x}. Si-


milar to (2), an instantaneous kurtosis of squared amplitude


noise DFT coefficients for each frame ℓ can be computed as


Ψn(ℓ)=


1
K


K
∑


k=1


[


|N(ℓ,k)|2−|N(ℓ,k)|2
]4


(


1
K


K
∑


k=1


[


|N(ℓ,k)|2−|N(ℓ,k)|2
]2
)2 , (3)


with |N(ℓ, k)|2 = 1
K


K
∑


k=1


|N(ℓ, k)|2. The kurtosis Ψñ(ℓ) can


straightforwardly be computed by applying |Ñ(ℓ, k)|2 in (3).
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The respective terms Ψn and Ψñ can then be calculated as


Ψn = 1
C(Λ)


∑


ℓ∈ΛΨn(ℓ), Ψñ = 1
C(Λ)


∑


ℓ∈ΛΨñ(ℓ). The


term C(Λ) is the number of elements in set Λ, which re-


presents a subset of frames where no speech-dominant parts


exist in Ñ(ℓ, k), since we want to focus on noise-dominant


parts of Ñ(ℓ, k). In order to define the subset Λ, an energy-


based fullband voice activity detector VAD(ℓ) is applied on


S(ℓ, k), which makes Ψn and Ψñ independent of the speech


component-related processing. Inserting Ψn and Ψñ into (1),


the log kurtosis ratio ∆Ψlog can finally be computed without


any assumption about probability distribution functions.


3.2. The Property of Independence


We now investigate the relationship among the three measures


MOSLQO, ∆SNR, and ∆Ψlog, showing their independence,


which is particularly important when searching for an optimal


parameterization for noise reduction algorithms.


All filtered signals ŝ(n), but also s̃(n) and ñ(n) must


be considered statistically dependent due to the common


influence of G(ℓ, k), even if s(n) and n(n) are statistical-


ly independent. In consequence this will always correlate


results of quality measures that are based on these filtered


signals. When we talk of independence of quality measures,


we mean that the measurement of the speech component qua-


lity shall not involve the noise component, the measurement


of noise attenuation shall not involve the speech compo-


nent, and the measurement of noise distortion (or amount of


musical tones) shall neither involve the speech component


nor being dependent on the level of noise attenuation. We


can clearly claim such independence between MOSLQO and


∆Ψlog, since MOSLQO uses speech components only and


∆Ψlog uses noise components only. Due to the fact that the


MOSLQO measure has a fullband scaling between s(n) and


s̃(n), the terms MOSLQO and ∆SNR can also be treated as


independent of each other. However, the independence bet-


ween ∆SNR and ∆Ψlog is not obvious, since both terms are


computed based on n(n) and ñ(n). Since ∆Ψlog shall only


measure noise distortion, but no fullband noise attenuation


level, let us assume Ñ(ℓ, k) = α · N(ℓ, k) with a noise at-


tenuation 0 < α < 1 being constant in time and frequency.


The idea is to prove that ∆Ψlog = 0, which means no noi-


se distortion. Inserting α · N(ℓ, k) into (3), Ψα·n(ℓ) can be


computed as


Ψα·n(ℓ)=


1
K


K
∑


k=1


[


(α2·|N(ℓ,k)|2)−(α2·|N(ℓ,k)|2)


]4


(


1
K


K
∑


k=1


[


(α2·|N(ℓ,k)|2)−(α2·|N(ℓ,k)|2)


]2
)2


=
α8·


1
K


K
∑


k=1


[


|N(ℓ,k)|2−|N(ℓ,k)|2


]4


α8·


(


1
K


K
∑


k=1


[


|N(ℓ,k)|2−|N(ℓ,k)|2


]2
)2 = Ψn(ℓ).


This results in ∆Ψlog = 0. Therefore, the independence bet-


ween ∆SNR being related to the effective α and ∆Ψlog has


been shown.


4. EXPERIMENTS


Finding optimal parameterization for a noise reduction algo-


rithm can require high efforts. In this section, we will show


that the three independent instrumental measures can be easi-


ly combined to a figure of merit (FoM) serving to automati-


cally search for an optimal algorithm parameterization.


4.1. Simulation Setup


Our experiments are performed with automotive noises. The


SNRin values for the noisy speech signals are taken from the


set S = {−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB}. 16


clean speech signals (four male and four female speakers),


and 18 in-car background noise signals, each with a length


of 8s, are taken from the NTT database [11] and the ETSI


background noise database [12], respectively. Altogether we


obtain 16×18 = 288 noisy signals for each SNRin condition.


All signals are filtered according to ITU-T Recommendation


P.341 [13] to obtain the wideband telephony bandwidth from


50 to 7000 Hz. A DFT with length K = 512 and a frame shift


of 50% are applied, using the square root Hann window as


analysis and synthesis windows, respectively. This setting is


applied both to the noise reduction approaches under test and


to the log kurtosis ratio computation. All signals are sampled


with 16 kHz.


Four state-of-the-art noise reduction algorithms are em-


ployed: Ephraim and Malah’s MMSE-SA (SA) estimator [6]


and MMSE-LSA (LSA) estimator [14], the a priori SNR-


driven Wiener filter (WF) [15], and the super-Gaussian joint


MAP (SG) estimator [16]. For all weighting rules, an estima-


tion of the a priori SNR defined as ξ(ℓ, k) = E{|S(ℓ,k)|2}
E{|N(ℓ,k)|2} is


needed, being successfully addressed by Ephraim and Malah


in their decision-directed (DD) approach [6] as


ξ′(ℓ, k) = β ·
|Ŝ(ℓ−1, k)|2


φ̂NN (ℓ−1, k)
+(1 − β)·P [γ(ℓ, k)−1], (4)


ξ(ℓ, k) = max{ξ′(ℓ, k), ξmin},


with a smoothing factor β, the enhanced speech signal of the


previous frame Ŝ(ℓ−1, k), the a posteriori SNR γ(ℓ, k) =
|Y (ℓ,k)|2


φ̂NN (ℓ,k)
, and ξmin = −15 dB. The estimated noise power


spectrum φ̂NN (ℓ, k) is computed via minimum statistics [17].


Setting the factor β close to unity yields a strong smoothing of


the a priori SNR estimate, which helps to significantly reduce


musical tones [7]. However, a too strong temporal smoothing


will lead to speech distortion, especially in speech onsets. In


[6], a constant smoothing factor β = 0.98 has been proposed
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Fig. 2. SNR improvement for the SA weighting rule
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Fig. 3. SNR improvement for the LSA weighting rule


by Ephraim and Malah heuristically showing the best trade-


off for the SA estimator (in the following indexed with “ref”).


To illustrate the possibility to automatically paramete-


rize the DD a priori SNR estimator (4) w.r.t. the para-


meter β, we now perform such a procedure for all four


weighting rules employing the three independent measu-


res MOSLQO, ∆SNR, and ∆Ψlog. In general, a full search


of 0 ≤ β < 1 should be performed1. Secondly, for each


applied noise reduction scheme a set of reference values


{MOSLQO,ref , ∆SNRref , ∆Ψlog,ref} is computed by ap-


plying2 β = 0.98. They serve as starting point of the opti-


mization process. This set serves to normalize the additive


contributions of a figure of merit (FoM) criterion which we


define as


1However, as we are mostly interested in the region of β ≈ 1, we define


β′ = ln


(


1+β


1−β


)


in analogy to the log-area ratios [18]. A search over β′ with


uniform step-size enables a search over β having coarse step-sizes for β close


to zero and small step-sizes for β≈1. The precondition 0≤β≤0.999 leads


to 0 ≤ β′ ≤ 7.6. A step-size of 0.1 is then applied for β′ in this paper.
2I.e., β′ = 4.6
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Fig. 4. SNR improvement for the WF weighting rule
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Fig. 5. SNR improvement for the SG weighting rule


FoM(β)=A


(


MOSLQO(β)


MOSLQO,ref


)a


+B


(


∆SNR(β)


∆SNRref


)b


−C


(


∆Ψlog(β)


∆Ψlog,ref


)c


,


(5)


where a, b, c are exponents and A, B, C are weighting fac-


tors, both sets to be chosen appropriately. The term
∆Ψlog(β)
∆Ψlog,ref


is subtracted in (5), since a large value of
∆Ψlog(β)
∆Ψlog,ref


indica-


tes a large amount of musical tones. The simulation aims to


find the optimal β for different SNRin values. Therefore, we


compute


FoM(β) =
∑


SNRin∈S
FoM(β)


∣


∣


∣


SNRin


. (6)


Based on FoM(β), we compute βopt = arg max
β


{FoM(β)},


which is the optimal parameter β by utilizing the three inde-


pendent instrumental measures for all SNRin values.


4.2. Simulation Results


The results of ∆SNR for the SA, LSA, WF, and SG spec-


tral weighting rules for different SNRin levels are depicted


in Figs. 2-5 with an extra grid line at β = 0.98. It can be
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Fig. 6. Speech component quality for the SA weighting rule
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Fig. 7. Speech component quality for the LSA weighting rule


observed that with β in (4) being increased noise attenuati-


on increases exponentially. Therefore, it turns out that con-


cerning noise attenuation a large β close to unity shall be


chosen. However, it is stated in [7] that with β being cho-


sen close to unity, transient distortions for the speech com-


ponent will unfortunately occur due to a strong smoothing in


(4). This phenomenon can be well analyzed by the MOSLQO


measure of the speech component in Figs. 6-9 for different


weighting rules and different SNRin levels. It can be obser-


ved that for reasonable values of β ≥ 0.7 MOSLQO scores


decrease monotonically. The most cited benefit of employing


the DD approach is to reduce musical tones by setting β close


to unity, which carries out a smoothing procedure obtaining a


more consistent estimate of ξ(ℓ, k) [7]. Figs. 10-13 show the


log kurtosis ratio ∆Ψlog measure for SA, LSA, WF and SG,


respectively. Using the new modified log kurtosis ratio (1) it


can be observed in contrast to [5]: With increasing β, ∆Ψlog


will accordingly increase towards zero, meaning that the kur-


tosis of ñ(n) becomes more similar to the kurtosis of n(n),
which contains no musical tones at all. Combined with the


mentioned findings in [7], our results show that by changing
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Fig. 8. Speech component quality for the WF weighting rule
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Fig. 9. Speech component quality for the SG weighting rule


the smoothing factor β in (4), the higher the log kurtosis ratio


is, the less musical tones are observed. It turns out that the log


kurtosis ratio ∆Ψlog is very suitable for instrumentally mea-


suring the amount of musical tones. Please note, that ∆Ψlog


will increase even more rapidly when β is chosen to be greater


than 0.9 for WF and SG. For SA and LSA, ∆Ψlog will decrea-


se a little bit for SNRin = 15dB and SNRin = 20dB beyond


β ≈ 0.98, which is the heuristic optimal point stated by Eph-


raim and Malah in [6]. Concerning the results of ∆Ψlog, it


can seen that considering musical tones attenuation, β should


be chosen quite close to 1, as being proposed by Ephraim and


Malah in [6], e.g., with β = 0.98. Therefore, from all these


results, there exists a trade-off between the preservation of the


speech component quality, noise attenuation, and the amount


of musical tones.


Now we discuss the automatic parameterization procedu-


re. In order to automatically find βopt achieving the best trade-


off, FoM(β) defined in (5) is computed for SA, LSA, WF, and


SG. In (5) the exponents a = 1, b = 1, c = 1 and weighting


factors A = 1, B = 0.5, C = 0.5 are chosen as simple


values but carefully, so that the weight of the speech com-
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Fig. 10. Log kurtosis ratio for the SA weighting rule
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Fig. 11. Log kurtosis ratio for the LSA weighting rule


ponent related measure (MOSLQO) equals to the sum of the


weights of the two noise component related measures (∆SNR
and ∆Ψlog) by balancing subjective importance of the three


components. The FoM(β) results of the four weighting ru-


les are shown in Figs. 14-17 for the range 0.83 ≤ β < 1. It


can be observed that for the weighting rules SA and LSA, the


optimal β appears all around the point of β = 0.98 for all


SNRin conditions. In the meantime, the optimal β appears all


around β = 0.99 for the weighting rules WF and SG. In order


to get an optimal β which comprises the best results for all


SNRin conditions in a mean sense, we compute the FoM(β)
defined in (6) for all weighting rules. The results are shown


in Figs. 18-21. It can be seen in Fig. 18 that for SA the ma-


ximum FoM(β) occurs with β ≈ 0.98. This result matches


the heuristically optimized β by Ephraim and Malah [6] with


β = 0.98 for the SA estimator. For the weighting rule LSA,


no optimal β has been proposed in [14]. It can be observed in


Fig. 19 that the maximum FoM(β) is obtained with β being


chosen around 0.97...0.98. Figs. 20-21 show that the maxi-


mum FoM(β) is obtained with β being chosen around 0.993


for the WF and the SG weighting rule. This is a very sur-


prising and interesting result, since in many cases, the value


β = 0.98 has been adopted also for the WF and SG weigh-
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Fig. 12. Log kurtosis ratio for the WF weighting rule
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Fig. 13. Log kurtosis ratio for the SG weighting rule


Table 1. ABX preference results for the SG weighting rule with β


SNRin -5 dB 5 dB 15 dB Average


A (β = 0.98) 39.1% 6.3% 14.1% 19.8%


B (β = 0.993) 57.0% 85.9% 48.4% 63.8%


X 3.9% 7.8% 37.5% 16.4%


ting rules. As we see now, the proposed optimal β = 0.98 for


SA may not always be the necessary optimal point for other


weighting rules.


In order to validate the optimal β provided by the FoM-


based optimization process, a subjective test is conducted for


the weighting rule SG in an ABX fashion with a total of four


randomly chosen speech signals from 2 male and 2 female


speakers with 4 different automotive noises. In the subjecti-


ve test, three SNRin conditions have been chosen, namely -5,


5, and 15 dB. 16 listeners have given their AB-preference to


either SG with the DD approach using the heuristically found


β = 0.98 by Ephraim and Malah or with our FoM-based op-


timal β = 0.993. No preference cases were marked by an X.


Table 1 shows the preference results of all three SNRin con-


ditions and the corresponding average results. It can be clear-
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Fig. 14. FoM(β) defined in (5) for the SA weighting rule
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Fig. 15. FoM(β) defined in (5) for the LSA weighting rule


ly observed that much more preference has been given for


the FoM-based optimal β = 0.993 compared to β = 0.98.


Only in 16.4% of the conditions no preference was reported.


This results mostly from the SNRin = 15dB condition, whe-


re 37.5% of the listeners were not able to hear differences at


all. The SG weighting rule with β = 0.993 shows a significant


improvement against the SG weighting rule with β = 0.98 for


SNRin = 5 dB. According to the feedback of most listeners,


in SNRin = −5 dB condition, a trade-off between speech


distortion and the amount of musical tones had to be judged.


However, still in this case more listeners prefer the optimal


β = 0.993 showing significant musical tones suppression and


acceptable speech distortion.


5. CONCLUSIONS


In this contribution we have presented three instrumental qua-


lity assessment measures for evaluating speech enhancement


systems, in particular noise reduction schemes. Among them


a log kurtosis ratio measure for noise distortion in terms of


musical tones is proposed. The three measures have also been


proven to be independent from each other. Based on this in-
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Fig. 16. FoM(β) defined in (5) for the WF weighting rule
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Fig. 17. FoM(β) defined in (5) for the SG weighting rule


dependence, we have shown the possibility of applying a fi-


gure of merit consisting of these three instrumental measu-


res to automatically find the best parameterization for a noise


reduction algorithm. We were able to automatically identify


and subjectively verify yet undocumented surprising values


of smoothing factors for a priori SNR estimation for some


noise reduction approaches.
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